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Abstract

Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary
treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian
cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1
resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1
knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of
20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein
required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1
expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent.
These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells
with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network.
These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.
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Introduction

Advanced stage serous tumors account for the majority of

invasive ovarian cancers and despite a generally good initial

response to cytoreductive surgery and platinum-based chemother-

apy, most women face a high risk of recurrence and poor long-

term survival [1]. Platinum-based agents, such as cisplatin and

carboplatin, are toxic to dividing cells due to the formation of

DNA adducts that result in double strand breaks, activating DNA

damage-mediated apoptotic signals [2]. Response to chemother-

apy is, however, difficult to predict and there are currently no

predictive biomarkers for serous ovarian cancers in clinical use.

We have previously mapped a region of 19q12 amplification

associated with treatment-resistant serous ovarian tumors by

performing a genome-wide survey of copy number change [3].

These findings were consistent with previous reports of amplifi-

cation being associated with poor overall survival [4,5]. Similarly,

recurrent amplification of 19q12 has been reported in a variety of

cancers including esophageal [6], gastric [7], lung [8] and

endometrial tumors [9].

The 19q12 amplification is a high-level focal amplification that

targets a cluster of only several genes on chromosome 19. CCNE1

(Cyclin E) has previously been suggested as the target of

amplification in ovarian cancer [4,10,11], however a systematic

analysis of known genes within the amplicon has not been

performed. Furthermore, whilst CCNE1 amplification likely

provides an oncogenic stimulus through activation of the cell

cycle, it is not obvious how it may contribute to primary

chemotherapy resistance. For example, over-expression of CCNE1

in vitro renders ovarian cancer cells more sensitive to platinum

agents, presumably due to increased proliferation [12]. It is

possible that the biological consequence of 19q12 amplification is

not limited to over-expression of CCNE1, and that other genes in

the amplicon contribute to tumor growth or progression.

Furthermore, other co-existing mutational events elsewhere in

the cancer genome may cooperate or enhance the oncogenic effect

of CCNE1 over-expression.

We performed an siRNA knockdown screen of all annotated

genes within and immediately flanking the 19q12 amplicon in

ovarian cancer cell lines with or without regional amplification.

We found CCNE1 to be the only gene target within the amplicon

that reduced cell viability in the amplicon-containing OVCAR-3

cell line after siRNA knockdown. CCNE1 knockdown induced cell

cycle arrest and apoptosis, while also impairing clonogenic survival

after cisplatin treatment, despite increasing in vitro drug resistance

in a short-term cytotoxicity assay. In a disease setting, these results
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suggest that treatment failure in CCNE1 amplified tumors may

relate to rapid repopulation of the tumor after chemotherapy and

not cellular drug resistance specifically. We also found TPX2

amplification and over-expression to be significantly correlated

with CCNE1 copy number status implying the presence of a

cooperative mutational network between these genes.

Results

Focal amplification of 19q12 is common to various tumor
types

We first sought to compare the minimal region of chromosomal

gain at 19q12 across multiple tumor types. We obtained data from

SNP-based high-resolution copy number studies including 15

tumor types [9,13] for a comparison with our findings [3]

(Figure 1A). Minimal targeted regions of amplification were

defined by GISTIC, an analysis tool that assesses the statistical

significance of copy number events based on frequency and

amplitude [14]. Significant amplification of 19q12 was present in

one third of the cancer types analyzed. Of the tumor types with

19q12 amplification, approximately 25% of individual samples

showed copy number gain, except for endometrial tumors where a

higher frequency was observed (,45%) [9]. Minimal amplicon

boundaries were found to target a region less than 2 Mb in size,

centered at approximately at 35.0 Mb on chromosome 19. In both

ovarian tumor data sets analyzed [3,13] the minimal mapped

region of gain incorporated the same five genes (POP4, PLEKHF1,

C19orf12, CCNE1 and C19orf2), with similar overlapping regions

detected in endometrial and breast tumors. In contrast, the

minimal region mapped in non-small cell lung tumors incorpo-

rated only CCNE1 while a broad region was mapped in esophageal

tumors (,9.5 Mb), spanning 110 annotated genes. Copy number

Figure 1. 19q12 amplification in tumors and ovarian tumor cell lines. (A) Peak regions of amplification between 30–46 Mb on chromosome
19 in 1non-small cell [8,13,40,41,42]; 2ovarian [3], 3[13]; 4endometrial [9]; 5breast [13,43,44]; and 6esophageal tumors [42]. Frequency of occurrence and
genes present within peak boundaries indicated. (B) Affymetrix SNP 6.0 mapping microarray copy number of chromosome 19 in ovarian tumor cell
lines and (C) between 34–36 Mb for OVCAR-3 and SK-OV-3 cell lines. Copy number shown is the average moving window of 20 markers mapped to
Human March 2006 (hg18) genome assembly (source: Sanger Cancer Genome Project Archive). (D) Gene expression determined by qPCR in OVCAR-3
cells relative to SK-OV-3.
doi:10.1371/journal.pone.0015498.g001
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change of the 19q12 locus showed a degree of tumor specificity, in

that the amplification was not seen in 10 other tumor types for

which substantial data was available, including small cell lung,

hepatocellular, colorectal and prostate cancer (data not shown).

We also note that amplification of 19q12 has been identified by

cDNA array-CGH analysis of gastric tumors [15,16], however this

tumor type was not included as our analysis was limited to high-

resolution SNP copy number data.

To identify cell lines that were representative of primary tumors

for functional studies we analyzed high-resolution SNP copy

number data for 22 ovarian cancer cell lines at chromosome

19q12 (Sanger Cancer Genome Project Archive) and identified

seven cell lines (OVCAR-3, OVCAR-4, Kuramochi, RMG-I,

Caov-4, EFO-21, OVCAR-8) that had overlapping amplification

at 19q12 (Figure 1B and Figure S1). Of the seven cell lines,

OVCAR-3 contained a focal, high-level amplification that best

recapitulated data from primary ovarian tumors (Figure 1C).

Quantitative-PCR (qPCR) demonstrated that the five genes within

the region of high-level amplification in OVCAR-3 (POP4,

PLEKHF1, C19orf12, CCNE1 and C19orf2), but not flanking genes

(UQCRFS1 and ZNF536), were over-expressed relative to the SK-

OV-3 control cell line lacking 19q12 amplification (Figure 1D). Of

the five genes, PLEKHF1 and CCNE1 showed the highest

expression. The 19q12 amplicon can therefore be mapped to a

region spanning 34.4–35.4 of chromosome 19 and involving 5

annotated genes, each of which is over-expressed in OVCAR-3.

Cells lines with amplification at 19q12 are specifically
sensitive to CCNE1 knockdown

Short interfering RNA (siRNA) were used to knockdown the

expression of the seven genes in and adjacent to the high-level

19q12 amplicon in OVCAR-3 and SK-OV-3 plus GAPDH and

non-silencing (NS) controls. A schematic of the experimental

design used for the combined siRNA knockdown strategy and

subsequent drug treatment protocol is shown in Figure 2A.

Transcript levels for all targeted genes were efficiently and

specifically reduced up to 96 hours after siRNA transfection, with

the exception of ZNF536, which flanked the region of amplifica-

tion (Figure 2B). By interrogating data obtained from an earlier

study [17] we found ZNF536 expression to be low or absent in

primary serous ovarian tumors, which may explain an unobserv-

able reduction in gene expression (data not shown). Gene

expression was also monitored in the presence of cisplatin, in

preparation for functional experiments. PLEKHF1, CCNE1,

C19orf2 and ZNF536 were slightly up-regulated by cisplatin

treatment in one or both cell lines however siRNA knockdown

was still effective (Figure 2B).

Of the genes tested, only CCNE1 knockdown showed a

significant reduction in cell viability in OVCAR-3 (to approxi-

mately 60% of NS control cells; p,0.01; Figure 2C). CCNE1

knockdown had no effect on SK-OV-3 cells. Given its role in G1/S

transition, we expected that depletion of Cyclin E1 protein would

induce G1 arrest (see below) and result in an increase of apoptotic

cells. TUNEL staining of untreated cells was comparable (SK-OV-

3, 0.1%; OVCAR-3, 0.2%) (Figure 2D), while CCNE1 knockdown

resulted in a significant increase in apoptosis only in OVCAR-3

(p,0.0001). Reduction in protein abundance was also validated in

both cell lines after gene knockdown (Figure 2E).

Having identified specific sensitivity of OVCAR-3 to CCNE1

knockdown, we aimed to validate this finding in independent cell

lines and determine whether the observed effect was amplicon

dependent. We therefore broadened the analysis to include an

additional three cell lines with amplification at 19q12 (OVCAR-4,

Kuramochi and OVCAR-8) and a further unamplified line

(IGROV-1). A statistically significant correlation between the

copy number and gene expression of CCNE1 was found across all

lines. However, OVCAR-8 did not show increased CCNE1

expression relative to gene amplification (Figure S2 A). CCNE1

expression and Cyclin E1 protein levels were efficiently reduced in

each line relative to base-line expression by siRNA-mediated

knockdown (Figure S2 B and C). As observed in OVCAR-3,

CCNE1 knockdown specifically reduced viability in the additional

lines with 19q12 amplification, and only marginally in the

unamplified line IGROV-1 (Figure 2F). Thus ovarian tumor cells

with amplification at 19q12 are specifically sensitive to depletion of

Cyclin E1, compared with unamplified lines.

CCNE1 knockdown reduces acute sensitivity to cisplatin
Given the association of 19q12 amplification with primary

treatment failure [3] and poor outcome [4,5] we sought to explore

the effect of gene knockdown on drug sensitivity. Although our

analysis had identified a specific dependency on CCNE1 in

amplified lines, we first re-assessed all seven amplicon-associated

genes for impact on chemotherapy response in OVCAR-3 and

SK-OV-3 using a 72-hour cytotoxicity assay. Cells were treated at

slightly above a pre-determined IC50 (see Methods S1) and

viability measured. Knockdown of genes within the amplicon did

not significantly impact on cisplatin sensitivity of either cell line.

Unexpectedly, cisplatin-induced cytotoxicity in OVCAR-3 treated

cells was attenuated by CCNE1 inhibition (Figure 3A). We

performed a dose-response analysis to characterize further the

effect of cisplatin treatment after CCNE1 knockdown. A statisti-

cally significant shift in the dose-response curve was observed in

OVCAR-3 (p,0.05; Figure 3B) but not SK-OV-3 further

demonstrating resistance of OVCAR-3 to cisplatin upon CCNE1

inhibition. Consistent with this finding, cisplatin had no differential

effect on cell viability in CCNE1 knockdown cells as compared with

siRNA controls in two of the three additional 19q12 amplified

lines (Kuramochi and OVCAR-4) (Figure 3C). In contrast, gene

knockdown enhanced the effect of cisplatin on cell viability in both

cell lines with low baseline CCNE1 expression (OVCAR-8 and the

19q12 unamplified control line IGROV-1).

To investigate the cisplatin resistant phenotype observed in

OVCAR-3 cells with CCNE1 knockdown, we used flow cytometry

to analyze cell cycle distribution following cisplatin treatment.

Cisplatin treatment of OVCAR-3 resulted in a prolonged S-phase

(Figure 4A) whereas SK-OV-3 cells arrested predominately in the

G2 phase of the cell cycle (Figure 4B). Consistent with the

requirement for Cyclin E1 in the G1/S transition [18], CCNE1

siRNA knockdown induced G1 arrest in OVCAR-3, most evident

in the presence of cisplatin (Figure 4A). By contrast, the cell cycle

distribution of SK-OV-3 was unaltered by inhibition of CCNE1

expression with or without cisplatin (Figure 4B). These observa-

tions were consistent in CCNE1 amplified Kuramochi and

OVCAR-4 cells (Figure S3). Partial G1 arrest was also observed

in 19q12 unamplified IGROV-1 cells after CCNE1 knockdown,

however only in response to cisplatin treatment. As observed in the

viability assay, the CCNE1 amplified but low-expressing OVCAR-

8 cells behaved similarly to control lines. We therefore concluded

that the dependency of OVCAR-3, Kuramochi, and OVCAR-4

on high CCNE1 expression resulted in a cell cycle arrest after gene

knockdown, including in the presence of cisplatin, most likely

accounting for the apparent cisplatin resistance observed in short-

term viability assays.

To understand the longer-term impact of CCNE1 depletion on

cell survival after cisplatin treatment we assayed the clonogenicity

of lines with and without amplification of the 19q12 locus (see

schematic Figure 5A). CCNE1 knockdown profoundly reduced the

Analysis of the CCNE1 Amplicon in Ovarian Cancer
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clonogenic capacity of OVCAR-3 but not SK-OV-3 in the

absence of drug (Figure 5B and 5C). In contrast to increased

resistance to cisplatin in short-term cytotoxicity assays, CCNE1

attenuation reduced clonogenic survival of OVCAR-3 cells after

cisplatin treatment (Figure 5B). We did not explore the in vivo

effects of CCNE1 knockdown in ovarian tumor lines with 19q12

amplification, as we were unable to generate viable lines with

stable lentivirus integration of short hairpin RNA (shRNA)

directed to CCNE1 (data not shown).

CCNE1 amplification is predictive of poor outcome in
primary tumors

CCNE1 copy number was measured in 43 primary ovarian

tumors from patients with advanced-stage, serous invasive disease.

In addition, we included data from 52 tumors from our previous

genomic analysis of platinum-resistance in ovarian cancer [3] and

obtained matching gene expression data for all samples [17]. All

patients underwent primary surgery followed by platinum-based

chemotherapy. Clinical information used to correlate CCNE1

Figure 2. siRNA mediated knock-down of 19q12 genes in ovarian tumor cell lines. (A) Experimental schematic for combined siRNA
transfection and drug treatment. (B) qPCR heatmap showing log2 gene expression ratio to untransfected OVCAR-3 (top) and SK-OV-3 (bottom) cells
for each siRNA (columns) at gene targets (rows) with or without cisplatin treatment 72 hours after transfection. (C) Cell viability normalized to no
siRNA control cells after transfection with each siRNA. Statistical significance (t-test) calculated by comparison to non-silencing (NS) siRNA in the same
cell line using data from three independent MTS assays performed with triplicate wells per condition. Average normalized absorbance at 490 nm and
SEM plotted (n = 3), **p-value ,0.01. (D) Proportion of apoptotic cells assessed by TUNEL staining in no siRNA control cells or after transfection with
NS or CCNE1 targeted siRNA. Data shown from three independent experiments with duplicate wells analyzed per condition. Average percentage of
apoptotic cells and SEM plotted (n = 3). ***p-value ,0.0001 (Chi squared) calculated by comparison of total cell counts between OVCAR-3 cells
treated with a CCNE1 siRNA and all other conditions. (E) CCNE1 protein expression by western blot to confirm siRNA-mediated CCNE1 knockdown at
experimental endpoint. (F) Cell viability in additional cell lines after transfection with CCNE1 or non-silencing siRNAs normalized to each cell line with
no siRNA added. Statistical significance (t-test) calculated by comparison to NS siRNA in the same cell line. Average normalized absorbance from MTS
assay and SEM plotted (n = 3); *p-value ,0.05, **p-value ,0.01.
doi:10.1371/journal.pone.0015498.g002
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status with survival had over two years of additional accumulated

patient follow-up data (as of June 2010) from our earlier studies.

Patients were stratified based on CCNE1 copy number status as

assessed by qPCR (see Materials and Methods). No difference was

noted between clinical characteristics of each group apart from

age, with younger patients over-represented in the CCNE1

unamplified group (Table 1 and Figure 6A). CCNE1 gene

expression showed a strong correlation with copy number

(Figure 6B) and both were correlated with progression-free

survival (PFS) (Figure 6C & D). CCNE1 copy number, but not

gene expression, was also associated with overall-survival (OS)

(Figure 6E & F). The most significant correlation observed was

degree of CCNE1 gain and PFS (Figure 6C), such that all cases

with high-level amplification showed progressive disease within

approximately twelve months from diagnosis (mean PFS of 10.7

months; Table 1).

Amplification of 19q12 is correlated with gain at 20q11
Having identified CCNE1 as a critical driver within the 19q12

amplicon in ovarian cancer, we reasoned that other mutations

elsewhere in the genome might interact with Cyclin E1 or be

associated with drug resistance. For example, mutations that

enhance the effect of or allow tumors to tolerate CCNE1 over-

expression may co-occur with 19q12 gain. We obtained both SNP-

based copy number and gene expression data on 157 high-grade

serous invasive tumors from The Cancer Genome Atlas Project

(TCGA) for analysis. Firstly, we examined gene expression of

genes whose protein products are required for processing of Cyclin

E1 to active low molecular weight forms (ELA2 and CAPN2)

[19,20] or its degradation (FBXW7) [18]. However, no statistically

significant positive correlation between candidate gene expression

and CCNE1 status was observed (data not shown). We then

correlated 19q12 gain with all other gains and losses within

0.1 Mb segments of the genome (see Methods S1). The top three

correlated regions of copy number change were on 20q11, 1p36

and 6q27 (Figure 7A). The most significant associated gain was

localized to a 2.5Mb region on chromosome 20 (Figure 7B) and

has been validated in a separate unbiased analysis of genome-wide

correlations of gain and loss in ovarian tumors [21].

In order to narrow gene candidates within the three regions

most likely to interact with CCNE1, we next correlated the

expression of genes within each region with CCNE1 expression

(Table 2). Expression of TPX2 was most significantly associated

with CCNE1 expression, and was also correlated to its own

amplification status (Figure 7C). The relationship between CCNE1

Figure 3. Combined siRNA knock-down and cisplatin treatment
in ovarian tumor cell lines. (A) Cell viability after transfection with
individual siRNAs and cisplatin treatment normalized to cisplatin-
treated control cells without siRNA. Cisplatin dose of 3 mM or 6 mM was
used for OVCAR-3 and SK-OV-3 cells respectively. Average normalized
absorbance (490 nm) from three independent MTS assays (triplicate
wells per condition) and SEM plotted (n = 3). (B) Cisplatin dose response
after transfection with CCNE1 or non-silencing siRNA in OVCAR-3 and
SK-OV-3 cell lines. Arrow indicates drug treatment dose used in initial
screen; p-value indicates significance of difference between fitted
curves. Average normalized MTS assay absorbance to cells without
cisplatin treatment, SEM and four-parameter fitted Hill slope plotted
(n = 3 for each drug concentration). (D) Cell viability after transfection
with CCNE1 or NS siRNAs and cisplatin treatment normalized to
cisplatin-treated no siRNA control cells for each cell line. Statistical
significance calculated by comparison to NS siRNA, cisplatin-treated
cells in the same cell line. Average normalized absorbance from MTS
assay and SEM plotted (n = 3). See Table S4 for cisplatin treatment
doses.
doi:10.1371/journal.pone.0015498.g003
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and TPX2 gene expression was further validated in a second

independent data set (Figure 7D). The strong association between

TPX2 and CCNE1 amplification and expression was intriguing

given that TPX2 is a centromeric protein required for mitotic

spindle function during cell division [22].

20q11 amplification renders cells resistant to TPX2
knockdown

To test whether there was a functional dependence on TPX2 in

cell lines with amplification of the 20q11 locus and whether it

interacts with CCNE1, we assessed TPX2 status in lines used for

our knockdown experiments. TPX2 was amplified (Figure 8A) and

over-expressed (Figure 8B) in all three CCNE1 amplified and over-

expressing cell lines (OVCAR-3, OVCAR-4 and Kuramochi)

compared to the control line, SK-OV-3. In addition, we further

identified OAW-28 as having high-level 20q11 amplification

(Figure 8A, data from Sanger Cancer Genome Project Archive)

and the highest level of gene expression across the tested cell lines

(Figure 8B).

In contrast to the close relationship between CCNE1 amplifi-

cation and cellular sensitivity to gene knockdown, an inverse

relationship was observed between TPX2 copy number and the

effects of TPX2 siRNA (Figure 8C). For example, SK-OV-3 cells

with low gene expression (Figure 8B) and minimal detectable

TPX2 protein (Figure 8D), were highly sensitive to gene

knockdown, whereas OAW-28 cells were essentially resistant.

RT-PCR (Figure S4) and western blot (Figure 8D) analyses

demonstrated efficient knockdown of TPX2, however protein was

still detectable in some cell lines that initially had high levels of

TPX2 protein. We also observed that knockdown of CCNE1

resulted in diminished TPX2 gene expression in 19q12 amplified

lines (Figure S4 A) suggestive that TPX2 expression is affected

downstream of Cyclin E1.

Given the correlation between CCNE1 and TPX2 amplification,

we also examined whether concurrent knockdown of both genes

would further diminish viability in cell lines containing both

amplifications (Figure 8C). After we allowed for a competitive

effect of combining siRNAs (see Methods) no obvious interaction

Figure 4. Cell cycle distribution after CCNE1 knockdown and cisplatin treatment. (A) OVCAR-3 cells and (B) SK-OV-3 cell cycle profile (left)
and proportion of cells in G1, S or G2 phase (right) for PI stained cells analyzed by flow cytometry 72 hours after transfection with CCNE1 or NS siRNA
with or without cisplatin treatment (3 mM or 6 mM for OVCAR-3 and SK-OV-3 cells respectively).
doi:10.1371/journal.pone.0015498.g004
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was observed with simultaneous knockdown of TPX2 and CCNE1.

Knockdown of CCNE1 had minimal effect on OAW-28 cell

viability despite efficient protein reduction in double knockdown

experiments (Figure 8D). This finding is consistent with our initial

results, as OAW-28 cells do not have 19q12 amplification (see

Figure S1 for OAW-28 copy number at this locus).

Discussion

We performed the first systematic siRNA knockdown of all

genes within the minimally defined 19q12 amplicon in ovarian

cancer showing that CCNE1 is the key oncogenic target. Given

known roles of Cyclin E1 in cancer, including de-regulation of the

cell cycle and promoting genomic instability, it was the likely

driver of the 19q12 locus, however other genes had not been

excluded. For example, C19orf2, which is immediately adjacent to

CCNE1, has recently been annotated to encode URI, an

unconventional prefoldin protein. Studies of the C. elegans URI

homologue suggest an involvement in chromatin remodeling,

preventing and/or repairing endogenous genotoxic DNA damage

and maintenance of genome integrity [23]. More recently, URI

has been identified as a key inhibitor of protein phosphatase 1c
(PP1c) and is involved in regulation of the mTOR/S6K1 survival

pathway based on nutrient and growth factor availability [24].

Despite these intriguing biological associations, we found no

evidence of URI as a driver of the 19q12 locus.

Figure 5. Clonogenic survival after CCNE1 knockdown and cisplatin treatment. (A) Experimental time-course for clonogenic survival assay
after siRNA transfection and cisplatin treatment. Representative crystal violet stained (B) SK-OV-3 and (C) OVCAR-3 colonies (top) and average
proportion of discrete colonies formed (bottom) compared to control cells without siRNA or 1 hour cisplatin treatment (3 mM or 6 mM for OVCAR-3
and SK-OV-3 cells respectively). Error bars indicate SEM (n = 3), **p-value ,0.001.
doi:10.1371/journal.pone.0015498.g005
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Reduction in cell viability after CCNE1 knockdown was specific

to cell lines with 19q12 amplification, with limited or no effect in

non-amplified lines, indicating an ‘addiction’ [25] to CCNE1

deregulation. Our findings validate a recent report showing

amplification-specific sensitivity to CCNE1 attenuation in OV-

CAR-3 and IOSE-29 cells [26]. Unamplified lines appeared to

bypass siRNA mediated G1/S checkpoint arrest and apoptosis,

possibly reflecting CCNE1 independent mechanisms of cell cycle

de-regulation and distinct oncogenic processes. Interestingly,

increased expression of CCNE1 has recently been shown in

serous tubal intraepithelial carcinoma (STIC), a proposed

precursor for high-grade serous carcinoma [27]. This finding

reinforces the significance of CCNE1 de-regulation in ovarian

cancer and suggests it is an early requirement in tumor evolution.

19q12 amplification is strongly associated with primary treatment

failure in ovarian tumors [3] and is therefore both a potential

prognostic marker and therapeutic target. Having identified CCNE1

as the driver of 19q12 amplification we sought to understand how it

contributes to primary treatment failure. In short-term cytotoxicity

assays, over-expression of Cyclin E1 increases sensitivity to cisplatin

[12]. Consistent with this data, we found that siRNA-mediated

knockdown of CCNE1 induced G1 arrest in 19q12-amplified cell

lines, possibly protecting cells from cisplatin damage occurring

through cell cycle progression. These findings, together with the lack

of correlation of amplification status with in vitro cisplatin sensitivity

of cell lines (Table S1) are at odds with the clinical behavior of

primary tumors. Significantly, we found that knockdown of CCNE1

profoundly inhibited clonogenic cell survival and this effect was

augmented by cisplatin treatment (Figure 5B & C). Collectively, our

findings suggest that 19q12 amplification does not increase

resistance to chemotherapy per se but rather may confer a survival

advantage post-treatment. In addition to increased cellular division,

high CCNE1 expression may assist re-entry into cell cycle from

quiescence in surviving cells after chemotherapy [28]. Uniquely

amongst cell cycle proteins in Drosophila, Cyclin E1 over-

expression has been shown to promote self-renewal of neuroblasts

[29] and may translate to an increased clonogenic capacity in tumor

cells. Although we were unable to generate stable OVCAR-3 with

integrated shRNA directed to CCNE1 to further validate these

findings in vivo, these observations suggest that CCNE1 amplification

Table 1. Patient characteristics by CCNE1 copy number status.

CCNE1 Unamplified CCNE1 Gain CCNE1 Amplification p-value

Age

Mean 57 64 61 ,0.01a

Standard Deviation 10 7 7

Range 23–80 52–78 53–71

Stage

III 63 (93%) 21 (100%) 6 (100%) 0.53b

IV 5 (7%) 0 (0%) 0 (0%)

Grade

Low (well differentiated) 2 (3%) 0 (0%) 0 (0%) 0.81b

Medium 30 (44%) 7 (33%) 3 (50%)

High (poorly differentiated) 36 (53%) 14 (67%) 3 (50%)

Residual Disease

#1 cm 47 (69%) 16 (76%) 3 (50%) 0.12b

.1 cm 18 (26%) 2 (10%) 3 (50%)

Unknown 3 (4%) 3 (14%) 0 (0%)

Primary Treatment

Pt-based 5 (7%) 1 (5%) (0%) 1.0b

Pt-based + Other 63 (93%) 20 (95%) 6 (100%)

PFS

(from Surgery)

Mean (months) 18.91 15.72 10.68 ,0.0001c

Standard Deviation 10.24 7.73 3.79

Events 54 (79%) 20 (95%) 6 (100%)

OS

(from Surgery)

Mean (years) 3.49 3.25 2.23 ,0.001c

Standard Deviation 1.56 1.55 1.73

Events 42 (62%) 15 (71%) 6 (100%)

Total Cases 68 21 6 85

aKruskal-Wallis,
bFisher Exact and.
cLog-rank test p-values reported.
doi:10.1371/journal.pone.0015498.t001

Analysis of the CCNE1 Amplicon in Ovarian Cancer

PLoS ONE | www.plosone.org 8 November 2010 | Volume 5 | Issue 11 | e15498



may enhance the ability of tumor cells to repopulate the tumor after

the cessation of chemotherapy.

We also sought to identify other mutational events that may

enhance the effect of CCNE1 deregulation by seeking regions of

copy number change that correlate with 19q12 gain. Previous

investigations of correlated gains include a recent study in breast

cancer [30] where co-amplification of 8p12 and 11q13 was

identified and thought to cooperate functionally through activation

of independent oncogenic pathways. Cooperative networks in

glioblastoma that are associated with outcome have also been

identified through analysis of co-occurring copy number changes

[31]. We identified copy number change of three loci at 20q11,

1p36 and 6q27 to be significantly associated with CCNE1

amplification in ovarian tumors.

The 20q11 region contains twelve candidate genes, including

TPX2, ASXL1 and BCL2L1 with expression correlated to CCNE1

(Table 2). TPX2 is a microtubule-associated protein downstream

of Ran-GTP that triggers microtubule nucleation. It both activates

Figure 6. CCNE1 copy number and gene expression associated with patient outcome. (A) Patient age distribution stratified by CCNE1
amplification status. Kruskal-Wallis p-value reported, bars indicate mean and SEM. (B) Correlation between CCNE1 copy number by qPCR and gene
expression signal by microarray. (C) Kaplan-meier analysis of CCNE1 unamplified (n = 68), gained (n = 21) and amplified (n = 6) ovarian cancer patients
and (D) CCNE1 low (n = 31), medium (n = 28) and high (n = 36) expressing samples for progression-free survival and (E & F) overall survival. Log-rank
test p-values reported. Stratification by CCNE1 copy number or expression status described in Materials and Methods.
doi:10.1371/journal.pone.0015498.g006
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and is a substrate for Aurora-A kinase and is important in mitotic

spindle formation and chromosome segregation during cell

division [reviewed in 22]. Low copy number gain and protein

over-expression has been observed in other tumor types including

pancreatic tumors where siRNA knockdown reduced cell growth

in vitro, induced apoptosis and sensitized pancreatic cell lines to

paclitaxel treatment [32].

We chose to further investigate the role of TPX2 in ovarian

cancer given its expression was most significantly correlated with

CCNE1. Furthermore, TPX2 has a plausible biological association

Figure 7. Regions of copy number change and TPX2 gene expression associated with CCNE1 amplification. (A) Circos plot showing
regions of copy number change significantly correlated to CCNE1 amplification (p-value ,161025) (B) Significance of copy number correlation to
CCNE1 amplification across chromosome 20. Significance threshold used to define correlation peak boundaries indicated by dotted line. (C) TPX2
expression correlation with locus copy number and CCNE1 expression (source: TCGA). (D) Correlation of CCNE1 and TPX2 gene expression in an
independent data set (Tothill et al., 2009).
doi:10.1371/journal.pone.0015498.g007

Table 2. 19q12 co-amplified regions of copy number change.

Region (Hg18)
Correlation
Coefficient

Minimum
p-value

Total Genes In
Region* Candidate Genes**

20q11 (29.3–31.8 Mb) 0.360 3.761026 13 TPX2, ASXL1, PXMP4, NECAB3, CDK5RAP1, MAPRE1, CBFA2T2,
BCL2L1, PLAGL2, KIF3B, POFUT1, TM9SF4

1p36 (23.6–26.8 Mb) 0.347 8.661026 20 STMN1, SH3BGRL3, HMGN2, HMGCL, CLIC4

6q27 (166.8–170.7 Mb) 0.336 1.761025 7 PHF10,PSMB1

*genes represented on hthgu133a array by $1 probe.
**sub-set of genes with expression correlated with CCNE1.
doi:10.1371/journal.pone.0015498.t002
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with Cyclin E1, both having known cell cycle functions. Unlike

CCNE1 however, we did not find evidence of oncogene ‘addiction’

to TPX2 in cells with amplification. In addition, cells sensitive to

CCNE1 knockdown showed no further reduction in viability when

simultaneously treated with siRNA against TPX2. Notably, both

OVCAR-3 and OVCAR-4 cells showed the greatest reduction in

viability after single TPX2 knockdown. Gene expression analysis in

19q12 amplified cells show that TPX2 gene expression is reduced

after CCNE1 knockdown (Figure S4) implying TPX2 acts

downstream of CCNE1, and that simultaneous TPX2 knockdown

has only a minimal additive effect. The relationship between

CCNE1 and TPX2 expression in vitro is consistent with the

association identified in primary tumors and although our results

suggest that TPX2 acts down stream of CCNE1, it may not be a key

driver of the 20q11 amplicon. A systematic analysis of other genes

within the amplicon is required, which is often broad and contains

a number of potentially important gene targets. For example, the

apoptotic regulator BCL2L1, adjacent to TPX2, has been

previously suggested as a 20q11 amplification target in cancer

[13]. Although not correlated with CCNE1 expression in our

analysis, co-amplification of ID1 with CCNE1 may further

contribute to cell cycle de-regulation in ovarian cancer. ID1 is

involved in proliferation and differentiation, and functions by

inhibiting binding and activity of other helix-loop-helix transcrip-

tion factors. In breast cancer cells, gene knockdown has been

shown to decrease CCNE1 expression and Cyclin E1/CDK2

Figure 8. Functional analysis of TPX2 and CCNE1 co-amplification in ovarian tumor cell lines. (A) Affymetrix SNP 6.0 mapping microarray
copy number of chromosome 20 in ovarian tumor cell lines indicating location of TPX2. (B) Correlation between TPX2 copy number and gene
expression by qPCR in cell lines. (C) Cell viability depicted as normalized MTS absorbance (490 nm) from three independent assays to cells treated
with no siRNA in siRNA double knockdown experiments. Average normalized absorbance from MTS assay and SEM plotted (n = 3). (E) TPX2 protein
expression by western blot to confirm siRNA-mediated knockdown at experimental endpoint for cell lines and CCNE1 in OAW-28 cells.
doi:10.1371/journal.pone.0015498.g008
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activity [33]. Interestingly, we also note the presence of a non-

coding RNA (NCRNA00028) and two micro-RNAs (hsa-mir-1825

and hsa-mir-3193) within the defined region of chromosome

20q11 gain. The potential effect of amplification on their function

or subsequent de-regulation of downstream targets was not

investigated in our current analysis. However, we are not aware

of any evidence that would link these molecules to the regulation

of CCNE1.

In primary tumors, CCNE1 copy number was significantly

associated with shorter progression-free and overall survival, with

tumors bearing high-level amplification showing the worst

outcome (Figure 6). Copy number status was more informative

than gene expression; a significant correlation with high expression

and PFS was observed, but not for OS. Similar to ERBB2

amplification in breast cancer, high-level CCNE1 amplification

may therefore have predominant clinical utility in identifying

patients most likely to have a poor response to standard treatment.

Interestingly, younger patients were less likely to have CCNE1

amplified tumors (Table 1 and Figure 6A) suggesting a difference

between the etiology of these tumors.

Our observations have potential implications for future thera-

peutic strategies based on targeting of cell cycle deregulation such

as via cyclin-dependent kinase (CDK) inhibition. To date, the

clinical success of single-agent CDK inhibitors has been disap-

pointing [34]. Limited success may in part relate to off-target drug

effects or redundancy between CDKs. It is anticipated that

chemotherapeutic agents may sensitize cells to CDK inhibition

[35]. However as shown here, interruption of G1/S transition may

increase resistance to G1/S-phase targeted treatment and therefore

CCNE1/CDK2 targeted therapies may need to appropriately

phased with conventional therapy. Additionally, the surprising

degree of resistance of cells without 19q12 amplification to CCNE1

knockdown suggests that CDK2 inhibitor clinical trials should

incorporate careful pre-selection of ovarian cancer patients and

other tumor subtypes associated with Cyclin E1 over-expression,

such as triple-negative and basal-like breast tumors [36].

Materials and Methods

Ethics Statement
This study was approved by the Human Research Ethics

Committees at the Peter MacCallum Cancer Centre, Queensland

Institute of Medical Research, University of Melbourne and all

participating hospitals. Written informed consent was obtained

from all participants in this study.

Cell Lines
Ovarian cell lines were maintained at 37u and 5% CO2 in

RPMI 1640 containing 10% (v/v) FCS, 50 U.mL21 penicillin and

50 ug.mL21 streptomycin, except for OAW-28 cells which were

maintained in DMEM containing 10% (v/v) FCS, 50 U.mL21

penicillin, 50 ug.mL21 streptomycin and 0.2 U.mL21 insulin.

Transfection and drug-treatment assays were performed in

antibiotic-free medium.

Copy Number Data
Microarray data was obtained from Tumorscape (www.broad-

institute.org/tumorscape), the Cancer Genome Atlas Project

(TCGA) (cancergenome.nih.gov) for primary tumors and the

Sanger Cancer Genome Project Archive (http://www.sanger.ac.

uk/genetics/CGP/Archive/) for ovarian cell lines. Data was

visualized using Partek Genomics Suite 6.4 (Partek Inc., St Louis,

MO) and Tree View [37]. Further copy number analysis is

described in Methods S1.

Molecular Methods
Cell line DNA was extracted using a DNeasy Kit (Qiagen,

Valencia, CA) and quantitative-PCR (qPCR) analysis of CCNE1

DNA copy number status was performed as described previously

[3]. Total RNA was extracted from cell pellets using an RNeasy

mini Kit (Qiagen) and reverse transcribed using M-MLV prior to

SYBR green qPCR as detailed in Methods S1. Primer sequences

to measure gene expression were obtained from qPrimerDepot

[38]. Two primer sets were used to assess TPX2 copy number and

were designed using Primer3 [39] or obtained elsewhere [32]. All

primers are listed in Table S2.

siRNA Transfection
Cells were seeded at a density of 5–106103 cells per well in 96

well plates (for viability assays), Lab-Tek II Chamber Slides (Sigma

Aldrich, St Louis, MO) (for TUNEL staining) or 3–66104 cells in

24 well plates (for all other assays) approximately 20 hours prior to

transfection. Selected seeding densities resulted in cell growth as a

sub-confluent monolayer at transfection. ON-Target plus siRNA

pools (listed in Table S3) and transfection reagents were obtained

from Dharmacon (ThermoFisher Scientific, Lafayette, CO).

Optimal transfection conditions were determined based on

maximal gene knockdown and minimal cytotoxicity as assessed

by RT-PCR and MTS cell viability assay (see Methods S1).

Nuclear localization of siGLO Green RNA duplex was used to

monitor transfection efficiency by fluorescence microscopy 24–

48 hours after transfection (data not shown). Transfection reagent

and siRNA pools were pre-incubated at room temperature for 15

minutes in serum-free media (20% of final transfection volume) to

facilitate formation of lipid-siRNA complexes. Cells were then

incubated in final transfection mix containing 0.4% (v/v)

DharmaFECT 2 and 50 nM siRNA in antibiotic-free media with

serum. In double knockdown experiments, total siRNA amount

was normalized between treatment groups by addition of a non-

silencing siRNA up to 100 nM. After 24 hours, media was

replaced and following a further 72 hours, cells assayed for

viability, cisplatin sensitivity (at a pre-determined IC50 dose,

Table S4), cell cycle distribution, clonogenic survival or apoptosis

as described below and in Methods S1.

Western Blot
Whole cell protein lysates were boiled, resolved by SDS-PAGE

using 12.5% (w/v) acrylamide gels and then transferred to PVDF

membranes. Blots were blocked in 5% (w/v) non-fat milk powder

in PBS-T (0.1% Tween 20 in PBS) and probed overnight at 4uC in

1:500 primary antibody against human Cyclin E1 (clone HE12)

(Santa Cruz Biotechnology, Santa Cruz, CA) or TPX2 (clone

18D5) (Biolegend, San Diego, CA). Membranes were washed in

PBS-T and incubated with 1:7000 dilution of peroxidase-

conjugate secondary antibody for 1 hr at room temperature,

washed and developed by chemoluminescence before being

exposed to radiographic film. Blots were re-probed with an

antibody against a-tubulin to assess protein loading.

Flow Cytometry
Control, transfected and cisplatin treated cells were rinsed in

PBS, trypsinized to form a single-cell suspension and fixed in 70%

ice-cold ethanol. Cell were pelleted and resuspended in a solution

containing 50 mg.mL21 propidium iodide and 100 U.mL21

RNAseA (Qiagen) for 30 minutes at room temperature. Up to

10,000 cells were then counted by FACS. Viable cell cycle profiles

and percentage of cells in each cell cycle phase was determined

using Modfit LT (Beckman Coulter, Brea, CA).
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TUNEL Staining
Apoptotic cells were identified using the ApopTagH In Situ

Apoptosis Detection Kit (Intergen, Purchase, NY). A minimum of

eight, uniformly spaced images were taken per well and positively

and negatively stained cells counted by a researcher blinded to the

experimental setup.

Clonogenic Survival Assay
Transfected cells were treated with cisplatin for 1 hour then

PBS washed, trypsinized to form a single-cell suspension, counted

(Coulter Counter) and cell number equalized for each experimen-

tal condition. Cells were then seeded at low density in wells of a 6-

well plate in triplicate and left to form colonies for up to ten days.

The number of plated cells differed depending on cell line plating

efficiency; 500 and 15,000 cells were used for SK-OV-3 and

OVCAR-3 respectively. Cell colonies were then fixed and stained

with 20% (v/v) methanol and 0.1% (w/v) crystal violet. Cells were

rinsed in water, air-dried and discrete colonies counted using

MetaMorph (Molecular Devices, Sunnyvale, CA).

CCNE1 Copy Number and Gene Expression in Primary
Tumors

Tumor samples and clinical data were obtained from women

with advanced stage, serous invasive disease enrolled through the

Australian Ovarian Cancer Study (www.aocstudy.org). This

project had institutional ethics review board approval at all

participating centers.

Samples were segregated based on CCNE1 copy number level as

assessed by qPCR (above) using a log2 copy number ratio cut-off of

$0.5 (,3 copies) for gain and $2 (,8 copies) for amplification

(Table 1). Matched expression data from Affymetrix U133 plus 2.0

microarrays was obtained from a previous study [17]. The CCNE1

probe showing the highest signal level (213523_at) was selected for

our analysis and showed a significant correlation with gene copy

number (Figure 6B). Samples were segregated into low, medium

and high expression of CCNE1, where tumors with high expression

were defined as those above the median signal value + [0.5 x

median absolute deviation (MAD)] and low expressing tumors

where those below the median signal value – [0.5 *MAD].

Statistical analysis was performed in GraphPad Prism (GraphPad

Software, San Diego, CA). PFS and OS was calculated from the

date of diagnosis (surgery).

Supporting Information

Figure S1 Heat-map of copy number change in ovarian
tumor cell lines. Affymetrix SNP 6.0 mapping microarray copy

number of chromosome 19 in 22 ovarian tumor cell lines between

34–36 Mb (source: Sanger Cancer Genome Project Archive).

(TIF)
Figure S2 CCNE1 gene and protein expression in
knockdown experiments. (A) Correlation between CCNE1

copy number status and gene expression by qPCR in ovarian cell

lines. (B) CCNE1 gene expression in ovarian cell lines normalized

to SK-OV-3 with no siRNA treatment after transfection with

CCNE1 or non-silencing siRNA. (C) CCNE1 protein expression by

western-blot to confirm siRNA-mediated Cyclin E1 knockdown at

experimental endpoint in ovarian cell lines. (TIF)

Figure S3 Cell cycle distribution after CCNE1 knock-
down and cisplatin treatment in additional cell lines.
Cycle profile (left) and proportion of cells in G1, S or G2 phase

(right) for PI stained cells analyzed by flow cytometry after

transfection with CCNE1 or non-silencing siRNA and with or

without cisplatin treatment in (A) IGROV-1, (B) OVCAR-8, (C)

Kuramochi and (D) OVCAR-4 cell lines. (TIF)

Figure S4 CCNE1 and TPX2 gene expression in com-
bined knockdown experiments. CCNE1 and TPX2 gene

expression ratios in ovarian cell lines normalized to no siRNA

treated cells in each line after single or combined transfection with

NS, CCNE1 and TPX2 siRNA. (TIF)

Table S1 Cisplatin IC50 values from 72 hour cytotoxic-
ity assays. (DOC)

Table S2 Primer Sequences. (DOC)

Table S3 ON-Target plus siRNA pools (Dharmacon).
(DOC)

Table S4 Cisplatin experimental doses and effect on
cell viability. (DOC)

Methods S1 Supplementary Methods. (DOC)
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