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The minimum audible angle test which is commonly used for evaluating human localization ability depends on interaural time
delay, interaural level differences, and spectral information about the acoustic stimulus. These physical properties are estimated at
different stages along the brainstem auditory pathway.The interaural time delay is ambiguous at certain frequencies, thus confusion
arises as to the source of these frequencies. It is assumed that in a typical minimum audible angle experiment, the brain acts as an
unbiased optimal estimator and thus the human performance can be obtained by deriving optimal lower bounds. Two types of
lower bounds are tested: the Cramer-Rao and the Barankin. The Cramer-Rao bound only takes into account the approximation
of the true direction of the stimulus; the Barankin bound considers other possible directions that arise from the ambiguous phase
information.These lower bounds are derived at the output of the auditory nerve and of the superior olivary complex where binaural
cues are estimated. An agreement between human experimental data was obtained only when the superior olivary complex was
considered and the Barankin lower bound was used.This result suggests that sound localization is estimated by the auditory nuclei
using ambiguous binaural information.

1. Introduction

Adrian’s classic research on neural activity [1] presented three
essential observations which are as relevant today as they
werewhen he first introduced them: (1) as individual neurons
produce action potential which propagate through the brain,
the information of the neural activity is encoded by spiking
events; (2) the rate of the spikes is dependent upon the
external stimuli that drives the neural cell; and (3) there is an
adaptation mechanism that adjusts the cell response; that is,
the neural activity is reduced for constant stimuli. Anymodel
that purports to characterize a neural activity must take into
account these basic principles.

In this study we refer to auditory systems in which
irregular neuronal activity was demonstrated during in vivo
recordings [2]. In vivo observations have also shown that
a specific neuron might respond with a single spike or
several spikes to a given stimuli as shown in [2]. Kiang’s

[2] observation is not in agreement with that of Adrian [1],
who suggested that the stimuli information is coded by the
average rate of the neural response. This contradiction raises
the possibility that the timing of the spikes relative to the
stimulus should be considered as well.

The origin of the stochastic activity of neurons is poorly
understood. This activity results in both intrinsic noise
sources that generate stochastic behavior on the level of the
neuronal dynamics and extrinsic sources that arise from net-
work effects and synaptic transmission [3]. Another source of
noise that is specific to neurons arises from the finite number
of ion channels in a neuronal membrane patch [4, 5].

There are a number of different ways that have emerged
to describe the stochastic properties of neural activity. One
possible approach relates to the train of spikes as a stochastic
point process. For example, in their earlier studies, Alaoglu
and Smith [6] and Rodieck et al. [7] suggested that the
spontaneous activity of the cochlear nucleus can be described
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as a homogeneous Poisson process. Further investigations
of the auditory system described the neural response as
a nonhomogeneous Poisson point process (NHPP) whose
instantaneous rate depends on the input stimuli [8, 9].

A meaningful characterization of neural activity can be
derived by using stochastic properties in order to predict
human performance. Up to the 19th century, when medical
science was still in its infancy and the concept of neural
activity was unknown, the only method of understanding
and researching the brain was through a black-box approach
based on psychoacoustical experiments. While these psy-
choacoustical experiments provided valuable information,
they were regarded as limited since they only produced
qualitative information. It was argued that the activities and
the contents of themind could not bemeasured and therefore
could not be objective. This view began to change in the
early 1800s when ErnstWeber (1795–1878) demonstrated two
measures for quantifying psychological data that he obtained
from testing subjects psychoacoustically: (1) the two-point
threshold, in which the smallest distance noticeable to touch
at various parts of the body is measured, and (2) the just-
noticeable difference (JND), in which the smallest difference
in weight a person is capable of distinguishing is measured.

In the mid-20th century, several classes of standard
adaptive tests for psychoacoustic measurements were intro-
duced for evaluating auditory resolution [10–12]. These
measurements are used for comparing the relationship
between prediction of neural models and psychoacoustical
performances. In such psychoacoustical tests, subjects are
asked to distinguish between close values of one of the
signal’s parameters, such as the signal’s frequency or level
in monaural stimulation, and the interaural level difference
(ILD), or the interaural time difference (ITD) in binaural
stimulation. The results of such experiments are the JND
of the investigated parameter. Such experiments have been
repeatedly performed and reported in the literature (e.g., [13–
20]).

Comparing the behavioural JND and the neural activity
is possible if one assumes that the neural system estimates
the measured parameters. Siebert [21, 22] obtained such a
comparison when the JND of a single tone’s frequency and
level was compared to the neural activity of the auditory
nerve. Siebert’s findings were based on the assumption that
the auditory nerve (AN) response behaves as a NHPP, and
the brain acts as an unbiased optimal estimator of the physical
parameters. Thus, the JND is equal to the standard deviation
of the estimated parameter and can be derived by lower
bounds such as the Cramer-Rao lower bound. Heinz et al.
[23, 24] generalized Siebert’s results to a larger range of
frequencies and levels. Colburn and his colleagues [25–29]
obtained similar evaluations for binaural signals, where the
JND of ITD and ILD was compared to the neural activity of
the auditory nerves of both ears.

This approach was extended to analyze brainstem nuclei
such as the superior olivary complex (SOC) and the inferior
colliculus (IC). These nuclei receive inputs from both ears,
integrate the information, and send it by means of neural
spike trains to the upper nuclei in the auditory pathway
[30–36].

The neural cells in the SOC and IC are frequently
described as coincidence detector (CD) cells. These cells
receive independent excitatory and inhibitory inputs and
generate a spike if the number of excitatory inputs exceeds
the number of inhibitory inputs by a known number during
a short interval. Krips and Furst [37] showed that the CD cells
behave as NHPP if their inputs are NHPP.Therefore, the JND
of the binaural parameters such as ITD and ILD, which are
presumably estimated at the level of the SOC or IC, can be
derived on the basis of the CD cell outputs [38].

Two main types of CD cells are identified in the brain-
stem auditory pathway: excitatory-excitatory (EE) cells and
excitatory-inhibitory (EI) cells. EE cells receive excitatory
inputs fromboth (right and left) anteroventral cochlear nuclei
(AVCN) and they fire when both inputs are received within a
time interval of less than 50 𝜇sec [36, 39–41]. These types of
cells are sensitive mainly to ITD. EI cells, on the other hand,
are sensitive to the balance of intensity at the ears because the
excitation, due to ipsilateral stimuli, is reduced by increasing
levels of contralateral stimuli [40, 42–45].

The human ability to localize sound depends on ITD,
ILD, and spectral information of the acoustic stimulus. The
goal of this paper is to test whether the prediction of human
performance in this task is possible from the AN response or
whether the processing of higher auditory brainstem nuclei is
required. We compare the prediction of human performance
based on the stochastic properties of the spike trains at the
level of the auditory nerve and at the level of the SOC.

2. Minimum Audible Angle

Theminimum audible angle (MAA) test is a commonmeans
of evaluating human localization ability. In this test, two
successive signals from different directions are aimed at a
listener.The order of the two signals is random.The listener is
instructed to indicate the direction of the two signals relative
to each other. For example, in the horizontal plane, the subject
is asked if the signal moved from right to left, or vice versa.

MAA experiments have been conducted with various
experimental setups and testing procedures for different
stimuli conditions [11, 46–50]. For a single-tone MAA in the
horizontal plane, Mills’ measurements [11] have become the
generally accepted standard. MAA as a function of frequency
at an azimuth of 0∘ is redrawn fromMills’ [11] measurements
in Figure 1.TheMAA exhibits the following properties: (1) an
increase of MAA as a function of frequency above 1 kHz and
(2) an oscillatory behavior as a function of frequency with
local maxima at about 1.5 and 8 kHz.

In a typical MAA experiment, the audio signal 𝑆(𝑡, 𝜃)
enters both ears from a direction 𝜃 relative to the nose. The
incoming sounds to each ear are transformed as a function
of the shape and size of the head, torso, and the pinna of the
outer ears. These anatomical features are known as the head-
related-transfer-function (HRTF) that can be measured and
synthesized in the form of linear time-invariant filters.

In Figure 2, typical right and left HRTFs for an elevation
of 0∘ are presented. They were obtained from Knowles
Electronic Manikin for Acoustics Research (KEMAR) [51].
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Figure 1: MAA experimental results as a function of frequency for
a reference azimuth of 0∘, (redrawn from [1]).

Both gain (Figure 2(a)) and phase (Figure 2(b)) are demon-
strated in Figure 2 by color-coded scales. They are plotted
as a function of both frequency (𝑓) and direction (𝜃). The
maximum gain for the right HRTF is obtained at high
frequencies when the speaker is located in front of the right
ear, that is, a direction of 90∘. Similarly, maximum gain for
the left HRTF is obtained when the speaker is located in front
of the left ear, which corresponds to a direction of 270∘. At
frequencies above 1 kHz, the phase becomes ambiguous since
different directions yield similar phases.

Formally, the signals that are conveyed to the left and right
cochleae are

𝑆L (𝑡, 𝜃) = 𝑆 (𝑡, 𝜃) ∗HRIRL (𝑡, 𝜃) ,

𝑆R (𝑡, 𝜃) = 𝑆 (𝑡, 𝜃) ∗HRIRR (𝑡, 𝜃) ,
(1)

where ∗ represents a convolution and HRIRL(𝑡, 𝜃) and
HRIRR(𝑡, 𝜃) are the left and right head-related impulse
responses, respectively.

In this study, we refer only to signals that are composed
of simple tones, that is, 𝑆(𝑡) = 𝐴 sin(2𝜋𝑓𝑡), where 𝐴 is the
signal amplitude and 𝑓 represents its frequency. The effects
of the HRTF on such a signal are phase shifts and amplitude
alterations that yield

𝑆L (𝑡, 𝜃) = 𝐴L (𝜃) sin (2𝜋𝑓𝑡 + 𝜑L (𝜃)) ,

𝑆R (𝑡, 𝜃) = 𝐴R (𝜃) sin (2𝜋𝑓𝑡 + 𝜑R (𝜃)) .
(2)

Therefore, the resulting interaural differences are a phase
difference (IPD) that is obtained by

IPD (𝜃) = 𝜑R (𝜃) − 𝜑L (𝜃) , (3)

which corresponds to ITD by

ITD (𝜃) = IPD (𝜃)
2𝜋𝑓

, (4)

and interaural level difference (ILD) in dB is given by

ILD (𝜃) = 20 log
10

(
𝐴R (𝜃)

𝐴L (𝜃)
) = 20 log

10

(𝛿) , (5)

where 𝛿 = 𝐴R(𝜃)/𝐴L(𝜃).

3. Estimating MAA on the Basis of the
Stochastic Properties of Neural Spike Trains

We assume that during an MAA experiment, the brain’s task
is to estimate 𝜃. The resultant unbiased estimator is 𝜃, which
yields

𝐸 [𝜃 | 𝜃
∗

] = 𝜃
∗

, (6)

where 𝜃∗ is the true direction of the incoming signal.
Generally, in a psychoacoustical JND experiment, the yielded
JND value is obtained when 𝑑 = 1, where in an MAA
experiment

𝑑


=
𝐸 [𝜃 | 𝜃∗] − 𝐸 [𝜃 | (𝜃∗ + Δ𝜃)]

std (𝜃 | 𝜃∗)
=

Δ𝜃

std (𝜃 | 𝜃∗)
. (7)

Therefore, 𝑑 = 1, yields the relations:

Δ𝜃 = MAA = std (𝜃 | 𝜃∗) . (8)

In an optimal system, the standard deviation of the
estimator, std(𝜃 | 𝜃∗), can be obtained by the Cramer-
Rao lower bound (CRLB). This bound is achievable when
the estimator uses information from the vicinity of the true
value, 𝜃∗. However, in estimating the direction of sine waves
when their phase information is ambiguous (Figure 2), the
brain might consider different directions as the true ones.
For example, when a continuous 2 kHz tone reaches both ears
from either one of the sides or from the front of the head, the
produced ITD in all cases will be 0. Thus, when the signal is
coming from either of those directions, an optimal estimator
can choose any of those possibilities. Since the Barankin
lower bound (BLB) [52] takes into account different possible
values of the estimated parameter other than those located
in the proximity of the true one, the BLB might be a better
choice in deriving a lower bound of std(𝜃 | 𝜃∗).

Let us define CRLB(𝜃∗) and BLB(𝜃∗) as the CRLB and the
BLB of 𝜃∗, respectively. In general,

MAA = std (𝜃 | 𝜃∗) ≥ BLB (𝜃∗) ≥ CRLB (𝜃∗) . (9)

In order to derive both CRLB(𝜃∗) and BLB(𝜃∗), one
should consider the probability density function of the
estimator 𝜃 | 𝜃∗. The stochastic properties of the estimator
𝜃 | 𝜃∗ are initiated by the probabilistic behavior of the
neural spike trains along the auditory pathway. Thus, the
lower bounds can be derived from the probability density
function of the neural spike trains.

The stochastic properties of the neural spike are described
by the probability of getting 𝑁 successive spikes during
𝑇 seconds at the time instances {𝑡

1
, . . . , 𝑡

𝑁
} following an

acoustic stimulus. As was stated earlier [8, 9], this behavior
can be described as NHPP; therefore,

𝑝 (𝑡
1
, . . . , 𝑡

𝑁
) =

1

𝑁!

𝑁

∏
𝑛=1

𝜆 (𝑡
𝑛
, Θ) exp{−∫

𝑇

0

𝜆 (𝑡, Θ) 𝑑𝑡} ,

(10)
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Figure 2: A sample HRTF gain in dB (a) and phase in degrees (b) as a function of azimuth and frequency for 0∘ elevation.

where 𝜆(𝑡, Θ) is the instantaneous rate of the neural point
process and Θ is a vector that includes all the physical
parameters of the audio signal. In this study, since we relate
to MAA, we choose Θ = 𝜃 as the direction of the incoming
signal.

In NHPP, both lower bounds, CRLB and BLB, depend
only on the instantaneous rate. The CRLB for a NHPP was
derived by Bar David [53] and is given by

CRLB (𝜃∗) = {∫
𝑇

0

1

𝜆 (𝑡, 𝜃∗)
[
𝜕𝜆 (𝑡, 𝜃)

𝜕𝜃

𝜃=𝜃∗
]

2

𝑑𝑡}

−1/2

. (11)

For deriving BLB, we define a vector of 𝐿 that includes all
the nontrue but possible values Φ = [𝜃

1
, . . . , 𝜃

𝐿
]. In [37] the

BLB was derived for an NHPP which is given by

BLB (𝜃∗) = CRLB (𝜃∗) + (Φ − CRLB (𝜃∗) ⋅ 𝐴) Δ−1

× (Φ − CRLB (𝜃∗) ⋅ 𝐴)𝑇,
(12)

where𝐴 = [𝐴
1
, . . . , 𝐴

𝐿
] is a vector of length 𝐿, when each𝐴

𝑙

is given by

𝐴
𝑙
= ∫
𝑇

0

[
𝜆 (𝑡, 𝜃

𝑙
)

𝜆 (𝑡, 𝜃∗)
− 1] ⋅

𝜕𝜆 (𝑡, 𝜃)

𝜕𝜃

𝜃=𝜃∗
𝑑𝑡. (13)

The matrix Δ = 𝐵 − 𝐴𝑇CRLB(𝜃∗)𝐴, where 𝐵 is a symmetric
matrix whose size is 𝐿 × 𝐿. Each element in the matrix 𝐵 is
obtained by

𝐵
𝑖𝑗
= exp(∫

𝑇

0

[ − 𝜆 (𝑡, 𝜃
𝑖
) − 𝜆 (𝑡, 𝜃

𝑗
) + 𝜆 (𝑡, 𝜃

∗

)

+
𝜆 (𝑡, 𝜃

𝑖
) 𝜆 (𝑡, 𝜃

𝑗
)

𝜆 (𝑡, 𝜃∗)
] 𝑑𝑡) .

(14)

The vector Φ is essential in BLB derivation. If the size
of the vector is predetermined, the actual values 𝜃

1
, . . . , 𝜃

𝐿

can be obtained by deriving BLB for all the possibilities.
The L directions that yield the maximum BLB are then
chosen for vector Φ. Such a straightforward approach is a
time-consuming process that requires calculating enormous
number of possible sets. For example, for 𝐿 = 4 with a
resolution of 1∘, there are 3604 sets to consider. In order to
reduce the number of calculations, a two-stage procedure was
designed. In the first stage, for every frequency, BLBpredicted
MAAs based on a single ambiguity. In a 1∘ resolution, a total
of 360 BLB derivations were obtained. In the second stage,
for every frequency, the number of ambiguous directions
(𝐿) was defined and the vector [𝜃

1
, . . . , 𝜃

𝐿
] of the ambiguous

directions was chosen according to directions that yielded
maximumMAA in the first stage.
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4. MAA Prediction Based on
Auditory Nerve Response

Since the auditory nerve (AN) is the initial stage in the
auditory neural pathway, we first tested the prediction of
MAA on the basis of its response.

There are about 30,000AN fibers that innervate each
ear. The different location of each fiber’s attachment on
the cochlear partition determines its frequency sensitivity
since each point along the cochlea has a different resonance
frequency.

The auditory nerve’s instantaneous rate (IR) for a simple
tone stimulus 𝑠(𝑡) = 𝐴 ⋅ sin(2𝜋𝑓𝑡 +𝜑) is commonly expressed
with an exponential function [21, 24, 25, 29, 38] which is
obtained by

𝜆AN (𝑡) = 𝛾 (𝑓, 𝐴) ⋅ exp {𝛾 (𝑓, 𝐴) ⋅ 𝐵 (𝑓)

⋅ sin (2𝜋𝑓𝑡 + 𝜑 + 𝜙 (𝑓))} .
(15)

Generally, 𝛾(𝑓, 𝐴) is a nonlinear function of both the level
and frequency of the stimulus. Its minimum value equals the
fiber’s spontaneous rate while its maximum value is equal
to the fiber’s saturation rate. For stimuli whose levels are in
the mid-range (20 ≤ 𝐴 ≤ 50 dB SPL), as used in this MAA
experiment, 𝛾(𝑓, 𝐴) is proportional to the stimulus level; that
is, 𝛾(𝑓, 𝐴) = 𝐴⋅𝛾

0
(𝑓), where 𝛾

0
(𝑓) is different for every fiber as

determined by the location along the cochlear partition that
the fiber innervates.

The function 𝐵(𝑓) governs the synchronization of the
fiber response which decreases with the increase of both
frequency and the level of the simple tone stimuli. In this
study we refer only to the dependence of the synchronization
on frequency. The AN synchronization data [30, 54, 55] is
commonly modelled by a sigmoid function of the form

𝐵 (𝑓) = 1.5
𝑒
−𝛽⋅𝑓

1 + 𝑒−𝛽⋅𝑓
, (16)

where 𝛽 is a constant that determines the loss of the fiber’s
synchrony as a function of frequency. We chose 𝛽 = 10−5

which corresponds to a loss of synchrony at around 3 kHz [38,
54–56].

Since in a MAA experiment both ears are involved, the
derivation of MAA will take into account those fibers from
the right and left cochleae that are most sensitive to the
stimulus frequency. We ignore all other fibers whose IRs are
significantly reduced in comparison to the most sensitive
fiber. Since the AN fibers are statistically independent [2],
therefore the 𝑑 theorem can be applied in order to obtain
the MAA from𝑁 fibers:

(𝑑


)
2

=

𝑁

∑
𝑛=1

(𝑑


𝑛

)
2

, (17)

where𝑁 is the number of independent nerve fibers and 𝑑
𝑛

is
the 𝑑 (see (7)) that was derived for the 𝑛th fiber. Since MAA
is obtained when 𝑑 = 1, this implies that

MAA = std (𝜃 | 𝜃∗)

=
1

√∑
𝑁R(𝑓)
𝑛=1

{std𝑛R (𝜃 | 𝜃∗)}
−2

+ ∑
𝑁L(𝑓)
𝑛=1

{std𝑛L (𝜃 | 𝜃∗)}
−2

,

(18)

where std𝑛R(𝜃 | 𝜃∗) and std𝑛L(𝜃 | 𝜃∗) are the standard
deviations of the estimator as obtained by the right and
left 𝑛th AN fibers, respectively, while 𝑁R(𝑓) and 𝑁L(𝑓)are
the number of fibers of the right and left auditory nerve,
respectively. When the optimal estimation is considered, the
standard deviation is replaced by the correspondent CRLB
(see (11)) or BLB (see (12)).

Figure 3 represents the prediction ofMAAbased on aBLB
derivation with a single ambiguity (𝐿 = 1) as a function of
both frequency and direction. The derivations were obtained
by substituting (15) in (12). Equation (15) was derived for both
right and left stimulations by using the correspondent HRIRs
(see (2) that yields 𝜆R(𝑡, 𝜃) and 𝜆L(𝑡, 𝜃), the right and left
auditory nerve instantaneous rates, respectively. In practice,
only the fibers with a characteristic frequency equal to the
stimulus frequency contribute to the MAA prediction. For
the sake of simplicity, we chose 𝑁R(𝑓) = 𝑁L(𝑓) = 𝑁

0
;

𝛾
0
(𝑓) = 1 and 𝐴 = 1. The number of fibers 𝑁

0
was chosen

so that CRLB at 500Hz yielded MAA of 1∘.
Throughout the frequency range, high values of MAA

were obtained at the rear of the head (𝜃= 180∘, 𝜃=−180∘).This
is most likely due to front-back confusion. At approximately
2 kHz and its harmonics (4 and 8 kHz), relatively high values
ofMAAwere obtained at approximately 𝜃 = 90∘ and 𝜃 = −90∘.
This most likely corresponds to the confusion between right
and left. At directions that did not correspond to ambiguity,
the values of the bound decreased with frequency.

Figure 4 represents the simulation results of MAA,
derived by both lower bounds, CRLB and BLB, as a function
of frequency when the reference direction was in front (𝜃∗ =
0). BLBwas derivedwith atmost 4 possible directions (𝐿 = 4).
As can be expected, the estimated MAA according to BLB is
greater than the CRLB estimates for all frequencies. At low
frequencies, below 1 kHz, MAA according to BLB is about
10 times greater than the one yielded by CRLB. However, a
more interesting difference between the two predictions is
their dependence on frequency. CRLB derivation yielded a
constantMAAof up to about 1 kHz and amonotonic decrease
with increasing frequency for frequencies above 1 kHz. The
BLB derivation yielded multiple peaks of MAA, in particular
around 2, 4, 7, and 9 kHz.

The front-back confusion that exists throughout the
whole frequency range is probably the reason for the differ-
ence in the MAA estimate according to the BLB and CRLB at
low frequencies. Peaks at high frequencies (2, 4, 7, 9 kHz) can
be attributed to the ambiguities that correspond to the similar
phase obtained from tones coming from the sides or from the
front of the head. According to the anthropometric data of
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the KEMARdummy head [51], the headwidth is about 14 cm,
which corresponds to a wavelength of tones with frequencies
between 1.6 and 2.4 kHz [57]. These are the frequencies that
yielded maximumMAA according to the BLB derivation.

While comparing the computational results of Figure 4
to the human performance shown in Figure 1, it seems
that neither CRLB nor BLB is good predictors of human
performance. By deriving MAA from CRLB, the depen-
dence on frequency is totally different from data based on
human performance. According to CRLB, MAA decreases
monotonically as opposed to an oscillatory dependence in
human experimental data. Although BLB reveals an oscil-
latory behaviour as a function of frequency, the predicted
MAA has more oscillations as a function of frequency than
human performance. In the next section we test whether
this contradiction can be resolved by taking into account the
binaural processing performed by CD cells in the brainstem
nuclei such as SOC and IC.

5. MAA Prediction Based on the Superior
Olivary Complex CD Cells

Figure 5 presents a schematic representation of part of the
brainstem auditory pathway that is involved in binaural
processing. The acoustic stimulus entering both ears inner-
vates the auditory nerves. In Figure 5, the auditory nerves
are represented by the left and right IRs, 𝜆(L)AN and 𝜆

(R)
AN,

respectively. The ANs stimulate both right and left SOCs. In
each SOC, the two types of CD cells, EE and EI, are indicated.

Both EE and EI cells receive two independent inputs, one
from each ear as Figure 5 indicates. Following [38], the output
of both EE and EI cells is NHPP if the time interval (Δ)
in which the two inputs can interact satisfies the condition
Δ ≪ min{𝜏R, 𝜏L}, where 𝜏R and 𝜏L are refractory periods of
the right and left inputs.

The IR of the EE cells is obtained by

𝜆EE (𝑡, 𝜃) = 𝜆
(L)
AN (𝑡, 𝜃) ∫

𝑡

𝑡−Δ EE

𝜆
(R)
AN (𝑡


, 𝜃) 𝑑𝑡


+ 𝜆
(R)
AN (𝑡, 𝜃) ∫

𝑡

𝑡−Δ EE

𝜆
(L)
AN (𝑡


, 𝜃) 𝑑𝑡


.

(19)

Since both right and left EE cells receive similar inputs,
their output IRs are also identical; that is,

𝜆
(R)
EE (𝑡, 𝜃) = 𝜆

(L)
EE (𝑡, 𝜃) = 𝜆EE (𝑡, 𝜃) . (20)

A possible coincidence window length is Δ EE =20𝜇sec
[58]. The value of this length, which was previously used in
theoretical models [24, 25, 29], satisfies the condition Δ EE ≪
min{𝜏R, 𝜏L}, since the refractory period at the auditory nerve
is in the order of 500 𝜇sec to 1m sec [59–62].

EI cells receive excitatory and inhibitory inputs. An EI in
the right SOC (Figure 5) receives an excitatory input from the
left side and an inhibitory input from the right side that yields

𝜆
(R)
EI (𝑡, 𝛼) = 𝜆L (𝑡, 𝛼) (1 − ∫

𝑡

𝑡−Δ EI

𝜆R (𝑡


, 𝛼) 𝑑𝑡


) . (21)
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Figure 5: A schematic diagram of the binaural processing in the
brainstem auditory pathway.

On the other hand, an EI cell in the left SOC receives the
antisymmetric inputs, that is, an excitatory input from the
right side and an inhibitory input from the left side (Figure 5)
that yields

𝜆
(L)
EI (𝑡, 𝛼) = 𝜆R (𝑡, 𝛼) [1 − ∫

𝑡

𝑡−Δ EI

𝜆L (𝑡


, 𝛼) 𝑑𝑡


] . (22)

A possible coincidence window length is Δ EI = 200𝜇sec
[34].This length is ten times longer than what was used in EE
cells. However, it satisfies the condition Δ EI < min{𝜏R, 𝜏L},
which guarantees that EI cells behave as NHPP if their inputs
also behave as NHPP [37].

In derivingMAA from the SOC CD cells, we assume that
the outputs of the EE andEI cells are statistically independent.
Therefore, MAA can be derived by using the 𝑑 theorem (see
(17)) which implies that

MAA = std (𝜃 | 𝜃∗)

= (
𝑁
(R)
EE (𝑓)

{std(R)EE (𝜃 | 𝜃∗)}
2

+
𝑁
(L)
EE (𝑓)

{std(L)EE (𝜃 | 𝜃∗)}
2

+
𝑁
(R)
EI (𝑓)

{std(R)EI (𝜃 | 𝜃∗)}
2

+
𝑁
(L)
EI (𝑓)

{std(L)EI (𝜃 | 𝜃∗)}
2

)

−1/2

,

(23)

where std(R)EE (𝜃 | 𝜃∗), std(L)EE (𝜃 | 𝜃∗), std(R)EI (𝜃 | 𝜃∗), and
std(L)EI (𝜃 | 𝜃

∗) are the standard deviations of the estimator that
were obtained by the right and left EEs and the right and left
EI cells, respectively. The values 𝑁(R)EE (𝑓), 𝑁

(L)
EE (𝑓), 𝑁

(R)
EI (𝑓),

and 𝑁(L)EI (𝑓) are the number of the right and left EE and EI
cells at the SOC. When the optimal estimation is considered,
the standard deviations are replaced by the correspondent
lower bounds, CRLB (see (11)) or BLB with 𝐿 = 4 (see (12)).

The relevant instantaneous rates are obtained by substituting
the EE IRs (see (19)) and the EI IRs (see (21) and (22)).

In order to demonstrate the difference between the MAA
derivations as obtained by EE and EI cells, we calculated
(23) with either a single EE cell (𝑁(R)EE (𝑓) = 𝑁

(R)
EE (𝑓) =

1; 𝑁
(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = 0) or a single EI cell (𝑁(R)EE (𝑓) =

𝑁
(R)
EE (𝑓) = 0; 𝑁

(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = 1). Figure 6 exhibits the

resulting derivations as a function of frequency for a reference
azimuth of 0∘. According to CRLB, both EE and EI yielded
a monotonic decrease as a function of frequency. But EE
yielded a MAA with an order of magnitude greater than the
one predicted from the EI response. On the other hand, the
MAA that the EI yielded was similar to the one obtained by
the AN response (Figure 4). One can then conclude that at
the SOC level, EI processing caused minor information loss.
However, due to EE processing some of the information that
was included in the AN was lost.

When theMAA prediction was based on the BLB deriva-
tion (Figure 6(b)), both EE and EI yielded an oscillatory
behavior as a function of frequency. When EE response was
considered, the predicted MAA revealed local maxima at
around 1.3 and 8 kHz, whereas the EI response yielded local
maxima at 3.5 and 8 kHz.

It is clear from Figure 6 that both EE and EI are required
in order tomatch the experimental results (Figure 1). Figure 7
represents the predicted MAA according to BLB with the
following choice EE and EI cells:

𝑁
(R)
EE (𝑓) = 𝑁

(L)
EE (𝑓) =

{{

{{

{

200 𝑓 < 1250Hz
25 1250 ≤ 𝑓 < 4000

0 𝑓 ≥ 4000

𝑁
(R)
EI (𝑓) = 𝑁

(L)
EI (𝑓) = {

0 𝑓 < 4000

3 𝑓 ≥ 4000.

(24)

Note that (24) is consistent with physiological data indicating
that EE cells mostly innervate signals with low frequencies,
while EI cells are most sensitive to signals with high frequen-
cies (e.g., [31, 32]). The predicted MAA has 2 peaks at about
the same locations as the experimental data.

6. Discussion

Thestochastic properties of neural spike trains in the auditory
pathway were used in order to predict human performance
in sound localization. We have shown that it is possible to
predict human performance in an MAA experiment based
on simple tones.

As in any JND experiment, predicting human perfor-
mance was based on two main assumptions: (1) the brain is
an unbiased optimal processor and (2) the neural spike trains
behave as NHPP. The methodology involved deriving lower
bounds based on the stochastic properties of neural spike
trains [21, 22, 24, 25, 38].

When JND is predicted by deriving a lower bound, its
significance is obtained by comparing it to experimental
results as a function of a physical parameter. In this paper,
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Figure 6: Predicted MAA according to CRLB (a) and BLB (b) as a function of frequency for a reference azimuth of 0∘ at the SOC level with
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frequency for reference azimuth of 0∘ at the SOC level along with
Mills’ experimental data.

we compared the bound prediction of MAA as a function of
the stimulus frequency.

In an MAA experiment with simple tones, the informa-
tion about the origin of the stimulus might be ambiguous
at high frequencies. We have shown that the ambiguous

interpretation of the HRTF phase data is probably the reason
for the oscillatory behaviour of MAA as a function of
frequency in human performance.This was demonstrated by
the usage of two lower bounds, CRLB and BLB. In general,
one can expect that the predictions of BLBwill be greater than
those obtained by CRLB. But the derivation demonstrated in
this study reveals a totally different dependency on frequency.
CRLB that took into account only the approximate true origin
of the stimulus failed to predict oscillatory behavior. On the
other hand, BLB, which considered ambiguity, succeeded in
predicting the oscillatory behavior.

We further compared the predictions that were based on
the AN outputs with those obtained by the SOC outputs.
Although, both BLB predictions yielded an oscillatory behav-
ior, it seems that the SOC output obtained a better prediction
in respect to psychoacoustical data.When the AN output was
considered, MAA local maxima were derived at frequencies
1.5, 2, 4, 7, and 9 kHz (Figure 4). When SOC was considered,
some of the local maxima disappeared. It seems that loss of
information due the SOC processing reduced the effect of the
phase ambiguity.

The SOC outputs were derived by CD cells that processed
the binaural information. The main task of CD cells is
probably to extract binaural cues, with EE cells most likely
extracting ITD and the EI cells extracting ILD [31, 32,
38]. Both ITD and ILD contribute to estimating the signal
direction. In fact, our calculation of MAA, as derived by
BLB, has shown that both EE and EI cells are required for
predicting the experimental results.
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We expect that the brain as an optimal system seeks to
achieve a monotonic descending dependency of MAA as a
function of frequency as predicted by CRLB. However, the
physical constraints (i.e., the ambiguous phases) prevent the
brain from achieving this goal.

WhenMAAwas derived from theANresponse or a single
EI response, the predictedMAA according to BLB derivation
was ten times greater than that predicted by CRLB at low
frequencies (below 1.5 kHz). This difference was explained
by the front-back confusion. However, this effect was almost
eliminated when the EE response was considered. At low fre-
quencies, the nerve response is synchronized to the stimulus;
that is, 𝐵(𝑓) → 1 in (16). Although the synchronization
exists in the AN response, it was not sufficient for overcoming
the front-back confusion. However, it played an important
role at the SOC level where ITDwas efficiently extracted [38].
Therefore, at the SOC level, at low frequencies, both lower
bounds, CRLB and BLB, yielded almost the same MAA.

The methodology used in this study was to express the
lower bounds by analytical expressions as derived in [21, 24,
25, 38]. This was possible, since we assumed that the neural
spike trains behave as NHPP at AN. However, in using this
assumption, the discharge history including the refractory
period, which is a basic characteristic of every neuron [63–
68], was ignored. Other models of neural spike trains that
take into account the refractory period might be a better
choice for describing the neural spike trains [66, 69–73]. Yet,
the usage of the NHPPmodel and the outcome lower bounds
approach has been successful in predicting several additional
properties of the auditory system. Consider, for example,
(1) the prediction of level and frequency discrimination as
a function of the stimulus duration, level, and frequency
[21, 24], and (2) ITD and ILD as a function of frequency [38].
In these studies it seems that the NHPP approach is adequate
for describing steady-state responses of continuous stimuli
[74–76].

This study aimed to show the potential in using lower
bounds in order to predict human performance in psychoa-
coustical experiments and particularly the importance of
considering ambiguous information. However, we do not
claim that the simple model presented in this paper is the
exact biological model. Further research is required in order
to quantitatively predict human performances. Such studies
should include a generalized cochlear model, a synapse
model, and models of the brainstem nuclei.
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