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Abstract

Regulation of dendritic cell functions is a complex process in which several mediators play

diverse roles as a network in a context-dependent manner. The precise mechanisms under-

lying dendritic cell functions have remained to be addressed. Semaphorins play crucial roles

in regulation of various cell functions. We previously revealed that Semaphorin 3E

(Sema3E) contributes to regulation of allergen-induced airway pathology partly mediated by

controlling recruitment of conventional dendritic cell subsets in vivo, though the underlying

mechanism remained elusive. In this study, we investigate the potential regulatory role of

Sema3E in dendritic cells. We demonstrated that bone marrow-derived dendritic cells differ-

entiated from Sema3e-/- progenitors have an enhanced migration capacity both at the base-

line and in response to CCL21. The enhanced migration ability of Sema3E dendritic cells

was associated with an overexpression of the chemokine receptor (CCR7), elevated Rac1

GTPase activity and F-actin polymerization. Using a mouse model of allergic airway sensiti-

zation, we observed that genetic deletion of Sema3E leads to a time dependent upregula-

tion of CCR7 on CD11b+ conventional dendritic cells in the lungs and mediastinal lymph

nodes. Furthermore, aeroallergen sensitization of Sema3e-/- mice lead to an enhanced

expression of PD-L2 and IRF-4 as well as enhanced allergen uptake in pulmonary CD11b+

DC, compared to wild type littermates. Collectively, these data suggest that Sema3E impli-

cates in regulation of dendritic cell functions which could be considered a basis for novel

immunotherapeutic strategies for the diseases associated with defective dendritic cells in

the future.

Introduction

Dendritic cells (DC) are key inflammatory cells bridging innate to adaptive immune response.

Function of dendritic cells is a key determinant to shape immunity in several inflammatory

conditions. Therefore, addressing the mechanisms and mediators involved in regulation of

dendritic cell functions has a tremendous impact on understanding how the immune response
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could be initiated, developed, and impaired. Furthermore, it may introduce novel targets to

design innovative immunotherapeutic strategies [1]. In the context of allergic asthma, pro-

grammed death ligand B7DC (PD-L2) has been shown to be upregulated after allergen sensiti-

zation in murine myeloid DCs which correlates with the severity of the disease in humans.

Allergen-induced upregulation of PD-L2 decreases IL-12 level and eventually aggravates air-

way hyperresponsiveness (AHR); while PD-L2 blockade dampens AHR development [2]. In

addition, it has been previously shown that CD11b+ conventional DC (cDC) play a pivotal role

in induction of type 2 inflammation via induction of CCR7-mediated migration from the

lungs to the lymph nodes and uptake of aeroallergens such as house dust mite (HDM) [3].

This process is tightly regulated by a transcription factor, interferon regulatory factor 4 (IRF-4)

[4, 5]. Therefore, it is essential to decipher the novel mediators involved in regulation of

CCR7, IRF-4, and PD-L2 in allergic asthma.

Semaphorins, originally identified in the nervous system, are a versatile family of guidance

cues which are ubiquitously expressed and function in different organ systems including the

immune system [6]. Immune semaphorins, categorized as class IV transmembrane molecules,

control essential cell functions such as migration and proliferation as well as cytokine and anti-

body response. A compelling body of evidence suggests that other semaphorins such as those

of secreted class III ones could play a key role on development of immune cells and also

orchestration of their functions after development [7]. Semaphorin 3E (Sema3E) and its recep-

tor, PlexinD1, have been previously shown to be involved in development of T cells by regula-

tion of their chemokine-mediated migration from cortex to medulla of the thymus [8].

PlexinD1 has also emerged as a negative regulator of IL-12/IL-23p40 production in DC [9].

We have previously reported an essential regulatory role of Sema3E in mouse model of allergic

asthma which is mediated in part through modulating DC functions in vivo [10]. However, the

precise mechanism underlying this role is not clear.

Here, we address the non-redundant role of Sema3E in allergen sensitization, DC migra-

tion, and antigen uptake. We further demonstrate that the role of Sema3E in CD11b+ cDC

functions is mediated by regulation of CCR7, IRF-4, and PD-L2 expression. Finally, F-actin

polymerization and Rac1 GTPase activity is enhanced in DC differentiated from Sema3e-/-

mice in vitro. This may be relevant to dysregulated immune response in which the exacerbated

DC function takes the center stage.

Materials and methods

Animals

The 129 P2 Sema3e-/- mouse was a kind gift from Dr. F. Mann (Developmental Biology Insti-

tute of Marseille Luminy, Université de la Méditerranée, Marseille, France) which was

described previously [11] and 129P2 WT littermates were used as control groups. All the mice

were maintained at the Central Animal Care Services (CACS) facility at the University of Man-

itoba under specific pathogen-free conditions and used according to guidelines stipulated by

the Canadian Council for Animal Care and approved by the University of Manitoba Animal

Care and Use Committee (Protocol Number 15802).

Differentiation of bone marrow-derived dendritic cells (BMDCs)

Naive 129P2 WT and Sema3e−/− mice were euthanized, their femurs and tibias were dissected,

and the BM was flushed out by injecting complete DMEM through the marrow cavities and

cells were cultured for 7 days in DMEM containing mouse recombinant GM-CSF (PeproTech,

Rocky Hill, NJ) followed by LPS-induced DC maturation. The preparations were stained with

PLOS ONE Role of Sema3E in dendritic cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0252868 June 29, 2021 2 / 12

Funding: This work was supported by the

Canadian Institutes of Health Research grant (PJT

# 173291). H. M. was supported by Research

Manitoba-Children’s Hospital Research Institute of

Manitoba Studentship. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: DC, dendritic cells; FACS,

fluorescence-activated cell sorting; HDM, house

dust mite; IL, interleukin; I.N., intranasal; mAb,

monoclonal antibody; MLN, mediastinal lymph

nodes; SEM, standard error of mean; Sema,

semaphorin.

https://doi.org/10.1371/journal.pone.0252868


CD11c antibody followed by FACS analysis to assess their purity [12]. In some experiments,

surface expression of CCR7 was studied on BMDC DC by using FACS analysis.

BMDC migration assay. BMDCs from Sema3e−/− or WT mice were seeded (15×104/well

in 0.1 ml) in the upper compartment of a transwell chamber. 20 ng/ml of mouse recombinant

CCL21 (PeproTech, Rocky Hill, NJ), or PBS as vehicle, was added to the lower compartment

as a chemoattractant. After 4h incubation at 37˚C, migrated cells towards the lower chamber

were counted and compared with control groups.

Rac1 GTPase activity

BMDCs from Sema3e−/− and WT mice were first stimulated with CCL21 (20 ng/ml) for 0, 0.5,

1, 5, 15 and 30 min. Then, GTPase activity of Rac1 was measured in snap-frozen BMDC

extracts by G-LISA activation assay according to the manufacturer’s instructions (Cytoskele-

ton, Denver, CO).

Actin polymerization

BMDCs were stimulated with CCL21 (20 ng/ml) for 0, 0.5, 1, and 5min and immediately fixed

with 4% paraformaldehyde. Then, cells were washed and permeabilized with %0.05 Triton-

X100 in for 30 min before F-actin staining with Alexa488 conjugated Phalloidin (Life Technol-

ogies) for 30 min. Finally, the CD11c+ pre-gated BMDCs were analyzed by flow cytometry to

detect F-actin content.

Aeroallergen sensitization model

Lyophilized HDM protein extract (Dermatophagoides pteronyssinus, Lot 259585; LPS, 615

EU/vial was obtained from Greer Laboratories (Lenoir, NC) which was reconstituted in sterile

saline as 2.5 mg/ml stock concentration before treatment. A single intranasal dose (100 μg in

100 μL of saline) was freshly administered to Sema3e-/- or WT mice under gaseous anesthesia

[13].

Flow cytometric analysis of pulmonary dendritic cells

Pulmonary conventional DC subsets were analyzed by FACS from Sema3e-/- or WT mice 3

days after intranasal exposure with a single high dose of HDM [3]. Briefly, lungs were removed

from mice and enzymatically digested using 1 mg/ml collagenase IV (Worthington Biochemi-

cal Corporation, Lakewood, NJ) and 0.5 mg/ml DNase from bovine pancreas in RPMI 1640

medium. After Fc blocking, DCs were stained by anti-mouse CD11c-APC (Clone: N418,

eBioscience), MHCII eFluor1 450 (Clone: M5/114.15.2, eBioscience), CD11b-PE-Cy7

(Clone: M1/70, BioLegend), and CD103-PerCP-Cy5.5 (Clone: 2E7, BioLegend). Anti-mouse

PD-L2-PE (Clone: TY25, BioLegend) and IRF-4 (Clone: IRF4.3E4, BioLegend) antibodies

were separately added to the tubes followed by acquisition of the samples using a BD FACS

Canto-II (BD, San Diego, CA) and analyzed using FlowJo V10.7.

Labeling HDM and in vivo uptake assay

HDM was labeled with the Alexa Fluor 647 protein Labeling Kit (Molecular probes, Life Tech-

nologies Inc.) and purified with resin column following manufacturer’s instructions. Mice

were sensitized intranasal with 100 μg AlexaFluor 647- HDM or non-labeled HDM for 36

hours. Lung single cells suspension was purified as described above [10], then stained using

V.D-Fixable Viability Dye eFluor™, 780/dumping-PE(CD4,CD8, 6G(1A8), Siglc-F, B220,
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MHCII-PB, CD11c-FITC, CD103-PerCy5.5, CD11b-PE-Cy7, HDM-APC antibodies. Samples

were then using a BD FACS Canto-II (BD, San Diego, CA) and analyzed using FlowJo V10.7.

Statistics

GraphPad Prism 5.0 software was used for statistical analysis and values were presented as the

mean±SEM of at least three independent experiments. Depends on the number of groups and

treatments, data were analyzed by unpaired t test, one-way or two-way ANOVA, followed by

the Bonferroni’s multiple comparison post-hoc test. Differences were considered to be statisti-

cally significant at �p�0.05, ��p�0.01 and ���p�0.001.

Results

Sema3E deficient BMDC display an enhanced migratory phenotype in vitro
To support our previous in vivo findings on the hyper migratory phenotype of Sema3e–/–pul-

monary DC, we first differentiated progenitors harvested from the bone marrow to DC in the

presence of GM-CSF in vitro [12].This approach not only enables us to investigate the func-

tional outcomes reproducibly but also furthers the signaling mechanistic underlying DC dys-

function in the absence of Sema3E. Prior to functional studies, we assured the purity of in vitro
differentiated BMDC by FACS analysis of CD11c surface expression (>95%, data not shown).

Interestingly, BMDC from Sema3e
–/–

mice expressed a higher level of this marker compared to

WT BMDC (S1 Fig). Transwell migration experiments revealed that BMDC from Sema3e–/
–mice had higher basal migration compared to the BMDC from WT littermates. Stimulation

of BMDC with CCR7 ligand, CCL21, induced higher migration in Sema3E-deficient BMDC

than the WT controls (Fig 1A).

To address the mechanism underlying the role of Sema3E in the regulation of BMDC

migration we next examined the surface expression of CCR7 which specifically binds CCL21.

As depicted in Fig 1B, basal and CCL21-induced surface expression of CCR7 was higher in

BMDC from Sema3e–/–mice than those of WT counterparts. In addition, stimulation with an

aeroallergen, HDM upregulated surface expression of CCR7 in the absence of Sema3E (S2

Fig). Therefore, Sema3E may exert its inhibitory effect on DC migration at least partly through

regulation of CCR7 expression at both homeostatic and allergic inflammatory conditions.

Genetic ablation of Sema3E is associated with increased Rac1 GTPase

activity and F-actin polymerization

Activation of small GTPases particularly Rac1 is indispensable for the acquisition of the migra-

tory cell phenotype [14]. Hence, we compared the level of Rac1 GTPase activity (GTP-bound

Rac1) between BMDC from Sema3e–/–and WT mice by performing luminescence-based

G-LISA. Our studies revealed that Rac1 GTPase activity is significantly higher in the absence

of Sema3E one minute after CCL21 stimulation as an early signaling event (Fig 1C). Further-

more, staining of filamentous actin (F-actin) by Phalloidin assay demonstrated that actin poly-

merization, as an essential component of cell migration [15], was remarkably enhanced in

BMDC from Sema3e–/–compared to the WT mice upon CCL21 stimulation at indicated time

points but not at the baseline (Fig 1D). Therefore, the regulatory role of Sema3E in BMDC

functions could be mediated by its effect on Rac1 GTPase and actin rearrangement. Alto-

gether, our mechanistic data suggest that in the absence of Sema3E, two key signaling events

including Rac1 GTPase activity and F-actin assembly are dysregulated in dendritic cells.
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Sema3E is implicated in the pulmonary migration of CD11b+ cDC during

allergen sensitization

It has been shown that pulmonary dendritic cells migrate to the MLN upon allergen encounter

via CCR7 as an essential mediator of DC migration [3]. To delineate the potential impaired

regulatory mechanism underlying hyper-inflammatory phenotype in the absence of Sema3E,

we established an in vivo model of allergen sensitization by intranasal administration of a sin-

gle high dose of HDM (100 μg) for 36 and 72 hours (Fig 2A) [3, 10]. First, we observed an ele-

vation of total cDC population, CD11c+ MHCIIhi, in MLN from Sema3e-/- mice after HDM

sensitization (Fig 2B). Then, we studied the surface expression of CCR7 on cDC subsets from

MLN. HDM exposure for 3 days induced higher CCR7 expression in CD11b+ MLN cDC from

Sema3e–/–compared to those of WT mice (Fig 2B and 2C) which was not significantly different

earlier (36h, data not shown). On the other hand, the frequency of CD11b+ cDC was increased

in the lungs, but not MLN, 36 hours post-sensitization (Fig 2C). Collectively, our in vivo data

Fig 1. Role of Sema3E in regulation of BMDC migration. Basal and CCL21-induced migration of BMDC from Sema3e-/- and WT mice was assessed by transwell assay

in vitro (A). Surface expression of CCR7 is increased in BMDC from Sema3e–/–mice compare to those of WT littermates as determined by flow cytometry at the baseline

or after stimulation with CCL21 (B). Rac1 GTPase activity was compared between BMDC from Sema3e–/–and WT mice before and after CCL21 stimulation by

performing G-LISA (C). Kinetic study of actin polymerization by Phalloidin staining at the baseline and upon stimulation with CCL21 revealed higher F-actin content

in the absence of Sema3E over time (D). Data represent at least three independent experiments. (n = 3–6 per group, �P<0.05).

https://doi.org/10.1371/journal.pone.0252868.g001
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support the notion that increased CCR7 expression in Sema3e–/–mice leads to enhanced accu-

mulation of pulmonary dendritic cells particularly CD11b+ cDC subset.

Allergen-induced expression of PD-L2 and IRF-4 is increased in pulmonary

CD11b+ cDC from Sema3e-/- mice

Considering the key role of PD-L2 and IRF-4 in development of allergic type 2 inflammation

via regulation of DC functions, we examined whether Sema3E could contribute to expression

of these proteins in HDM sensitization model. We have demonstrated our gating strategy by

which we have determined major cDC subsets (CD11b+ vs CD103+) by excluding dead cells,

debris, autofluorescent macrophages and then including MHCIIhi CD11c+ cells (S3 Fig). Our

flow cytometry data revealed that surface expression of PD-L2 is not different between

CD11b+ cDC from Sema3e-/- vs WT mice at the baseline. However, HDM-induced PD-L2 sur-

face expression was significantly more pronounced on CD11b+ cDC from Sema3e-/- than WT

control mice as shown in Fig 3A–3C. Then, utilizing the same gating strategy as that of PD-L2

(S3 Fig), we performed intranuclear staining to assess the expression IRF-4 which is an essen-

tial transcription factor in regulation of myeloid dendritic cells. As shown in Fig 3D and 3E,

both frequency and number of IRF-4 expressing CD11b+ cDC from Sema3e-/- mice (solid line)

was significantly increased in the absence of Sema3E compared to WT littermates (dotted line)

upon HDM sensitization. Therefore, our data indicate that genetic deletion of Sema3E is asso-

ciated with not only phenotypic alteration of cDC subsets but also differential expression of a

functional signature including PD-L2, IRF-4, and CCR7 in these cells.

Allergen uptake capacity is elevated in pulmonary CD11b+ cDC from

Sema3e-/- mice during sensitization

Dendritic cells are known as the professional antigen presenting cells. Particularly, the capacity

of CD11b+ cDC to uptake an allergen determines the consequent presentation upon

Fig 2. HDM sensitization induces upregulation of CCR7 in Sema3e-/- pulmonary dendritic cells. A schematic representation of in vivo model to induce HDM

sensitization (A). CCR7 surface expression in CD11b+ cDC from the lung and MLN was compared between Sema3e-/- and WT mice after 36 or 72h intranasal

administration of HDM (B). Statistical comparison of CD11b+ CCR7+ cDC from lungs or MLN between Sema3e-/- and WT mice 36 and 72h post-sensitization (n = 3–6

per group, �P<0.05).

https://doi.org/10.1371/journal.pone.0252868.g002
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processing. Therefore, we investigated the potential role of Sema3E in antigen uptake by pul-

monary CD11b+ cDC in our sensitization model in which HDM was conjugated with APC

fluorochrome prior to intranasal administration (Fig 4A). As shown in Fig 4A, the amount of

HDM uptake by pulmonary CD11b+ was remarkably higher than CD103+ cDC. Surprisingly,

Sema3E deficiency led to an enhanced antigen uptake in CD11b+ cDC compared to WT con-

trol group 36h post-sensitization in the lungs. However, in accordance with the literature, the

level of uptake was higher in CD11b+ than CD103+ cDC (Fig 4B and 4C). Collectively, these

results suggest a potential role of Sema3E in the regulation of allergen uptake.

Fig 3. Increased expression of PD-L2 and IF-4 in CD11b+ pulmonary cDC in Sema3e -/- mice exposed to HDM. (A-C) Surface expression of PD-L2 was

measured on C11b+ DC subset from the lungs using flow cytometry. Data represent at least two independent experiments (n = 3–5 mice per group,
���P<0.001). (D, E) IRF4 intranuclear protein expression was detected by flow cytometry. Isotype control validates the specificity of staining. Cells were pre-

gated as described in Fig 3. Data represent at least two independent experiments, n = 3–5 mice per group. �P<0.05.

https://doi.org/10.1371/journal.pone.0252868.g003
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Discussion

In this study, we have first utilized an in vitro and in vivo approach by which the mechanism

underlying the regulatory role of Sema3E in DC functions has been addressed. We have

shown that BMDC from Sema3e-/- mice have a hyper migratory phenotype which could be

mediated specifically by upregulation of CCL21-CCR7 chemotactic axis, higher activation of

Rac1 signaling and F-actin polymerization than those of WT controls. Furthermore, our in
vivo studies reveal that compared to WT, the absence of Sema3e signaling, transcription factor

IRF4 and surface marker PD-L2 expression augmented in DC after treatment with a Th2/

Th17 promoting signal, HDM. These events were accompanied with an enhanced ability of

Fig 4. Enhanced uptake of HDM in pulmonary cDC subsets from Sema3e-/- mice. HDM allergen was fluorescently labelled using a conjugation kit and intranasally

administered to the mice followed by acquiring the samples and phenotyping CD11b+ vs CD103+ cDC subsets (A). The level of HDM uptake by pulmonary cDC subsets

was compared between Sema3e-/- and WT mice. cDC from the mice sensitized with unlabeled HDM was served as a gating control (n = 3 per group) (B–C).

https://doi.org/10.1371/journal.pone.0252868.g004
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antigen uptake. Taken together, our data point out to an important role of Sema3e in regulat-

ing important regulatory signal that impact DC cell function in the lung.

It has been reported that small GTPases such as RhoA, cell division control protein 42

homolog (CDC42) and Rac tightly regulate DC migration, antigen uptake and T cell priming

[16–18]. Furthermore, Sema3E inhibitory effect on macrophages [19] and ASM cells [20] is

mediated through Rac1 signaling pathway. Tata et al. have revealed that Sema3E-induces

hyper-collapse of endothelial cells after silencing Rac1 gene expression which is rescued upon

treatment with constitutively active Rac1 [21]. Elevated Rac1 GTPase activity in mature

BMDC from Sema3e-/- mice may explain the mechanism underlying higher migration as well

as T cell priming, reported in our previous study [10], in the absence of Sema3E.

Increased F-actin content and higher surface expression of CCR7 in BMDC from Sema3e-/-

mice may further provide potential mechanistic evidence behind their higher migration ability

compared to those of WT littermates which was further supported by higher level of CCR7

induction in CD11b+ pulmonary DC upon HDM exposure in vivo. Moreover, Rac1 is an

essential signaling component downstream of CCR7 pathway that controls ERK signaling

pathway activation in DC [22]. Thus, higher GTPase activity could connect CCR7 over-expres-

sion to consequent increased F-actin polymerization in Sema3e-/- BMDC upon CCL21 stimu-

lation. Because of the low frequency of highly pure CD11b+ pulmonary DC, performing Rac1

GTPase activity and F-actin polymerization assays were not feasible on these cells after sorting.

It should be mentioned that there might be other potential signaling targets involved in regula-

tion of Sema3E-mediated effects in DC which have remained elusive, so far. However, CCR2

surface expression was not significantly different between BMDC differentiated from

Sema3e-/- and WT mice. In addition, BMDC migration was not significantly different upon

stimulation with CCL2; while stimulation with CCL19, as an alternative ligand for CCR7, sig-

nificantly increased migration of BMDC from Sema3e-/- mice compared to WT controls in
vitro (data not shown).

Since BMDC have been directly differentiated from the progenitor cells at presence of

GM-CSF, the potential impact of Sema3E on development of immune cells under healthy and

pathological, conditions e.g. allergic asthma, was further investigated. Our in vivo model

focuses on sensitization phase of exposure to an allergen which is crucial in the context of DC

innate functions to shape the allergic response. Our previously published data on the impact of

Sema3E on cDC phenotype is based on a 2-week HDM exposure model which represents a

challenge phase further supported by current functional findings. We have mainly focused on

CD11b+ cDC since they have been shown to induce type 2 inflammation in allergic asthma. It

requires migration of CD11b+ cDC from the lungs to mediastinal lymph nodes where they

present the aeroallergens to naïve T cells in a CCR7-dependent fashion. We have provided

mechanistic evidence that CCR7 expression is kinetically upregulated in the absence of

Sema3E suggestive of a novel target to modulate unwanted DC migration, e.g. in allergic or

autoimmune diseases.

Overt uptake of HDM in pulmonary cDC from Sema3e-/- mice indicates that suppression

of Sema3E, as we reported in severe asthmatic patients [23], could subsequently lead to an

increased allergen presentation and heighten the disease immunopathology. This notion is fur-

ther supported by significant increase in upregulation of PD-L2 and IRF-4 as key mediators in

type 2 allergic immunity in CD11b+ cDC from Sema3e-/- upon HDM sensitization.

Lewkowich et al. have previously reported that PD-L2 expression allergen exposure in mice

upregulates PD-L2 expression on pulmonary DCs and its blockade decreases allergic airway

hyperresponsiveness [2]. Of clinical importance, they have further demonstrated that PD-L2

expression in bronchial biopsies correlated with the severity of asthma. The pro-allergic mech-

anism of PD-L2 action in asthma mouse model has been suggested to be mediated by
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diminishing IL-12 production in DC which counterbalancing IL-13 expression as a key type 2

cytokine involved in AHR [2]. Targeting PD-L2 using its ligand, repulsive guidance molecule

b (RGMb), was proposed a therapeutic approach for allergic asthma [24]. However, it has been

recently revealed that the anti-allergic effect of RGMb in a mouse model of asthma is indepen-

dent of PD-L2 interaction further confirmed in PD-L2 deficient mice sensitized to OVA

which may require to be validated in protease allergen models such as HDM [25]. In addition,

Minkyoung et al. have reported a complex mechanism in which protease-fibrinogen cleavage

products-TLR4-mast cell-IL-13 axis favors development of pro-allergic/asthmatic PD-L2+

DCs in mice [26]. Finally, in vitro administration of blocking antibody against PD-L2 remark-

ably inhibits IL-5 and IL-13 production by myeloid DCs obtained from patients with persistent

asthma [27]; a therapeutic option which could be achieved by replenishing Sema3E.

Similar to PD-L2, expression of IRF-4 is increased in patients with allergic asthma [28].

IRF4- expressing DC are important for the DC-driven polarization of Th17 responses in the

intestine and lung, for the induction of Th2 responses via CD11c+ DC in lung allergy and skin

parasite models, and for attenuation of Th1 responses [4, 5]. Also, inhibition of IRF4 in cDC

block type 2 inflammation while skewing the immune system towards a Th17 response [4]

which could be detrimental for Th2-low phenotype in asthmatic patients. This effect has been

showed to be independent and dependent of engaging pattern recognition receptors. However,

our results represent Sema3E as an essential regulator of IRF4 expression with counterbalanc-

ing effects on both Th2 and Th17 responses.

Future studies will determine whether replenishment of Sema3E by administering exogenous

recombinant Sema3E or its peptide derivatives during or before sensitization would inhibit dysre-

gulated HDM uptake as well as overexpression of CCR7, PD-L2, IRF-4 in CD11b+ cDC.

Altogether, this study provides novel mechanistic insights to explain the key role of Sema3E

in DC biology in general and pro-allergic function of CD11b+ cDC in particular which had

not been previously addressed. Combined with our previous reports on the regulatory role of

Sema3E in allergic inflammation, neutrophil migration, and also airway smooth muscle cell

function, targeting this guidance cue may be considered a comprehensive approach in immu-

nopathological disorders in which immune regulation is impaired.

Supporting information

S1 Fig. In vitro GM-CSF-mediated differentiation of BMDC as confirmed by measuring

CD11c expression (Related to Fig 1).

(TIF)

S2 Fig. Enhanced HDM-induced CCR7 expression on BMDC from Sema3e-/- mice (Related

to Fig 1).

(TIF)

S3 Fig. Gating strategy in flow cytometry experiments to determine pulmonary cDC sub-

sets. In total cell population (R1), single (R2) live (R3) cells were selected and macrophages

were excluded (R4). Then, total pulmonary cDC were determined based on high surface

expression of MHCII and positivity for CD11c (R5). Finally, distinct CD11b vs CD103

expressing cDC were characterized (R6).

(TIF)
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