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Simple Summary: Obesity is spreading rapidly in most countries and regions, becoming a
considerable public health concern because it is associated with type II diabetes mellitus, fatty liver
disease, hypertension, and even certain cancers. The biological effects of caloric restriction are
closely related to epigenetic mechanisms, including DNA methylation. Here, rabbits were used as
a model to study the effect of a high-fat diet on the DNA methylation profile of perirenal adipose
tissue. The results indicate that 2906 genes associated with differentially methylated regions were
obtained and were involved in the PI3K-AKT signaling pathway (KO04151), linoleic acid metabolism
(KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010). In conclusion,
high-fat diet may cause changes in the DNA methylation profile of adipose tissue and lead to obesity.

Abstract: DNA methylation is an epigenetic mechanism that plays an important role in gene regulation
without an altered DNA sequence. Previous studies have demonstrated that diet affects obesity by
partially mediating DNA methylation. Our study investigated the genome-wide DNA methylation of
perirenal adipose tissue in rabbits to identify the epigenetic changes of high-fat diet-mediated obesity.
Two libraries were constructed pooling DNA of rabbits fed a standard normal diet (SND) and DNA
of rabbits fed a high-fat diet (HFD). Differentially methylated regions (DMRs) were identified using
the option of the sliding window method, and online software DAVID Bioinformatics Resources
6.7 was used to perform Gene Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway enrichment analysis of DMRs-associated genes. A total of 12,230 DMRs
were obtained, of which 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated,
233 down-regulated) of identified DMRs were observed in the gene body and promoter regions,
respectively. GO analysis revealed that the DMRs-associated genes were involved in developmental
process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289), and KEGG
pathway enrichment analysis revealed the DMRs-associated genes were enriched in linoleic acid
metabolism (KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010).
Our study further elucidates the possible functions of DMRs-associated genes in rabbit adipogenesis,
contributing to the understanding of HFD-mediated obesity.
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1. Introduction

From the last 5 decades, the incidence of obesity has sharply increased, becoming one of the
most considerable threats to human health because it is associated with the risk of type II diabetes
mellitus, fatty liver disease, hypertension, and even certain cancers [1]. Obesity is a multifactorial
pathological process, and genetic, environmental, and behavioral factors influence the development of
obesity [2]. Nowadays, an imbalance between energy intake and expenditure is a major contributor to
fat deposition in individuals predisposed to obesity [3]. Fat deposition is characterized by an increase
in the number and size of adipocytes, and its process is closely related to physiological homeostasis,
far beyond simple fat storage [4]. HFD has been shown to induce obesity in animal models and humans,
and further induce a variety of obesity-related clinical diseases, such as osteoporosis, inflammation,
and even neurodegeneration [5–7]. Perirenal fat, as part of abdominal visceral fat, is often used
to elucidate the molecular and pathophysiological mechanisms of metabolic disorders associated
with obesity or adipose development, because it is closely related to kidney injury, metabolism of
triacylglycerol, and other metabolic regulation [8]. For example, detailed studies have shown that the
perirenal fat thickness in obese patients could be a valuable marker to define the risk of developing
hypertension and kidney dysfunction [9,10]. The expression profile of perirenal fat microRNA was
changed during different growth stages of rabbits, and the differential microRNA expression was
enriched for the MAPK signaling pathway, Wnt signaling pathway, aldosterone synthesis, and secretion
pathways [11].

First proposed by Waddington in 1942, epigenetics refers to heritable changes in gene expression
without an altered DNA sequence [12]. Epigenetics is caused by the interaction of environmental
factors and intracellular genetic material, such as dietary factors, microRNA, and genomic imprinting,
etc. Noteworthily, the biological effects of caloric intake are closely related to epigenetic mechanisms,
including chromatin remodeling and DNA methylation [13]. DNA methylation of leptin and
adiponectin promoters in obese children is associated with BMI, dyslipidemia, and insulin resistance [14].
These observations support the hypothesis that epigenetic modifications might underpin the
development of obesity and related metabolic disorders. Hypermethylation of the pro-opiomelanocortin
and serotonin transporter genes has been positively associated with childhood or adult obesity [15].
HFD changes the methylation status of Casp1 and Ndufb9 genes in obese mice, which are related to liver
lipid metabolism and liver steatosis [16]. In addition, the leptin promoter was hypermethylated and
Ppar-α promoter was hypomethylated in oocytes of mice fed with HFD, and the same changes were
also observed in the liver of female offspring [17]. However, few studies have reported the changes in
perirenal adipose tissue methylation profile in HFD-induced obese rabbits.

To further understand the epigenetic mechanisms influencing fat metabolism in obese rabbits,
we investigated the role of DNA methylation in perirenal adipose tissue by sequencing and analyzing
DNA methylation libraries from rabbits fed a standard normal diet (SND) and a high-fat diet (HFD).

2. Materials and Methods

2.1. Animals

A total of 24 female Tianfu black rabbits from a strain breed at the Sichuan Agricultural University
in China were randomly divided into two groups and fed either a standard normal diet (SND) or a
high-fat diet (HFD; 10% lard was added to the standard normal diet) for four weeks. The composition
and nutrient content of the standard normal diet (SND) and the high-fat diet (HFD) were described
in our previous report [18]. At the beginning of the trial, all rabbits were 35 days of age and housed
individually in a clean iron cage (600 × 600 × 500 mm) and kept in an environmentally controlled
room. Rabbits were free to access water and fed twice a day. At the end of the trial, rabbits
were screened for obesity using the body mass index (BMI; BMI = bodyweight (kg)/height2 (m)),
and three rabbits from each group meeting the experimental requirements were selected for sampling.
All experimental protocols were performed under the direction of the Institutional Animal Care and
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Use Committee from the College of Animal Science and Technology, Sichuan Agricultural University,
China (DKY-B2019202015, 5 December 2019).

2.2. DNA Extraction

Perirenal adipose tissue samples were collected immediately after rabbits were euthanized
(shock and bleed treatment). Tissue blocks were placed in 4 mL EP tubes and stored in a
−80 ◦C freezer. Total DNA from perirenal adipose tissue was extracted using a commercial
TIANamp Genomic DNA extraction kit (Tiangen, Beijing, China), following the manufacturer’s
instructions. Subsequently, the purity and concentration of DNA were assessed by Agilent 2100
Bioanalyzer (Agilent Technologies, Carlsbad, CA, USA), and only DNA meeting quality criteria
(thresholds: A260/A280 ≈ 1.8; concentration ≥ 200 ng/µL) was used for the trial.

2.3. DNA Methylation Library Construction and Sequencing

To identify genome-wide DNA methylation changes in perirenal adipose tissue induced by HFD,
two libraries were constructed by pooling the DNA samples from three SND rabbits and three HFD
rabbits. Briefly, DNA was fragmented by sonication to 100 to 500 bp fragments. The fragments were
end-repaired using T4 DNA polymerase and Klenow enzyme and adaptors were ligated after generating
3’dA overhangs. Bisulfite treatment was conducted using the ZYMO EZ DNA Methylation-Gold
kit (Zymo Research, Orange, CA, USA), following the manufacturer’s protocol. After desalting,
fragments of sizes ranging from 220 to 320 bp were isolated using a 15% PAGE gel and amplified by
adaptor-mediated PCR. Lastly, the libraries were sequenced using the Illumina HiSeq 4000 platform
(Illumina, San Diego, CA, USA) by Chengdu Life Baseline Technology Corporation, China.

2.4. Processing and Comparison of Sequencing Data

By removing adapter sequences and low-quality reads containing more than 50% low-quality bases
(quality score < 5), clean reads were retained. Clean reads were aligned to the rabbit reference genome
(GCF_000003625.3) with software BSMAP 2.90 (http://code.google.com/p/bsmap). Two forward strands,
i.e., BSW (++) and BSC (−+) were used as references. The accuracy of DNA methylation detection
depends on the conversion efficiency of cytosine, and the incomplete transformation of cytosine in
sequences may lead to false-positive results. Here, lambda phage DNA was used as a control group to
calculate the bisulfite conversion rate.

2.5. Methylation Site Detection

The methylation C sites were determined using the method described in a previous study [19].
Briefly, a binomial distribution test was performed for methylated reads number and non-methylated
reads number at C sites. C sites were identified as the methylation C sites when the number of reads
was greater than or equal to the binomial distribution expected value and the total effective coverage
was greater than or equal to four.

2.6. Methylation Level Analysis

The average genome-wide methylation level reflects the overall characteristics of the methylation
pattern of the genome. DNA methylation occurs in three sequence contexts: CG, CHG, and CHH
(H = A, C, or T). The average methylation levels of CG, CHG, and CHH were calculated based on
the percentage of methylated cytosine in the entire genome, chromosome, and genomic functional
elements. For each type of sequence (CG, CHG, and CHH), the average methylation level was
calculated according to the following formula: the average methylation level = methylated reads
/ (methylated reads + non-methylated reads) × 100%. To assess the association between sequence
characteristics and methylation bias, we calculated the methylation percentage of nine bases upstream
and downstream of the methylation site.

http://code.google.com/p/bsmap
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2.7. Searching for Differentially Methylated Regions (DMRs)

DMRs were identified using the option of a sliding window method. Briefly, the sliding windows,
which were used for further analysis, had to meet the following criteria: (a) the depth in each cytosine
should be more than four in each sample, and each C site should cover at least four methylation reads;
(b) the number of selected cytosine should be larger than five; (c) after calculating mean methylation
level of each sample, the fold change of mean methylation level between the two samples should
be larger than two. After repeating extension steps, the merged regions with p < 0.05 were defined
as DMRs.

2.8. Functional Enrichment Analysis of Differentially Methylated Genes

To explore the role of epigenetic variation in biological processes and pathways, online software
DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/home.jsp) was used to perform Gene
Ontology (GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment
analysis of DMRs-associated genes. GO analysis can be used to identify the performance of the gene
product and contains three types of information: cellular component, molecular function, and biological
processes. KEGG is the main public database that integrates the genome, chemistry, and system
function information, particularly the set of genes associated with the systemic functions of cells,
organisms, and ecosystems. Differences were considered to be statistically significant at p < 0.05.

3. Results

3.1. Quality Assessment of Sequencing Data

After raw reads were processed, a total of 1,221,455,488 clean reads were obtained from methylation
sequencing libraries (Table S1). The clean reads were mapped to the rabbit reference genome, and the
mapping rate was 84.910% in the SND group and 84.730% in the HFD group, respectively. The bisulfite
conversion rate was 99.550% for SND, and 99.520% for HFD. In addition, the effective coverage rate of
C base in each chromosome ranged from 89.892% to 97.577% and ranged from 91.822% to 97.804% in
different functional genomic elements (Tables S2 and S3).

3.2. Methylation Level Analysis

Genome-wide methylation level analysis showed that the methylation level of C, CHG, and CHH
in the HFD group was higher than in the SND group but the CG methylation level in the HFD group
was lower than in the SND group (Table S4). Results of the methylation level C, CG, CHG, and CHH on
different chromosomes are shown in Table S5. The greatest differences in C, CG, CHG, and CHH between
the two groups were found on chromosome 20, chromosome X, chromosome 1, and chromosome
11, reaching 0.569%, 2.736%, 0.056%, and 0.047%, respectively. In addition, we classified the various
functional genomic elements into promoter, CDS, intron, mRNA, downstream, CpGIsland, ncRNA,
and transposons. Compared with the SND group, the methylation level of C, CHG, and CHH in
each functional genomic element was increased in the HFD group (Table S6). However, based on
comparison with the SND group, promoter, intron, mRNA, downstream, and ncRNA methylation
levels were decreased in CG, and only CDS, CpGIsland, and transposons methylation levels were
increased in CG.

3.3. Genome-Wide Characteristics of Methylated C Bases

The percentage of methylated C bases in CG were highest, reaching 94.795% (SND) and 94.843%
(HFD) but rarely cytosine methylation was found in CHH and CHG. In addition, we calculated the
methylation percentage of nine bases (methylated C at the fourth base) upstream and downstream
of the methylated site. As shown in Figure 1, CG, CAG, and CAC were the most likely sites to be
methylated in both SND and HFD groups.

http://david.abcc.ncifcrf.gov/home.jsp
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chromosome is shown in Table S7. In addition, the DMRs were mapped to the gene body and promoter 
regions, and 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated, 233 down-
regulated) methylated genes were obtained, respectively. Some genes involved in adipocyte 
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Figure 1. Genome-wide characteristics of methylated C bases. Sequence characteristics of bases near
mCG, mCHG, and mCHH in the SND and HFD group.

3.4. Analysis of Differentially Methylated Regions (DMRs)

A total of 12,230 DMRs were identified in the genome of the HFD group compared to the SND
group. Chromosome 21 was the chromosome with the least amount of DMRs and chromosome 13
was the chromosome with the most amount of DMRs (Figure 2a,b). The total length of DMRs in
each chromosome is shown in Table S7. In addition, the DMRs were mapped to the gene body and
promoter regions, and 2305 (1207 up-regulated, 1098 down-regulated) and 601 (368 up-regulated,
233 down-regulated) methylated genes were obtained, respectively. Some genes involved in adipocyte
growth and development have also been identified, including ACE2, AGTR1, IGF1R, and ACSL4.

3.5. GO and KEGG Enrichment Analysis

To better study the biological functions of the DMRs-associated genes, we used online software
DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/home.jsp) to carry out gene ontology
(GO) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis.
GO analysis of the overlapping DMRs-associated genes in the gene body regions found a total of 6310
enriched GO terms (4796 biological processes (BP), 579 cellular components (CC), and 935 molecular
functions (MF)), of which 12.570% were significantly enriched (p < 0.05) (Table S8). The main
GO terms involved in overlapping DMRs-associated genes in the gene body regions included the
developmental process (GO:0032502), cell differentiation (GO:0030154), and lipid binding (GO:0008289).
The top 10 significantly enriched terms in the BP, CC, and MF categories are shown in Figure 3a.
The KEGG pathway analysis showed that overlapping DMRs-associated genes in the gene body regions
were enriched in 314 pathways including the PI3K-AKT signaling pathway (KO04151), linoleic acid
metabolism (KO00591), and pathways for DNA replication (KO03030). Thirty-nine of these pathways
(12.420%) were significantly enriched (p < 0.05, Table S9). In addition, a scatter analysis was carried out
for the 20 most significant pathways to intuitively show the significance of these pathways (Figure 3b).

http://david.abcc.ncifcrf.gov/home.jsp
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Figure 2. Analysis of differentially methylated regions (DMRs). Two chromosomes with the least (a) and
the most (b) amount of DMRs. The outer ring represents the position of the genomic chromosome;
the second circle is the DMRs region: the red area represents the higher methylation level of HFD
compared to the SND group and the green area represents the lower methylation level of HFD compared
to the SND group; the third circle represents the methylation rate of each site of sample HFD; the
fourth circle represents the methylation rate of each site of sample SND; the fifth circle represents the
difference of methylation rate.
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regulation of lipid biosynthetic process (GO:0046890). The top 10 significantly enriched GO terms in 
the BP, CC, and MF categories of GO analysis are shown in Figure 3a. KEGG pathway analysis found 
266 enriched pathways including the MAPK signaling pathway (KO04010) (Table S11). The top 20 
significantly enriched pathways are presented in Figure 3b. 
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Figure 3. GO and KEGG enrichment analysis. (a) GO analysis of the overlapping DMRs-associated
genes in the gene body regions and promoter regions. (b) KEGG pathway analysis of the overlapping
DMRs-associated genes in the gene body regions and promoter regions. Rich factor = (DMRs-associated
genes annotation in term/genes annotation in term)/(DMRs-associated genes with KEGG annotation /

all genes with KEGG annotation).

GO analysis of the overlapping DMRs-associated genes in the promoter regions showed enrichment
of 2223 biological processes (BP), 311 cellular components (CC), and 405 molecular functions (MF),
of which 173 BP (7.780%), 20 CC (6.430%), and 37 MF (9.140%) were significantly enriched (Table S10).
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The significantly enriched GO terms mainly include positive regulation of lipid biosynthetic process
(GO:0046889), regulation of cholesterol metabolic process (GO:0090181), and regulation of lipid
biosynthetic process (GO:0046890). The top 10 significantly enriched GO terms in the BP, CC, and MF
categories of GO analysis are shown in Figure 3a. KEGG pathway analysis found 266 enriched
pathways including the MAPK signaling pathway (KO04010) (Table S11). The top 20 significantly
enriched pathways are presented in Figure 3b.

4. Discussion

DNA methylation represents an important epigenetic marker because it is associated with
chromosomal structural changes, embryonic development, expression of imprinted genes, and causing
corresponding diseases, including X chromosome inactivation and DNA unwinding [20–22].
Nowadays, obesity prevention and treatment strategies have been unsuccessful, and DNA methylation
is one of the epigenetic modifications associated with obesity [23]. The rabbit is an ideal material to
study obesity due to its lipid metabolism and obesity-related clinical manifestations similar to those of
humans [24,25]. Thus far, some DNA methylation related studies have been investigated in rabbit
models but studies of the changes in perirenal adipose tissue methylation profile in HFD-induced
obese rabbits have not been carried out. In this study, DNA methylation patterns were investigated in
rabbit models to understand obesity-related DNA methylation changes.

Here, the mapping rates were 84.910% and 84.730% in the SND group and HDF group, respectively.
The bisulfite conversion rates were 99.550% (SND) and 99.520% (HFD) in the two groups, which was
consistent with previous research, indicating that the libraries were high quality and reliable [26,27].
Methylation is a dynamic process in cells, which can be regulated by methylation and demethylation.
The average methylation level of the whole genome reflects the overall characteristics of the genome
methylation profile. The results of the genome-wide methylation level analysis in this study were
similar to those in mice [28]. The methylation level of CG was higher than the methylation level in C,
CHG, and CHH. However, this result is different from that of plant Arabidopsis Thaliana. The plant
genome has extensive methylation at the CHG site [29]. CG methylation was maintained by Dnmt1.
CHH methylation and some CHG methylation is usually maintained by the activity of the conserved
Dnmt3. The high level of CHG methylation seen in Arabidopsis thaliana is maintained by plant-specific
methyltransferase [30]. In addition, research on chickens suggests that promoter DNA methylation
generally affects chromatin structure and is a signal to inhibit gene transcription, and promoter regions
are lowly methylated [31]. Our study also found that promoter regions showed a lower methylation
level than other regions. However, a study in mice fed with HFD showed that promoter regions
are hypermethylated [32]. Therefore, we hypothesized that differences in methylation level may
be species-specific.

The results of genome-wide characteristics of methylated C bases showed that the proportion
of mCG was the highest, while the cytosine methylation was low in CHH and CHG. Some studies
have shown that no enzyme can maintain mCHG during DNA replication in animals, so the sites of
CHG type in animal cells generally show a very low level of methylation. CHH can only rely on the
methylation mechanism, so CHH methylation is easily lost in the process of DNA replication and is
generally in the state of hypomethylation [33]. The results of this study showed that the characteristics
of methylation in the rabbit genome were similar to those in other animals.

DMRs refer to the regions of DNA molecules with different methylation status in two samples.
The identification of DMRs is the first step towards the study of DMRs-associated genes [34]. In our
study, a total of 2906 DMRs were identified, and 2305 (1207 up-regulated, 1098 down-regulated)
and 601 (368 up-regulated, 233 down-regulated) methylated genes were associated with differentially
methylated regions. Many genes are related to adipocyte growth and development. For example, as the
members of the renin-angiotensin system (RAS), ACE2 and AGTR1 were reported to participate in the
development and progression of obesity [35,36]. PPARγ and aP2 are important transcription factors in
the development and function of the adipose tissue and marker of lipogenesis [37]. Previous studies



Animals 2020, 10, 2213 9 of 12

showed that inhibition of IGF1R decreased the expression of PPARγ, thereby inhibiting lipogenesis [38].
Moreover, ACSL4 plays a role in the regulation of lipid metabolism. ACSL4 was expressed throughout
the entire differentiation process in pig preadipocytes and showed a similar expression trend with
lipogenesis-associated genes PPARγ and aP2 [39].

Gene ontology (GO) analysis is a reliable bioinformatics tool for understanding the characteristics
of genes and gene products. The significantly enriched terms in the BP, CC, and MF categories
indicated the possible roles of the DMRs-associated genes in regulating obesity. The significantly
enriched GO terms showed correlation with adipocyte lipid metabolism and metabolisms, such as lipid
binding (GO:0008289), positive regulation of lipid biosynthetic process (GO:0046889), regulation
of cholesterol metabolic process (GO:0090181), developmental process (GO:0032502), and cell
differentiation (GO:0030154). Some terms were related to adipocyte development, including cytoskeletal
protein binding (GO:0008092), tubulin binding (GO:0015631), calcium ion binding (GO:0005509).
Cytoskeletal remodeling and cell–cell interaction are a necessary step in the transformation of
preadipocytes into mature adipocytes, and adipocyte development is dependent on α-tubulin [40,41].
Calcium is a complex mediator in adipogenesis because it regulates numerous cellular processes [42].
Furthermore, other GO items related to hormones and enzymes were also significantly enriched,
such as regulation of glucocorticoid secretion (GO:2000849), N-acetyltransferase activity (GO:0008080),
and phosphoric diester hydrolase activity (GO:0008081). Increasing evidence suggests that excess
glucocorticoids leads to increased fat mass and obesity through the accumulation of adipocytes [43].
Acetyltransferase is a regulator of adipogenesis and lipid metabolism, and its regulatory mechanism
is mainly transcription and post-translation modifications [44]. Phosphoric diester hydrolase is a
regulator of systemic glucose and insulin homeostasis [45]. Interference of phosphoric diester hydrolase
expression in 3T3-L1 adipocytes caused a dramatic decrease in adipocyte differentiation key gene
(PPARγ, aP2) and lipid accumulation [46].

Adipogenesis is a complex process involving an elaborate network of transcription factors
and signaling pathways. Results of KEGG analysis showed that DMRs-associated genes were
mainly involved in the PI3K-AKT signaling pathway (ko04151), linoleic acid metabolism (KO00591),
DNA replication (KO03030), and MAPK signaling pathway (KO04010). The PI3K-AKT signaling
pathway is a key regulator in cell proliferation, differentiation, and apoptosis [47]. Activation of the
PI3K-AKT signaling pathway promotes the expression of marker genes involved in adipogenesis and
glucose uptake [48]. In our study, 70 DMRs-associated genes were enriched in the PI3K-AKT signaling
pathway, thereby revealing that these DMRs-associated genes may be essential for adipogenesis.
Linoleic acid metabolism (KO00591) is also associated with adipogenesis. Linoleic acid can be
converted to the metabolically active arachidonic acid, which has roles in inducing inflammation
and adipogenesis. Excessive intake of linoleic acid results in increasing magnitudes of adiposity,
inflammatory cytokines, and insulin resistance [49]. In addition, it is becoming clear that DNA
replication (KO03030) and the MAPK signaling pathway (KO04010) play an important role in
adipocyte growth and development [50,51]. Thus, the results of our study indicate that these
DMRs-associated genes might be an important regulator in adipogenesis. However, due to the
limitation of experimental conditions, such as pooled samples, only one library per group, sequencing
methods, etc., functional verification of these DMRs-associated genes will be important to consider in
the future.

5. Conclusions

In conclusion, our study indicates that a high-fat diet may affect genes associated with adipogenesis
by altering DNA methylation patterns. We identified 2906 methylated genes, of which, ACE2, AGTR1,
IGF1R, and ACSL4 may have a key role in adipogenesis. These genes may be involved in the regulation
of adipogenesis through the PI3K-AKT signaling pathway (KO04151), linoleic acid metabolism
(KO00591), DNA replication (KO03030), and MAPK signaling pathway (KO04010).
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