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Bioactive structures published in medicinal chemistry

patents typically exceed those in papers by at least

twofold and may precede them by several years. The

Big-Bang of open automated extraction since 2012 has

contributed to over 15 million patent-derived com-

pounds in PubChem. While mapping between chemi-

cal structures, assay results and protein targets from

patent documents is challenging, these relationships

can be harvested using open tools and are beginning to

be curated into databases.

Introduction

Compared to papers, patents in the biological sciences have

hitherto been an underexploited information source, princi-

pally because retrieval specificity and data extraction is more

challenging [1]. However, the World Intellectual Property

Organisation (WIPO) indexing of 2.4 million PCT (WO) pub-

lications indicates 8.4% are assigned the International Patent

Classification (IPC code) A61K (medical, veterinary science

and hygiene) that encompasses bioscience filings [2]. Medici-

nal chemistry as C07D (heterocyclic compounds) represents

3.1%. This article focuses on the 1.5% subset of C07D (and)

A61K filings for two main reasons. Firstly, the data mining

challenges for bioscience patents as a whole are too diverse

(including millions of sequence listings) to be covered here [3].

Secondly, for medicinal chemistry, patents have a central

importance, because they not only underpin over four decades

of drug discovery research (both commercial and academic)
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but also contain substantially more structure–activity relation-

ship (SAR) results than journals. This article will focus on

exploring scientific value rather than intellectual property

(IP) because, while both aspects are intertwined, the analytical

approaches diverge. A short video accompanies this article.

Value

The question needs to be posed as to what data-centric patent

mining has to offer practitioners in cheminformatics, phar-

macology, medicinal chemistry or chemical biology. To an-

swer this, it is necessary to compare the availability of data

from non-patent sources. The appearance of ChEMBL in 2009

substantially increased the scale of results accessible from

medicinal chemistry journals, with the current (release 19)

count of 1.41 million structures including 0.94 million

extracted from 57K papers (n.b. because ChEMBL subsume

CIDs from confirmed PubChem BioAssays their compound

count in situ exceeds the ChEMBL source count inside Pub-

Chem) [4]. However, specialised databases have been curating

SAR data from the literature for some years prior to this,

including BindingDB [5], Guide to PHARMACOLOGY

(GtoPdb, formerly IUPHARdb) [6], GLIDA [7] and PDSP [8].

In addition, there are 0.41 million compounds flagged as

‘active’ in PubChem Bioassay (http://www.ncbi.nlm.nih.

gov/pcassay) from sources other than ChEMBL.

The utility of engaging with patents as an adjunct to non-

patent sources can be introduced via a practical example. The

WIPO database provides a searchable interface for patents
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from the major authorities. Executing a simple query (select

for BACE* AND inhibitor(s), front page, English PCT applica-

tions) gives 280 results. The first two documents, both pub-

lished on May 1st 2014, were WO2014066132 from Eli Lilley

[9] and WO2014065434 from Shionogi [10], both specifying

BACE1 inhibitors for Alzheimer’s disease (6132 used BACE as

a synonym for BACE1, UniProt P56817). These are shown in

Fig. 1, together with the extraction of two example structures

linked to activity data.

Connections gained from this result included the follow-

ing:

1. Using the same search parameters, it was established that

Shionogi had published nine BACE1 patents since 2007
Figure 1. Finding and extracting selected examples from WO2014066132 an

highlighted in green. In the lower-left panel, example 72 from 5434 (page 238 in t

(page 249). The structure was determined from an initial image conversion using

which PubChem searches were launched. The SMILES and InChIKey are show

FC4 C([C@@]1(N C(OC2C1COC2)N)C#C)C C(NC( O)C3 CN C(O

InChIKey = SOYARSISURDFSW-SKMDKRRUSA-N.

In the lower-right panel example 8 from 6132 is shown (page 60 in the PDF) that h

IUPAC name was used to generate a range of molecular outputs including a S

CC(C)(O)C1 C(F)C NC( N1)N1C[C@H]2CSC(N) NC2(C1)C1 CN C

InChIKey = IKIJFJKFIYFTBZ-YOZOHBORSA-N.
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and Eli Lilley five since 2005 (all potentially extractable as

described in this section).

2. The rendering of images and tables in-line with text

(except the Shionogi PDF exceeded the page limit)

allowed scanning of results but full PDFs could be down-

loaded for checking.

3. The structure and associated IC50 values for selected

potent BACE1 inhibitors, were discerned using chemica-

lize.org for the former and the result tables for the latter.

4. As ascertained by a PubChem search, example 8 from

6132 was identified in CID 73603937, deposited as the

HCL by Thomson Pharma on 12th of May (presumably

extracted from the same patent) but no close analogues

were found.
Drug Discovery Today: Technologies

d WO2014065434. In the upper panel the search term matches are

he PDF) was reported to have an IC50 against purified enzyme of 13.6 nM

 OSRA [11] and subsequently edited in the PubChem sketcher [12] from

n below.

CF)C N3)C C4

as a reported IC50 of 105 nM (on page 63). Using chemicalize.org [13], the

MILES string and the InChIKey below.

C N1

uniprotkb:P56817
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Box 1. Utility and challenges of patent data

Utility

� Relationships between the entities of document, assay description,

assay result, compound structure and protein identifier (D-A-R-C-

P) can be identified.

� Other target types (e.g. tumour cells, bacteria or protozoal

parasites) may also have activity results.

� SAR tables (e.g. Ki or IC50) can include hundreds of novel

structures.

� Only a proportion may appear in papers (roughly 10–30%) years

later, or never.

� Many inventor teams include highly cited medicinal chemistry

authors.

� Exemplified compounds are usually supported by synthesis

descriptions and analytical data.

� The combination of references, plus the examiner’s report, provides

a citation network of papers and patents.

� The non-redundant medicinal chemistry corpus (as WO

documents) is freely available for metadata querying and text mining

from many open sources.

� Recent US patent XML includes electronic structures as Complex

Work Units (CWUs), improved text quality and consequent better

CNER extraction.

� Additional bioactivity data may be included (e.g. cell lines, rodent

models, target specificity cross-screening, P450 profiling or other

ADMET results).

� Patents may have complementary data content to journal

publications, for example where chemotype similarity connections

can be made via ChEMBL.

� Biological domain coverage can be widened (e.g. additional PCT

codes for antinfectives, tropical diseases, pesticides and

agrochemicals).

� The majority of exemplified patent chemistry is not only already in

PubChem but also via the InChIKey, can be structure-matched by a

Google search in about 0.2 s [21].

Challenges

� Some patents exemplify most, or even all, analogues without explicit

activity results.

� Binned activity values are less useful than discrete ones for SAR

modelling.

� Various forms of deliberate obfuscation are common, including

uninformative titles, confusing or missing data relationships, virtual

enumerations and prophetic protocols (i.e. not actually executed).

� Judging the scientific and technical quality of patent-only results is

difficult.

� Complexity of large document sets related by patent family and kind

codes, publishing identical content years apart.

� In terms of drug discovery, only a small proportion of C07D

documents have SAR value, because a lead compound series first-

filing is followed by many secondary patents from originators,

competitors or generics companies.

� Open CNER resources extract all chemistry, regardless of IPC code.

Thus, a proportion of structures (i.e. from patents not in C07D and

A61K) have neither linked bioactivity nor biological relevance.

� Whereas patents quote relevant papers (as mandated for US

applications), the citing of patents by journal authors is patchy.

� Even basic data content statistics are essentially unknown (e.g. the %

documents using full IUPAC names vs images, or both, for

exemplifications).

� Automatic extraction says nothing about associated IP claims. Ipso

facto not all patent-extracted structures are ‘patented’ (but they are

prior-art by definition).
5. While example 75 from 5434 had no exact match (i.e.

was novel at that time) 60 analogues were found in

PubChem by searching at 90% similarity. Many of these

(e.g. CID 68164415) connected, via SureChEMBL, to a

Roche BACE1/BACE2 filing, US20120202803 [14] and

one (CID 71619629 via ChEMBL) connected between a

Roche paper [15] and a Protein Data Bank experimental

3D ligand structure (4J0P).

6. In 6132, example 8 had cell line and mouse in vivo data

(indicating this to be a possible lead compound).

7. 5434 describes 123 analogues with 15 specified sub-

200 nM IC50s.

8. 6132 describes 114 analogues with three specified IC50s.

9. Detailed chemical synthesis, analytical data and assay

descriptions in both documents.

10. 5434 cites 44 related patents and 3 papers, while 6132

cites one of each.

11. While chemicalize.org was able to automatically extract

structures from the full text at Free Patents Online,

example structures could only be extracted via their

IUPAC name strings from 6132 (because structures in

5434 were image-only).

12. While medicinal chemistry papers from both companies

have been extracted into ChEMBL (66 from Shionogi and

265 from Eli Lilly, including some on BACE1 inhibition)

it could be at least 18 months before compounds from

these patents appear in a journal article and sometime

after that before a ChEMBL release surfaces the published

structures in PubChem.

13. Since this search was carried out, both documents have

been processed in SureChEMBL (n.b. this source is cur-

rently still designated SureChem for the pre-2013 entries

in PubChem).

Aspects related to the search example are expanded as

general points in Box 1. In addition, some of the themes

are addressed in the following sections.

Speed

For operations filing patents that include novel compounds

with commercially useful bioactivity, rapid interrogation of

patent chemistry is an imperative. Because they are also likely

to licence commercial databases for prior-art checking and

competitive intelligence, the timing at which patent struc-

tures surface ‘in the wild’ is less of an issue (except to note that

public sources must now be included in prior-art searches).

Nevertheless, the scientific preview opportunities offered by

medicinal chemistry patents can also be valuable for those

not necessarily committed to filing themselves (Box 1). In this

respect, it may not be appreciated how level the information

playing field is become, because a patent becomes open and

globally accessible only on the day of publication. This means

that, as shown in Fig. 1, using relatively straightforward open
www.drugdiscoverytoday.com 5
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Table 1. Comparative assessment of patent structures inside PubChem. The specified sources can be retrieved from PubChem
by simple selects (e.g. ‘SureChem’[SourceName] but note this is now SureChEMBL) with the results as CID counts. PubChem
and ChEMBL are included for comparison. Totals are in millions for each source and dates are from the last update. Subsequent
columns are filters expressed as %. In order these are; stereo and E/Z (completely or partially unspecified), Mw < 400, unique
structures (to that source), entries with two components, rule-of-five with 200-800 Mw range. Int. refers to links to patent
documents provided inside PubChem. Ext. refers to document mappings in the source links

Source Total Date Stereo & E/Z Mw < 400 Unique Mix. ROF 2-800 Int. link Ext. link

PubChem 49.8 May-14 35% 58% 52% 2.5% 72%

IBM 2.3 Jun-12 41% 71% 31% 0.3% 58% Yes Yes

SureChem 9.3 Mar-13 38% 52% 52% 5.9% 63% No Yes

SCRIPDB 3.9 Aug-12 29% 48% 27% 5.4% 56% Yes Yes

ChEMBL 0.9 Apr-14 26% 48% 17% 1.9% 61%

Thomson Pharma 4.2 May-14 25% 49% 15% 4.0% 53% No Noa

Total from pats. 15.5 May-14 35% 52% 47% 4.7% 57%

a Signifies the out-links are subscriber-only.
resources and tools, key SAR can be extracted from the

document within hours. In addition to day-one publication

at the major offices, the lag-time for new patents to appear in

open searchable sources such as Google Patents (http://www.

google.com/advanced_patent_search), Free Patents Online

(http://www.freepatentsonline.com/), Patent Lens (http://

www.lens.org/lens/) and others, is now reduced to days.

However (as specified in Table 1) current PubChem sources

(except Thomson Pharma) have a submission lag for patent

chemistry. However the recently enhanced SureChEMBL

pipeline in situ (i.e. not yet in PubChem) now has a chemistry

extraction time of less than a week. A practical preview

example can be given for the case of BACE2 as a new diabetes

target [16]. Only one targeted inhibitor has appeared in

a 2011 paper but, since 2010, many hundreds have been

exemplified as different chemotypes in patents published

from four pharmaceutical companies and one academic in-

stitution. In addition, most of these included discrete activity

data and comparative BACE1 cross-screening results. Thus, in

the five years since the first published patents, no papers

describing extensive chemistry directed against this impor-

tant new therapeutic target have yet appeared.

Scale and quality

‘So how do we know more bioactive chemistry is available

from patents than papers?’ There are different data sets to

approach this question but each has caveats. An upper limit is

provided by the GVKBIO Online Structure Activity Relation-

ship database (GOSTAR https://gostardb.com/gostar/). As a

manually curated SAR-focused suite of databases for pub-

lished and patented inhibitors against biological targets over

the past 40 years, it currently includes 6.3 million chemical

structures. A caveat is that a proportion of the patent activity

measurements are binned rather than discrete values. A

recent analysis of a 20-year slice of this data set provided
6 www.drugdiscoverytoday.com
some relevant statistics [17]. Firstly a total document ratio for

patents: papers of 58:82 (thousand), secondly a compound

ratio of 2.7:1 (million) and thirdly, an individual extracted

structures per-document ratio of 12:46.

Additional data slices related to the patents: papers ratio

can be made inside PubChem. The sum of all large patent-

extracted sources (Table 1) is 15.4 million. The equivalent

total for literature-linked compounds (via ChEMBL and

PubMed/MeSH) is just over 1.0 million. The intersect (struc-

tures common to both) is �0.5 million. While this indicates

an approximate patents: papers structure ratio of �15:1 there

are caveats to what this represents in bioactivity terms,

especially because none of the larger patent sources in Pub-

Chem currently connect structures directly to data. The intra-

PubChem numbers are informative but it is necessary to

ascertain selectivity to understand source complementarity

[18]. Aspects of this are detailed in Table 1, along with metrics

related to quality.

The dates indicate that IBM, SureChem and SCRIPDB are

currently frozen. Additional date cutting indicates that

ChEMBL releases are approximately tri-annual but Thomson

(Reuters) Pharma submits every week. The stereo and E/Z

filters are quality indicators (e.g. the highly curated source,

ChEBI, scores 16%). The other manual extractions (ChEMBL

and Thomson Pharma) score higher than the automated

chemical named entity recognition (CNER) pipelines but,

of the latter, SCRIPDB does better than IBM. Slicing the Mw

distribution at 400 is a rough proxy for the length of name

strings converted in CNER. Here again, as expected, manual

extraction sources score higher (because they select com-

plete structures in the first place). Causes for the low IBM

score include R-group inclusions and the splitting of longer

IUPAC names. Pragmatically, compared to the major bene-

fits of being able to access them at all, the quality of open

patent-extracted structures is of lesser importance (it may be

http://www.google.com/advanced_patent_search
http://www.google.com/advanced_patent_search
http://www.freepatentsonline.com/
http://www.lens.org/lens/
http://www.lens.org/lens/
https://gostardb.com/gostar/
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for prior-art searching but this is a different issue). Reasons

for this include: (a) the value lies primarily in the

document > assay > result > compound > protein (D-A-R-

C-P) relationships, so even if C (compound) has only a

similarity match (e.g. due to an error in another C), the

relevance of the connection can usually be resolved; (b)

mistakes, isomeric variation and other forms of representa-

tional ‘noise’ in the original documents largely determine
Figure 2. Examples of curated and annotated database mappings from patents. T

entry (http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligan

P08246) inhibitor. The curator’s notes and the two references are shown; inclu

connectivity for this entry has been added for the next update). The lower panel s

US8541427 [20] on BACE1 inhibitors.
extraction quality per se; (c) different extracted isomers and

tautomers can be connected (i.e. via the C-to-C match) or

same connectivity relationships inside PubChem; (d) both

objective quality measurements and structures-in-common

between independent sources are important to assess for any

large sets of structures (i.e. not just from patents) and (e)

reassuring levels of extraction concordance are not only

formally recorded within PubChem via substances (SIDs)
Drug Discovery Today: Technologies

he upper panel shows part of the Guide to PHARMACOLOGY (GToPdb)

dId=6476) for AZD9668 as a clinically tested neutrophil elastase (UniProt

ding a SureChEMBL link to the patent US20070203129 [19] (additional

hows one of the views on BindingDB for PubChem CID 44247663 from a
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from different patent sources, but also, in SureChEMBL, this

extends to multiple intra-document and inter-document

structure identities within the same patent family.

Uniqueness, indicated by structures in only one source, is a

useful value indicator but not without caveats. The figures

(Table 1) suggest that the SureChem CNER extraction has

contributed the most novel patent structures, However, a

proportion of these could be alternative representations of

the same canonical forms in other sources (although this

measurement is confounded for comparisons between

ChEMBL and Thomson Pharma, because they share some

of the same journal sources). The two-component count

identifies �5% mixtures in SCRIPDB and SureChem (mostly

salts) but IBM appear to have filtered these out. The next

category is a crude lead-like molecular property filter. The

sources converge at around 50–60% for patent structures.

Thus, even if these do not have explicit assay results, they

represent a large and generally synthetically accessible, po-

tential bioactive chemical space. The last two columns in

Table 1 refer to structure-to-document connectivity. Inside

the CID records those with links to the USPTO website are

processed from IBM and SCRIPDB by PubChem. They are also

usefully IPC-indexed by which we can establish that of the 8.5

million structures assigned codes, 7.2 million are under C07

and 6.1 million C07D. Note that the SureChem records

match SureChEMBL externally where a structure search con-

nects to them to patent numbers (also IPC indexed) from the

major offices. For Thomson Pharma, the �4.2 million exter-

nal links are subscription-only but can be either to a patent

and/or a paper (it would seem probable that the chemistry

curation split is similar to GOSTAR that is �3:1 patents:

papers).

Relationship annotation in databases

The BACE1 examples above (Fig. 1) show that D-A-R-C-P

mapping from an individual document requires curation.

Any scaled-up availability of this (analogous to that done

for papers in ChEMBL) has hitherto been a feature of a limited

number of commercial databases. Nevertheless, example

entries from new initiatives in two open databases are shown

(Fig. 2).

In GtoPdb the paper and the patent were connected by

curatorially establishing identical structures for CID

46861623 and the IPUAC name. The journal publication

focuses on the pharmacology of AZD9668 (i.e. this is not

an SAR paper and may therefore neither be picked up by

ChEMBL nor consequently PubChem BioAssay). The com-

plementarity of the curated pointer to the patent for anyone

interested in this drug is both an extensive set of analogues

and unpublished data. Note that AZD9668, as patent example

94, has Kd results converted to Ki but an IC50 only in the

paper. However, seven analogues have IC50 data in the

patent, including the most potent (example 32 at 3 nM) as
8 www.drugdiscoverytoday.com
CID 11478818 (n.b. the patent may have been filed before

AZD9668 was selected for development). While a limited

number of GtoPdb entries have patent connections so far,

more are being added, particularly for those clinical candi-

dates with little or no SAR in papers.

The patent curation in BindingDB, initiated in Sept 2013, is

also of high utility but takes a different approach. In this case,

the selection of recent US patents is protein target-based. The

BACE1 filing in Fig. 2 has 42 example structures (via CWUs)

manually aligned with their activity data from the patent

tables but intersected with PubChem CIDs, BindingDB SIDs

and a short assay description. For example, the record (http://

www.bindingdb.org/data/mols/tenK10/MolStructure_

102939.html), was extracted from US8541427 [20]. While

this does not locate the structure within the document (i.e.

searching SureChEMBL, via CID 44247663, connects to the

image for example 10), it does allow the curated set to be

directly retrieved as a CID list with the PubChem query

‘US8541427’. This can be done for any of the 367 BindingDB

patents (Oct 2014) covering 32 670 compounds with target-

mapped activity results.

Conclusions

The options to mine patent data from individual documents

up to large extracted structure sets are expanding in open

resources. For example, SureChEMBL has reached 15.6 million

in situ at 80 K novel structures per month (Dr. G. Papadatos,

RDKit UGM, presentation Nov 2014). Paradoxically, patents

are fully accessible for text-mining, in contrast to most of

the literature. Of the patent-extracted structures already in

PubChem over 9 million are within the property boundaries

for potential bioactivity and �0.5 million intersect with

identical structures from papers, via ChEMBL and/or

PubMed. Future challenges will include abstracting D-A-R-

C-P relationships and synergistically intersecting these

with the analogous relationships and entities identified from

the literature, as already demonstrated by BindingDB and

GtoPdb.
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Supplementary data associated with this article can be found,
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