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Molecular layer interneurons in the cerebellum
encode for valence in associative learning
Ming Ma 1,2, Gregory L. Futia 3, Fabio M. Simoes de Souza 2,4, Baris N. Ozbay 5, Isabel Llano 6,

Emily A. Gibson 1,3 & Diego Restrepo 1,2✉

The cerebellum plays a crucial role in sensorimotor and associative learning. However, the

contribution of molecular layer interneurons (MLIs) to these processes is not well under-

stood. We used two-photon microscopy to study the role of ensembles of cerebellar MLIs in

a go-no go task where mice obtain a sugar water reward if they lick a spout in the presence of

the rewarded odorant and avoid a timeout when they refrain from licking for the unrewarded

odorant. In naive animals the MLI responses did not differ between the odorants. With

learning, the rewarded odorant elicited a large increase in MLI calcium responses, and the

identity of the odorant could be decoded from the differential response. Importantly, MLIs

switched odorant responses when the valence of the stimuli was reversed. Finally, mice took

a longer time to refrain from licking in the presence of the unrewarded odorant and had

difficulty becoming proficient when MLIs were inhibited by chemogenetic intervention. Our

findings support a role for MLIs in learning valence in the cerebellum.
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The cerebellum plays a pivotal role in coordinating move-
ments through sensorimotor integration. It receives mas-
sive input through mossy fiber synapses onto granule cells

(GCs) to form a circuit efficient in complex pattern separation1

(Supplementary Fig. 1). In addition, the cerebellum contributes to
cognition and emotion and is associated with non-motor condi-
tions such as autism spectrum disorders2–5. The Purkinje cells
(PCs), the sole projection neurons of the cerebellar cortex, receive
excitatory afferent input from the parallel fibers (PFs) of GCs and
dense feedforward inhibitory inputs from the molecular layer
interneurons (MLIs). Importantly, subtle changes in this PC
excitatory–inhibitory balance generate robust, bidirectional
changes in the output of PCs6.

Plasticity in cerebellar circuit activity plays an important role in
generation of adequate output. Indeed, long-term depression
(LTD) mediated by dendritic increases in Ca2+ in PCs elicited by
motor error signals conveyed by climbing fibers (CFs) is a clas-
sical model of plasticity7–10. However, recent studies indicate that
CFs also signal reward prediction11,12 or decision-making
errors13, and the cerebellum modulates association pathways in
the ventral tegmental area (VTA) contributing to reward-based
learning and social behavior14. Furthermore, although LTD at the
PF–PC synapse is often considered as the substrate for cerebellar
dependent learning7–10, such learning can occur in the absence of
LTD and may therefore involve other forms of plasticity15. A
potential substrate for plasticity is the PF-MLI synapse16 where
LTP can be induced in slices by pairing MLI depolarization with
PF stimulation17 and in vivo by conjunctive stimulation of PFs
and CFs18, believed to underlie changes in the size of cutaneous
receptive fields19,20. In addition, high frequency stimulation of
PFs alters subunit composition of AMPA receptors, rendering
them calcium impermeable21, a long-lasting change linked to
behavioral modifications22. Furthermore, MLIs have been pro-
posed to participate in cerebellar plasticity20,23,24, and Rowan
et al. found graded control of PC plasticity by MLI inhibition25,
suggesting that MLI inhibition is a gate for learning stimulus
valence, which conveys information as to whether the stimulus is
rewarded. However, whether there is a causal participation of
MLIs in reward-associated learning is unknown.

Here we explored whether MLI activity plays a role in reward-
associated learning in a go–no go task where mice learn to lick to
obtain a water reward26,27. We applied two-photon microscopy28

to record Ca2+ changes in ensembles of MLIs and utilized che-
mogenetics to explore the functional role of MLI activity in
learning.

Results
In order to explore the role of MLIs in associative learning we
employed in vivo two-photon microscopy to record neural
activity reported by changes in fluorescence emitted by the Ca2+

indicators GCaMP6/7. MLIs were imaged within the superficial
50 μm of the ML in head-fixed mice through a 2 × 2 mm glass
window implanted above the cerebellar vermis (lobule VI, Fig. 1,
Supplementary Fig. 2), where GCs acquire a predictive feedback
signal or expectation reward29,30. We used the go–no go task
where water-deprived mice initiated the trial by licking on the
spout to elicit odorant delivery 1–1.5 s after the first lick. Mice
received a water reward when they licked at least once in two lick
segments during rewarded odorant delivery (1% isoamyl acetate,
Iso, termed S+) (Fig. 1a, Hit trial, mouse movement shown in
Supplementary Movie 1, quantified in Supplementary Fig. 3).
Mice did not receive the reward if they failed to lick in one of the
two lick segments (Miss trial). When the unrewarded odorant was
presented (mineral oil, MO, S− trials) the animals did not receive
a reward when they refrained from licking (Correct Rejection,

CR, Fig. 1a), and they received a timeout of 10 s if they licked in
both segments (False Alarm, FA). A proficient mouse (percent
correct ≥80%) licked at least once in each lick segment in the S+
trials and stopped licking during the segments for the S− trials,
see lick trace at the bottom of Fig. 1f.

An example of an increase in MLI GCaMP6f fluorescence
intensity during odorant application in a Hit trial is shown for a
proficient mouse in Fig. 1b, c (Supplementary Movie 2). We
extracted regions of interest (ROIs) of the components (Fig. 1d)
and temporal traces of the normalized change in fluorescence
(ΔF/F, Fig. 1e, f) using constrained nonnegative matrix factor-
ization analysis31. The average diameter of the ROIs in this field
of view (FOV) was 10.5 ± 4 μm (mean ± SD, n= 170, Supple-
mentary Fig. 4a), which falls within the range of diameters
reported for MLIs32. When the animal was proficient, we
observed that MLI ΔF/Fs increased when the rewarded odorant
was presented (Fig. 1e (Hit) and f, vertical orange lines in 1f
indicate odorant on and off times for S+). In contrast, the
unrewarded odorant-elicited smaller transient increases in ΔF/F
(Fig. 1e (CR) and f, vertical light blue lines and Supplementary
Figs. 4b–d), with some exceptions where the increases for ΔF/F
for S− were larger (arrow in Fig. 1f). Finally, the rewarded
odorant elicited increases in ΔF/F in 89% of the ROIs among a
total of 191 (Fig. 1e and Supplementary Fig. 4c, e).

MLIs responses diverge as mice learn to differentiate odors.
The behavioral performance in a learning session where the
animal reached proficient level after 70 trials is shown in Fig. 2a.
When the animal was naive (≤65% correct) the time courses for
ΔF/F overlapped between S+ and S− (Fig. 2b), and when the
animal became proficient the time courses for ΔF/F diverged
(Fig. 2d). For the proficient animal in S+ trials ΔF/F started
increasing at trial initiation (1–1.5 s before odorant addition) and
reached a peak when the animal was rewarded (Fig. 2d, orange
trace), while for S− trials, the response returned to basal levels
shortly after the odorant was applied (Fig. 2d, light blue trace,
lower panel of Fig. 2d shows the time courses for lick rates (LRs)).
Whereas ΔF/F did not differ between S+ and S− before odorant
addition (Fig. 2e), it diverged after odorant addition as the animal
learned (Fig. 2f) and ΔF/F per ROI increased when the animal
became proficient (Fig. 2g). Generalized linear model (GLM)
analysis yielded a statistically significant difference between S+
and S− and naive and proficient, p < 0.001, 5550 observations,
5538 d.f., one mouse, GLM F-statistic= 267, p < 0.001. Finally,
the mean ΔF/F (±95% CI, four mice) for the last second of
odorant application increased as a function of percent correct
performance for the S+ condition, whereas it remained stable for
the S− condition (Fig. 2i). A GLM analysis found a statistically
significant difference between S+ and S− (p < 0.01, 47 observa-
tions, 44 d.f., n= 4 sessions, 4 mice, GLM F-statistic= 60,
p < 0.001) and for the interaction between performance and the
odorant (S+ vs. S−) (p < 0.001, 47 observations, 44 d.f., n=
4 sessions, 4 mice, Supplementary Fig. 5a–d shows learning
curves for these mice). Therefore, as the animal learned, the
magnitude and temporal dynamics of the change in Ca2+ in MLIs
diverged between S+ and S− odorants, suggesting a possible role
for MLIs in associative learning. The majority of the ROIs
responded similarly (Fig. 1e, Supplementary Fig. 4) and a
dimensionality analysis indicated that the dimensionality ranged
from 2 to 6 (see Supplementary Note 1 and Supplementary Fig. 6)
indicating that the responses are highly redundant.

Stimulus identity can be decoded from MLI activity. The
finding that the MLIs developed divergent responses for S+ vs. S−
trials (Fig. 2i) raised the question whether ensemble neural
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activity encodes for the identity of the stimulus. The learning
curve for a session where the mouse achieved ≥80% in ~60 trials
is shown in Fig. 3a. The first two principal components for a
principal component analysis (PCA) of ΔF/F values for all MLIs
in this session showed clear differences between S+ and S− trials
for the reward and odorant periods for trials when the mouse was
proficient (Fig. 3c), in contrast to the overlap observed between
odorants for the naive mouse (Fig. 3b). This suggested that
odorant identity (S+ vs. S−) could be decoded from ΔF/F values
for proficient mice.

We utilized a linear discriminant analysis (LDA) to determine
whether a hyperplane placed in the multidimensional space of
ΔF/F values for all MLIs in the ensemble could decode the
stimulus. The LDA was trained with ΔF/F for all trials minus one
and was queried to identify the odorant in the remaining trial (see
“Methods”). The bootstrapped 95% confidence interval (CI) for
an LDA trained after shuffling stimulus was used as a control.
The time course for LDA decoding accuracy for the session with

the learning curve in Fig. 3a is shown in Fig. 3d (Supplementary
Fig. 7a shows the corresponding lick frequency time course). For
trials with percent correct ≤65%, decoding accuracy raises above
the shuffled 95% CI after water reinforcement (Fig. 3d, upper
panel), while for proficient trials, decoding accuracy started rising
above 95% CI shortly after odorant addition (Fig. 3d, lower
panel). When tested in four mice LDA decoding accuracy for the
odorant and reinforcement periods differed from shuffled LDA
(Fig. 3e). A GLM analysis yielded statistically significant
interactions between shuffled vs. reinforcement and for the
interactions between (shuffled vs. odorant) × (proficient vs. naive)
and (shuffled vs. reinforcement) × (proficient vs. naive) (GLM
p values <0.01 and <0.05, 24 observations, 18 d.f., n= 4 sessions,
4 mice, GLM F-statistic 16.4, p < 0.001). Post-hoc tests corrected
for multiple comparison using false discovery rate (FDR)33

yielded a statistically significant difference for decoding accuracy
for either reinforcement or odorant vs. shuffled for proficient
(p < pFDR= 0.007, n= 4 sessions, 4 mice). The LDA analysis
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Fig. 1 Two-photon Ca2+ imaging of MLIs in head-fixed mice. a go–no go task. Left: Two-photon imaging of a head-fixed mouse responding to odorants by
licking on a water spout in response to the rewarded odorant in the go–no go task. Center: Scoring of decision-making. Right: time course of the trial. For
water reward in Hit trials the animal must lick at least once in each of the two 2 s lick segments. b–d The panels in b and c show two-photon microscopy
images of GCaMP6f fluorescence recorded from MLIs in a mouse proficient in the go–no go task (basal activity: before trial start, Hit trial: during reinforced
odorant application). The color image in d shows the regions of interest identified using CaImAn software31. e Pseudocolor plots displaying the average per
trial ΔF/F time course for Hit (left panel) and CR (right panel) odorants for all ROIs in this example. GLM analysis involving time periods pre-odorant (1 s
before odorant onset), odorant (last second during odorant application) and reinforcement (1.5 s after reinforcement), and different events (Hits, Miss, CR
and FA) yielded significant differences between reinforcement and pre-odorant (p < 0.001), between odorant and pre-odorant (p < 0.001), and between all
interactions between these two period pairs and all events (p < 0.01, 2040 observations, 2028 degrees of freedom, n= 170 ROIs, 1 mouse, GLM F-statistic
234, p < 0.001). *Post-hoc ranksum p < pFDR= 0.048. f Neural ensemble activity. Black traces are the GCaMP6f fluorescence (ΔF/F) time courses for a
subset of the ROIs identified in the FOV in (d). This mouse was proficient (≥80% correct trials). Vertical lines: orange start and end of S+ odorant
application, light blue is S−. The blue trace at the bottom shows the licks. All trials were Hits or CRs with the exception of the trial identified with the arrow
that was a FA. Data shown in panels (b–f) are from one session (one mouse).
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revealed that the accuracy for decoding the odorant identity from
ΔF/F during the odorant period increases as the animal learns to
differentiate between odorants.

LDA decoding analysis with subsets of ROIs. Since dimen-
sionality of MLI neural activity is low (Supplementary Fig. 6) a
question arose as to whether performing LDA analysis on a
fraction of the ROIs in the FOV would result in accurate
decoding of the stimulus. We performed the LDA decoding
analysis for smaller numbers of ROIs ranging from 1 to 100.
We used pseudorandom sampling of fifty unique subsets of
ROIs. As expected, subsampling resulted in a decrease in
accuracy of LDA decoding of the stimulus, but the decrease was

relatively small and even a single ROI yielded a decoding
accuracy significantly different from the shuffled control. In
the experiment shown in Fig. 3f decoding accuracy decreases
from 94% with all ROIs in the FOV to 83% with a single ROI,
while the shuffled trials yield 50% accuracy. Figure 3g shows
the summary of this analysis for four sessions. A GLM analysis
indicated that the decoding accuracy for the shuffled analysis
was statistically different from accuracy with the subsets of
ROIs (p < 0.001, 72 observations, 54 d.f., n= 4 sessions, 4 mice,
GLM F-statistic= 23.6, p < 0.001). Thus, MLI activity encodes
for the stimulus even when a single ROI is analyzed indicating
that stimulus information encoded by MLI activity is highly
redundant.
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Fig. 2 MLIs developed divergent responses during go–no go learning. a Learning curve for a mouse discriminating 1% Iso from MO in the go–no go task.
Magenta dots: proficient level (≥80% percent correct), green dots: naive level (percent correct≤ 65%). n= 20 trials within a sliding window. b–d
GCaMP6f fluorescence (ΔF/F) time course averaged (mean ± 95% CIs) over all ROIs and trials falling within different proficiency windows shown for the
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statistically significant differences for pre-odorant data (h p > 0.05, 43 d.f., n= 4 sessions, 4 mice, GLM F-statistic = 0.46, p > 0.05). *Post-hoc two-sided t
test, p < pFDR= 0.018. Error bars are 95% CIs.
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MLI odorant responses switch when valence is reversed. In
order to determine whether the MLIs responded to the chemical
identity of the odorant, as opposed to responding to the valence
(contextual identity: is the stimulus rewarded?), we reversed
odorant reinforcement. When the reward was reversed for a
proficient mouse the animal kept licking for the previous
rewarded odorant resulting in a fall in percent correct below 50%,

and as the animal learned the new valence the percent correct
raised back above 80% (Fig. 4a and Supplementary Fig. 5e, f). We
analyzed how odorant-elicited changes in MLI ΔF/F varied in this
reversal task. Figure 4b–d shows single trial examples for mean
ΔF/F odorant responses when the reward is reversed. MLIs
responded to Iso (S+) with an increase in ΔF/F before reversal
(e.g. forward trial 52), maintained the odorant increase in ΔF/F to
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Fig. 3 Stimulus decoding accuracy increases as the animal learns to discriminate odorants. a–d Show behavioral performance (a), PCA analysis (b, c)
and LDA analysis (d) for one session (one mouse). a Learning curve for a mouse performing the head-fixed go–no go task. Magenta dots: proficient level
(≥80% percent correct), green dots: percent correct ≤65%. n= 20 trials within a sliding window. b, c First two principal components for the PCA for the
changes in GCaMP6f fluorescence (ΔF/F) in all the ROIs in the FOV. b The mouse was performing ≤65% correct, c the same mouse was performing
≥80% correct. The principal components are shown for three time periods: Pre-odorant: 1 s before odorant addition, odorant: 1 s before removal of the
odorant, and Reinforcement: 1.5 s after reward. Orange circles: S+ trials, light blue circles: S− trials. d Decoding accuracy for the linear discriminant
analysis (LDA) trained to predict odorant identity using ΔF/F for all ROIs in the FOV. Shade: 95% CI for LDA trained with shuffled odorant identity (line=
50%). The vertical black lines are odorant onset and removal and the red lines bound the reinforcement period. e Average LDA decoding accuracy (mean
± 95% CI) calculated from the (ΔF/F) for all ROIs in the FOV from data recoded in four mice. A GLM analysis of decoding accuracy yielded statistically
significant interactions between (shuffled vs. odorant) × (proficient vs. naive) and for (shuffled vs. reinforcement) × (proficient vs. naive) (GLM p values
<0.01 and <0.05, 24 observations, 18 d.f., n= 4 sessions, 4 mice, GLM F-statistic= 16.4, p < 0.001). *Post-hoc two-sided t tests corrected for multiple
comparison using the false discovery rate (FDR, p < pFDR= 0.007, n= 4 sessions, 4 mice). f Example of LDA decoding analysis performed with subsets of
ROIs ranging from 100 to 1 ROI. The analysis was performed for one session for trials where the mouse was proficient (percent correct≥ 80%). Left:
Decoding accuracy (mean ± 95% CI) as a function of the number of ROIs. Center: Cumulative probability histograms for the decoding accuracy for the
different number of ROIs and for the shuffled LDA. Right: Dimensionality as a function of the number of ROIs. g Summary graph showing the average
decoding accuracy for different numbers of ROIs (mean ± 95% CI, 4 sessions, 4 mice). A GLM analysis indicated that the decoding accuracy for the
shuffled analysis was statistically different from accuracy with the subsets of ROIs (p < 0.001, 72 observations, 54 d.f., n= 4 sessions, 4 mice, GLM F-
statistic= 23.6, p < 0.001). *Post-hoc two-sided t tests or ranksum p < pFDR= 0.03. Black: original data, light gray: shuffled. Error bars are 95% CIs.
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what was then the unrewarded odorant (Iso, S−) immediately
following reversal (reverse trial 92) and switched responses with
increases to the new rewarded stimulus (MO, S+) when they
became proficient in the reversal task (reverse trial 438) (ΔF/F for
the last second of the odorant period is shown for all trials in
Fig. 4e). When repeated for three different mice the odorant-
induced ΔF/F changes reversed for proficient mice (≥80% correct)
when the valence was reversed (Fig. 4f). GLM analysis indicated
that there was a significant difference in odorant-induced changes
in ΔF/F for the odorant and the reversal (p < 0.001, 12 observa-
tions, 8 d.f., n= 3 sessions, 3 mice, GLM F-statistic= 14.8,
p < 0.01). Thus, after successful reversal the ΔF/F time course
switched for the two odorants: the stimulus-induced increase in
ΔF/F took place for the reinforced odorant, not for the chemical
identity of the odorant.

Next we computed the accuracy for decoding the reinforced
odorant for trials when the animal was proficient in either the

forward or reverse trials using LDA analysis. Figure 4g shows for
the reversal session in Fig. 4a that for the proficient animal
decoding accuracy rises above the 95% CI calculated with shuffled
trials shortly after odorant addition for both forward and reverse
trials. Finally, the results of the forward and reverse LDA analysis
for three mice that are proficient showed that decoding accuracy
for the stimuli differed from shuffled LDA (Fig. 4h). GLM
analysis indicated that differences in decoding accuracy were
statistically significant between original and shuffled (P < 0.001),
but not between forward and reverse (p > 0.05, 12 observations,
8 d.f., n= 3 sessions, 3 mice, GLM F-statistic= 16, p < 0.001).
These results indicated that for the proficient mouse it is possible
to decode contextual identity, suggesting that MLI activity
encodes for valence.

MLI activity encodes the contextual identity in error trials. To
gain a better understanding of the information on odorant
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Fig. 4 MLI odorant responses switched after reversal. a–e, g Show behavioral performance (a), ΔF/F (b–e) and LDA analysis (g) for one session where
odorant reinforcement was reversed (one mouse). a Learning curve showing the animal’s behavior after reversal. Green≤ 65%, magenta: ≥80% correct.
Forward: S+ 1% Iso and S− MO. n= 20 trials within a sliding window. b–d Average ΔF/F time courses for example trials before (trials 51 and 52) and
shortly after reversal (trials 91 and 92), and after the animal attained proficiency during reversal (trials 438 and 439). The vertical black lines are odorant
onset and removal. e Per trial average ΔF/F during the last second of odorant application for the reversal task in Fig. 4a. The upper plot shows the
responses to Iso and the lower plot shows responses to MO. n= 1 mouse, 185 ROIs. f Average odorant-induced changes (mean ± 95% CI) in ΔF/F
recorded from three animals computed for trials when the animal was behaving ≥80% correct. Red: Hit, Blue: CR. A GLM analysis indicates that there is a
significant difference in odorant-induced changes in ΔF/F for both odorant and reversal (p < 0.001, 12 observations, 8 d.f., n= 3 sessions, 3 mice, GLM F-
statistic= 14.8, p < 0.01). g Time course for decoding accuracy computed with LDA analysis of ΔF/F data for all ROIs in the FOV. The shade is the 95% CI
of decoding accuracy calculated with shuffled odorant identity. The vertical black lines are odorant onset and removal and the red lines bound the
reinforcement period. h Average decoding accuracy (mean ± 95% CI) for three animals calculated with odorant-induced changes in ΔF/F from trials where
the animal was performing ≥80% correct. Dark-gray: original, light gray: shuffled. A GLM analysis indicates that differences in decoding accuracy are
statistically significant between original and shuffled (P < 0.001), but not between forward and reverse (p > 0.05, n= 12, 8 d.f., n= 3 sessions, 3 mice, GLM
F-statistic= 16, p < 0.001).
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valence present in the responses of the MLI ensemble we asked
whether stimulus decoding accuracy calculated with LDA for
proficient mice differed between correct (Hits and CRs) and
incorrect trials (Miss and FAs). If information in MLI activity
reflects the outcome of the trial, we would expect that decoding
accuracy would be lower for incorrect trials. On the other hand, if
information encoded by MLI activity reflects the stimulus
regardless of trial outcome decoding accuracy would not differ
between correct and incorrect trials.

We performed this analysis for sessions that included at least
one error trial (Miss or FA) when the animals were proficient. In
these time series the majority of the ROIs exhibited changes in
ΔF/F during the odorant application regardless whether the trial
was a correct response (Hit or CR) or an error (Miss, FA)
(Table 1). In addition, virtually all ROIs that responded with
changes in ΔF/F during error trials also responded during Hit
trials (Table 1, and see examples of ΔF/F time courses for single
ROIs in Supplementary Fig. 8). As expected, in both the odorant
application and reinforcement periods mean lick frequency for FA
was higher than for CR and mean lick frequency for Miss trials was
lower than Hits (Supplementary Fig. 9a, GLM analysis p < 0.001, 48
observations, 40 d.f., n= 6 sessions, 5 mice, GLM F-statistic= 68,
p < 0.001, post-hoc two-sided t test p < pFDR= 0.036). In contrast,
ΔF/F did not differ between Hits vs. Miss and CR vs. FA
(Supplementary Fig. 9b, c). GLM analysis indicated that differences
were not significant between Hits vs. Miss and CR vs. FA (p > 0.05),
while Hits/Miss differ from CR/FA (p < 0.01, 48 observations, 40 d.f.,
n= 6 sessions, 5 mice, GLM F-statistic= 8.48, p < 0.001, post-hoc
two-sided t test p < pFDR= 0.027). To survey the information
encoded in MLI activity in trials with different outcomes in proficient
mice, we utilized LDA analysis to decode the stimulus (Supplemen-
tary Fig. 9d: forward go–no go sessions, Supplementary Fig. 9e:
reverse sessions). Decoding accuracy differed from shuffled for all
outcomes and time periods (Supplementary Fig. 9d, two-sided t test,
p < pFDR= 0.025, n= 6 sessions, 5 mice, Supplementary Fig. 9e
two-sided t test, p < pFDR= 0.012, n= 3 sessions, 3 mice). In
addition, GLM analysis did not find a significant difference between
outcomes (Hit, Miss, CR or FA) or time period (odorant vs.
reinforcement) indicating that MLI activity reflects the stimulus
regardless of trial outcome (Supplementary Fig. 9d, p > 0.05, 48
observations, 40 d.f., n= 6 sessions, 5 mice, GLM F-statistic= 1.49,
p > 0.05, Supplementary Fig. 9e, p > 0.05, 24 observations, 16 d.f., n=
3 sessions, 3 mice, GLM F-statistic= 1.12, p > 0.05). This analysis
determined that odorant-induced MLI Ca2+ changes carry informa-
tion on the stimulus, as opposed to the outcome.

LR correlates with MLI activity during reinforcement. To
explore whether the observed MLI ensemble activity recorded in
vermis is directly related to licking, as found in Crus II34,35, we
examined the correlation between ΔF/F and the LR. When the
animal was proficient the animal licked at least once in each of

the two lick segments during application of the S+ odorant,
increased licking after receiving the water reward and refrained
from licking for the S− trials (Fig. 5a). For the proficient mouse
the lick frequency diverged between S+ and S− trials shortly after
addition of the odorant (Fig. 5b) and this divergence was evi-
denced by a large decrease in the p value calculated with a
ranksum test comparing licking between S+ and S− trials
(Fig. 5c).

In order to explore the relationship of MLI activity to licking
we proceeded to examine the correlation between ΔF/F time
course and the LR and between the derivative of the ΔF/F time
course (DtΔF/F) and the derivative of the lick rate (DtLR)34 and
plotted their relationship during different time periods for
proficient mice. Figure 5d–g shows examples for several trial
outcomes for the time course for ΔF/F and the LR. Examples of
these correlations for a single session for a proficient mouse are
shown in Fig. 5h, i. In this example the correlation between ΔF/F
and the LR was larger during the reinforcement period (ρ= 0.73,
p value < 0.001) compared to the odorant (p= 0.19, p value <
0.001) and pre-odorant (p=−0.06, p value < 0.05) periods
(Fig. 5h). Similarly, the correlation between DtΔF/F and DtLR
was significant for the reinforcement period (ρ= 0.28, p < 0.001),
and was smaller for both the pre-odorant (ρ=−0.08, p < 0.05)
and odorant (ρ=−0.045, p > 0.05) periods (Fig. 5i). We
proceeded to compare the correlations between these parameters
in several mice. As found in Crus II21, ΔF/F and the LR (Fig. 5j)
and DtΔF/F and DtLR (Fig. 5k) were positively correlated during
the reinforcement period. Furthermore, the correlations were
lower during the pre-odorant and odorant periods (Fig. 5j, k).
A two-sided t test indicated that there was a statistically
significant difference in the correlation coefficient between
the reinforced vs. the odorant or pre-odorant periods for ΔF/F
vs. LR (p < pFDR= 0.05, n= 6 sessions, 5 mice) and between the
reinforced and odorant periods for DtΔF/F vs. DtLR (p < pFDR=
0.016, n= 6 sessions, 5 mice). These data suggested that changes
in ΔF/F during the reinforcement period reflect changes in lick
activity, while changes in ΔF/F during the odorant period are less
dependent on licks, and maybe dependent on multiple variables.

Relationship between changes in ΔF/F and lick frequency. We
performed complementary studies of ΔF/F in CR trials when the
mouse did not lick and for time courses aligned to the beginning
of ΔF/F changes after odorant addition. We compared ΔF/F and
lick frequency during the odorant application period for CR trials
when the animal did not lick during the two 2 s odorant response
periods vs. CR trials when the animal licked (Supplementary
Fig. 10). We did not find a difference between ΔF/F measured
during the odorant period for the CR trials when the animal did
not lick, compared to CR trials when the animal did lick during
odorant application (Supplementary Fig. 10c, GLM yielded no
significant difference for the two types of CR trials, or for the

Table 1 Percent of ROIs displaying a change in ΔF/F during odorant application.

Calculation Percent responsive Number Number of ROIs

Percent of ROIs responding in Hit trials 99.9 ± 0.23 21 Time series, 5 mice 74–199
Percent of ROIs responding in CR trials 82.3 ± 26 21 Time series, 5 mice 74–199
Percent of ROIs responding in Miss trials 97.8 ± 6.5 13 Time series, 5 mice 105–199
Percent of ROIs responding in FA trials 78 ± 29 15 Time series, 5 mice 74–199
Percent of ROIs responding in Miss trials that also respond in Hit trials 99.96 ± 0.15 13 Time series, 5 mice 105–199
Percent of ROIs responding in FA trials that also respond in Hit trials 99.8 ± 0.47 15 Time series, 5 mice 74–199

This calculation was performed in time series that included at least one Miss or FA trial when the animal was proficient (percent correct≥80%). The ROI was classified as responsive when ΔF/F
increased above or decreased below baseline ΔF/F by 2.5 × SD. Baseline mean and SD were calculated for the time interval 10–2 s before odorant onset.
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different time periods, p > 0.05, 36 observations, 30 d.f., n=
6 sessions, 5 mice, GLM F-statistic= 0.88, p > 0.05).

Furthermore, we analyzed the relationship between the time
course of ΔF/F and lick frequency in the time period shortly after
odorant application when ΔF/F increases for both S+ and S−,
before ΔF/F decreases for S− (and keeps increasing for S+). In

Crus II, where neural activity of MLIs is thought to reflect licks,
ΔF/F increases whenever there is an increase in licking
frequency34,35. We aligned the traces to the point where the
time derivative for ΔF/F increased above 0.03. We found that
ΔF/F increased for both S+ and S− (Supplementary Fig. 11b,
GLM analysis yielded a significant change as a function of time,
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p < 0.05, and no significant difference between S+ and S−, p >
0.05, 132 observations, 128 d.f., 6 sessions, 5 mice, GLM F-
statistic= 3.1, p < 0.05). In contrast, in this time period there was
no increase in lick frequency (Supplementary Fig. 11a, GLM
analysis yielded no significant difference as a function of time,
p > 0.05 and a significant change between S+ and S−, p < 0.001,
132 observations, 128 d.f., 6 sessions, 5 mice, GLM F-statistic=
21, p < 0.001). The data on the relationship between lick
frequency and ΔF/F indicate that although there is a dependence
between these two variables, the dependence is not consistent
with a direct relationship between ΔF/F and lick frequency, as
found in Crus II.

Do the MLIs respond to reward value? The correlation between
ΔF/F time course and the LR (Fig. 5h) raises the question whether
ΔF/F reflects the reward value as opposed to the valence of the
odorant. Here we define the valence of the odorant as indicating
whether the stimulus is good or bad36. Thus, valence is a binary
measure of an emotion that is reflected by the motivation to
receive reward, whereas reward value, in the present paradigm, is
related to the amount of sugar water delivered. To evaluate
whether ΔF/F changes are dependent on reward value we
recorded changes in ΔF/F from mice performing a go–go task
where both odorants were rewarded equally and we varied the
volume of sugar water delivered for successful trials. As expected,
the mouse responded to both odorants (Supplementary Fig. 12a).
Also, as expected, when the volume of reward was increased, the
lick frequency increased during the delivery of sugar water (wet
licks, Supplementary Fig. 12b), but not during dry licking before
reward (dry licks, Supplementary Fig. 12b). A GLM analysis
yielded a statistically significant difference for dry vs. wet licking
and for the interaction between the volume of sugar water
delivered and dry vs. wet (p < 0.001, 198 observations, 194 d.f.,
1 session, 1 mouse, GLM F-statistic= 21.8, p < 0.001). In contrast,
a GLM analysis of the changes in ΔF/F as a function of volume
delivered in dry and wet lick conditions did not yield statistically
significant changes (Supplementary Fig. 12c, p > 0.05, 198
observations, 194 d.f., 1 session, 1 mouse, GLM F-statistic= 1.7,
p > 0.05). Finally, if MLI activity reflected reinforcement value
ΔF/F should show a positive correlation with volume of sugar
water delivered (see Fig. 3 of ref. 34). We did not find a significant
correlation between lick frequency and ΔF/F for either dry
(Supplementary Fig. 12d, left panel, ρ= 0.16, p > 0.05) or wet
licking (Supplementary Fig. 12d, right panel, ρ=−0.66, p > 0.05).
This experiment indicated that MLI activity does not reflect

reward value, and is consistent with MLI activity reflecting
valence.

Contextual identity contributes to GLM fit of MLI activity. In
order to understand the contribution of different variables to
MLI activity, we implemented a GLM to quantify the depen-
dence of the average ΔF/F on the different behavioral and
stimulus variables37. We included event variables, whole trial
variables, and continuous variables (Fig. 6a, “Methods”).
Continuous variables quantified kinematics including the LR
and the derivative of LR (Fig. 5) and body velocity and body
acceleration of movements made by the animal during the trial
(Supplementary Fig. 3). The identity of the odorant (S+ /S−
odorant) was an event variable that increased from zero to one
during the time for odorant application. Finally, whole trial
variables were accuracy (1 for correct and 0 for incorrect
responses), reinforcement history (1 for reinforcement in the
last trial, 0 otherwise) and percent correct behavior calculated
in a window of 20 trials.

Black traces in Fig. 6b show examples of the fit of the GLM
model to average ΔF/F time courses for four example trials with
different outcomes. The fit traces in black largely overlap with
the recorded data. When quantified over the different periods
within a trial (pre-odorant, odorant and reinforcement), we found
that GLM explained a substantial percent of the average ΔF/F
variance ranging from 23.5 to 95% (Fig. 6c). We next quantified
the relative contribution of the different variables to the ensemble
activity in the three time periods. Figure 6d shows the
contributions to the GLM fit by the variables that make the
largest percent contribution to the fit (body kinematics, licks,
reinforcement history, and odorants). Odorant (S+ vs. S−) was
the dominant contributor to the activity during odorant
application (Fig. 6d, lower left panel, asterisks show differences
with ranksum or two-sided t test p < pFDR= 0.033, n=
6 sessions, 5 mice). Furthermore, variables describing the licks
contributed to the GLM fit during the outcome period (Fig. 6d,
upper right panel, *p < pFDR= 0.016 for a two-sided t test, n=
6 sessions, 5 mice). In contrast, the other two variables (body
kinematics and reinforcement history) did not differ in
contribution during the different periods (p > pFDR= 0.017,
ranksum test). These data indicate that odorant identity
contributes to modeling MLI activity during the odorant
application period while licks contribute to MLI activity during
the reinforcement period.

Fig. 5 Changes in the lick rate correlate with changes in the MLI activity during the reinforcement period. a–g are examples of lick traces (a), lick
frequency (b), lick ranksum p value (c) and ΔF/F and lick traces (d–g) for one session (one mouse). a Examples of per trial lick traces when the mouse was
learning to discriminate the odorants when the animal was proficient (≥80% correct, orange traces: S+ trials, light blue traces: S− trials). b Average lick
frequency for S+ (orange) and S− (light blue) trials shown in (a). c p value for a ranksum test estimating the difference in licks between the S+ and S−
odorants for the example in (a). d–g Single trial examples of average ΔF/F (±95% CI, shade, n= 105 ROIs, upper panels) and the corresponding lick
frequency and lick traces (lower panels). h Relationship between the per trial average ΔF/F and the lick frequency shown per time point for all trials in a
go–no go session (one session, one mouse). Time points are segregated within the last second before odorant addition (Pre-odorant), during the last
second of odorant addition (Odorant) and during the 1.5 s after reward (Reinforcement). Correlation coefficients and p values for these time periods are:
Pre-odorant: 0.058, p < 0.05. Odorant: 0.19, p < 0.001. Reinforcement: 0.73, p < 0.001. *p < pFDR = 0.05, n= 6 sessions, 5 mice. i Relationship between
the derivative of average ΔF/F and the derivative of lick frequency shown per time point for all trials in a go–no go session (one session, one mouse). Time
points are segregated within the last second before odorant addition (Pre-odorant), during the last second of odorant addition (Odorant) and during 1.5 s
after reward (Reinforcement). Correlation coefficients and p values for these time periods are: Pre-odorant: −0.076, p < 0.01. Odorant: −0.045, p > 0.05.
Reinforcement: 0.28, p < 0.001. *p < pFDR = 0.016, n= 6 sessions, 5 mice. j Correlation coefficients for the relationship between the average ΔF/F and lick
frequency for six sessions (five mice). The correlation coefficient is significantly different between reinforcement and odorant (*two-sided t test
p < pFDR= 0.05, n= 6 sessions, 5 mice). k Correlation coefficients for the relationship between the derivative of average ΔF/F and the derivative of lick
frequency for six sessions (five mice). The correlation coefficient is significantly different between reinforcement and odorant (*two-sided t test
p < pFDR= 0.016, n= 6 sessions, 5 mice). In b, c, d–g the vertical black lines are odorant onset and removal and the vertical red lines bound the
reinforcement period. All data shown in this figure are for proficient mice (percent correct≥ 80%). Error bars are 95% CIs.
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Chemogenetic inhibition leads to impaired go–no go learning.
In order to determine whether activity of MLIs plays a role in
behavioral responses in the go–no go task we used a Cre-
dependent AAV virus to express the inhibitory DREADDs
receptor hM4Di in MLIs in six PV-Cre mice (hM4Di group)38.
To control for off-target effects of clozapine-N-oxide (CNO)39,
we injected PV-Cre mice with Cre-dependent mCherry AAV
virus in another group of six mice (control group) (see Supple-
mentary Fig. 13a, b for virus expression). Animals from both
groups were trained to differentiate two odorant mixtures (S+:
0.1% of 60% heptanal+ 40% ethyl butyrate, S−: 0.1% of 40%
heptanal+60% ethyl butyrate) for 3–4 sessions encompassing
400–500 trials in the go–no go task. The animals were injected
intraperitoneally (IP) with saline 40 min before the start of the
sessions (control-saline and hM4Di-saline). One to two weeks
later, mice were trained again to differentiate between the same
odorant mixtures, but they were injected IP with CNO (3mg kg−1)

40min before the start of the session (control-CNO and hM4Di-
CNO).

Mice in all groups with the exception of the hM4Di-CNO
attained proficiency (≥80% percent correct) (Fig. 7b, d). GLM
analysis indicated that there is a statistically significant interaction
between CNO drug treatment and hM4Di expression (p < 0.01,
24 observations, 20 d.f., n= 6 mice, GLM F-statistic= 13.7,
p < 0.001) and post-hoc tests indicated that the hM4Di expressing
group differs between CNO and saline (p < pFDR= 0.025, n= 6
mice per group), while there are no significant differences
between CNO and saline for control mice (p > pFDR, n= 6 mice
per group), indicating an effect of CNO-induced inhibition of
MLIs expressing hM4Di on behavioral output and the absence of
off-target CNO effects.

We proceeded to compare the time course for lick frequency
between different conditions for trials when the mouse was
proficient (≥80% correct, Fig. 7e). The time course for lick
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frequency differed between hM4Di mice injected with CNO and
the other conditions. With the exception of hM4Di + CNO,
shortly after odorant addition (~0.8 s) the lick frequency for S−
did not increase beyond ~1 Hz while the lick frequency for S+
kept increasing beyond 8 Hz (Fig. 7e). In contrast, for hM4Di+
CNO lick frequency for S− kept increasing beyond 1 Hz and did
not diverge from the S+ time course until it reached 2.5 Hz at a
later time point (~1 s, Fig. 7e, lower panel) likely reflecting slow
decision-making. This would explain why the hM4Di+CNO
mice accumulated errors in the go–no go task (Fig. 7d). In order
to quantify this difference in lick frequency we calculated the lick
frequency 0.8–1.8 s after odorant addition (Fig. 7f). For S+ GLM
analysis did not find a statistically significant difference for
treatment or hM4Di expression (or interactions) for the rewarded
odorant trials (Fig. 7f, left panel, p > 0.05, 60 observations, 56 d.f.,
n= 6 mice, GLM F-statistic= 2.96, p > 0.05). Yet GLM found a
statistically significant difference for S− for the interaction
between CNO and hM4Di expression (Fig. 7f, right panel,
p < 0.001, 60 observations, 56 d.f., n= 6 mice, GLM F-statistic=
12.8, p < 0.001). We obtained a similar impairment of perfor-
mance in a separate set of experiments with two hM4Di mice and
two controls where animals discriminated between 1% Iso and
MO, and CNO was applied when the animal was naive, and we

reversed the reward (Supplementary Fig. 13). These data indicate
that inhibition of MLIs causes a slower differential lick response
to odorants and impaired behavioral performance.

Modeling MLI modulation of Purkinje cell output. In order to
understand the circuit basis for chemogenetic interference in the
go–no go associative learning olfactory discrimination task we
generated a simple computational model of MLI-PC interactions.
Our model has a PC synaptically connected with two stellate cells
(SCs) (Supplementary Figs. 14a and 15). Both the SCs and the PC
receive PF afferents. The odorant inputs increase the PF firing
rate. The superficial SC inhibits the deep SC, and both SCs send
inhibitory connections to the PC40. The dendrites of PCs receive
excitatory CF inputs and the SCs receive excitatory CF input
through glutamate spillover. The CF inputs convey information
about water reward. As a consequence, there is activation of the
CF input after the presentation of the S+ odorant, but not during
S− trials. Analogous to modeling of eye blink conditioning24, we
assumed that a pause in PC firing causes an increase in the LR
that we modeled by convolution of the PC spikes with a reversed
Gaussian function (see “Methods” for details on the model).
Simulation of S+ trials showed that odorant stimulus though PF
inputs increases the activity of SCs that inhibit PC firing eliciting
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Fig. 7 Chemogenetic inhibition of MLI activity impairs associative learning. a, c Examples of behavioral performance in a go–no go task where mice
learned to differentiate between two odorant mixtures (S+: 0.1% of 60% heptanal+40% ethyl butyrate, S−: 0.1% of 40% heptanal+60% ethyl butyrate).
Green: ≤65% correct, magenta: ≥80% correct. The vertical lines are the boundaries between different daily sessions. n= 20 trials within a sliding window.
b, d Behavioral performance (mean ± 95% CIs, n= 6). b Mice expressing mCherry in MLIs (control mice). d Mice expressing hM4Di in MLIs. A GLM
analysis indicates that there is a statistically significant interaction between CNO drug treatment and hM4Di expression (p < 0.01, 24 observations, 20 d.f.,
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d.f., n= 6 mice, GLM F-statistic= 2.96, p > 0.05), but found a difference for CNO treatment x hM4Di expression for S− (p < 0.001, 60 observations, 56
d.f., n= 6 mice, GLM F-statistic= 12.8, p < 0.001). *p < pFDR= 0.03 for post-hoc two-sided t test. Error bars are 95% CIs.
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an increase in the LR (Supplementary Fig. 14b, Saline S+). For
the S− trials, we assumed the occurrence of a strong LTD at the
PF–SC synapses and at the SC–PC synapses41,42. In this way,
there is a reduction in the SC inhibition and an increase in PC
excitation, yielding to a decrease in the LR (Supplementary
Fig. 14b, Saline S−).

To model the effect of inhibitory chemogenetics (Fig. 7 and
Supplementary Fig. 13), we considered the effects of a reduction
of 40% in the activity of the SC population. To model learning of
the S+ odorant reward in the hM4Di+ CNO condition, we
reduced by 40% the synaptic weight of the synapses between
PF–SC and SC–PC. This partial reduction still allowed the SCs to
inhibit the PC and thus maintain a high LR (Supplementary
Fig. 14b, CNO S+). Regarding the effect of learning on lick
behavior for S− trials during the treatment hM4Di+CNO, we
deemed that a 40% reduction in the activity of the SC population
induced a diminished occurrence of LTD between the PF–SC and
SC–PC synapses. The diminished LTD decreased the inhibition
strength of SCs to pause the PC firing, which impaired the typical
reduction of the LR during the S− condition (Supplementary
Fig. 14b, CNO S−). In summary, for the control condition we
found an increase in lick strength for the S+ odorant that
diverged from lick strength for S−. In contrast, for hM4Di+
CNO lick strength increased slightly for both S+ and S−. A GLM
analysis indicated that there were significant differences for lick
strength for S+ vs S− (p < 0.01) and CNO (p < 0.05) and for the
interactions between S+ vs. S− and CNO (p < 0.01, 88
observations, 80 d.f., GLM F-statistic 7.9, p < 0.001).

The model is simple. For example, it does not include basket
cells. Furthermore, we did not model the large increase we find in
the LR when the mouse receives the sugar water reward. In
addition, we did not perform an exhaustive study of how the
variables affect the changes in lick strength. Therefore, other
explanations should be explored in future studies with alternate
computational models and an exhaustive search of the input
variables. Regardless, our model provides plausible mechanisms
for the results that can be tested in future experiments with slice
electrophysiology and awake behaving recording.

Discussion
We found that vermal MLIs developed a differential response to
odorants in the go–no go task that switched when the valence was
reversed. Decoding analysis revealed that when the animal was
proficient the contextual identity of the odorant could be decoded
from MLI responses. GLM analysis revealed that contextual
identity made a large contribution to the fit of MLI activity during
the odorant application period. Chemogenetic inhibition of MLIs
impaired achievement of proficient discrimination of odorants.
These data indicate that MLIs play a role in associative learning
by encoding valence.

The cerebellum has been implicated in mediating supervised
learning through an iterative process whereby the response to an
input is evaluated against a desired outcome, and errors are used
to adjust adaptive elements within the system8–10,43. CFs carrying
error signals make profuse synaptic connections on the dendrites
of PCs and elicit powerful excitatory dendritic Ca2+ spikelets44–47.
Furthermore, CFs also signal reward prediction11,12 or decision-
making errors13, and the cerebellum modulates association path-
ways in VTA enabling a cerebellar contribution to reward-based
learning and social behavior14. The increase in Ca2+ mediates
LTD in subsets of synapses innervated by co-activated GC PFs
carrying sensorimotor information relevant to learning48,49.
However, recent studies by Rowan et al.25 revealed that increasing
feedforward inhibition by MLIs can switch the valence of plasticity
from LTD to LTP (also, see ref. 50). In addition, adaptive changes

in the vestibulo-ocular reflex elicited by CF optogenetic activation
switched from increase to decrease depending on whether MLIs
were co-activated25. Finally, MLIs gate supralinear CF-evoked
Ca2+ signaling in the PC dendrite51. These studies suggest that the
valence of learning is graded by MLI activity.

Here we provide evidence for the involvement of MLIs in
conveying information on contextual identity of a stimulus in
associative learning. We do not find that the MLIs respond to
odorants per se. Rather, the reversal experiment (Fig. 4) and the
similar ΔF/F responses and stimulus decoding for correct and
incorrect behavioral response trials (Supplementary Fig. 9)
indicate that MLIs respond to contextual odorant identity: is this
the rewarded odorant?, which is directly related to valence, a
binary measure of an emotion reflected by the motivation to
receive reward36. Furthermore, our results in the go–go task
where both odorants are rewarded with varying volumes of sugar
water (Supplementary Fig. 12) and the lack of a correlation
between ΔF/F and the LR (Supplementary Fig. 12d) are con-
sistent with the response reflecting valence (as opposed to value).
Thus, we postulate that the MLI response during the odorant
period is related to valence that reflects the sign of reward
expectation (positive or negative), consistent with the fact that
GCs in lobule VI were found to respond to reward
expectation29,30. However, future experiments are necessary to
fully disentangle whether MLIs encode for value vs. reward
expectation.

A question that arises is which circuit mechanism is
responsible for the decreased behavioral performance after
chemogenetic inhibition of MLI activity (Fig. 7 and Supple-
mentary Fig. 13). MLIs receive sensorimotor information from
multiple GCs through PF input and in vivo studies have found
remodeling of MLI receptive fields upon repeated electrical
stimulation of the skin52. In addition, plasticity in PF–MLI
synapses are postulated to increase the information capacity of
the MLI–PC network and richness of PC output dynamics10,16,
and a model of PF–MLI plasticity has been proposed41. If long-
term plasticity of PF–MLI synapses is responsible for the large
change of MLI responsiveness found here upon reversal of
stimulus valence, it is likely that the error signal would be
provided by CF spillover resulting in highly redundant stimu-
lation of SCs40,53. We developed a model of the MLI/PC circuit
(Supplementary Figs. 14 and 15) that suggests that plasticity in
SC–PC synapses42 and in PF–SC synapses41, complemented
with CF spillover acting on the feedforward disinhibitory MLI
circuit described recently by Arlt and Hausser40, would explain
the changes in behavior we find after chemogenetic inhibition
of MLI activity. Finally, we found that the divergence between
the time courses for lick frequency between S+ and S− took
place at a later time when MLIs were inhibited by chemoge-
netics (Fig. 7e, Supplementary Fig. 13f) likely reflecting slow
decision-making, consistent with a role for the CF/PC circuit in
reward timing prediction54. Future studies are necessary to
understand the role of plasticity in the PF-MLI-PC circuit in
associative learning.

Interestingly, odorant responses have been reported in the
cerebellum. Studies in sexually trained male rats found that
female bedding or almond smell elicited increased cFos immu-
noreactive GCs in the vermis compared to rats exposed to clean
air55. Furthermore, sexual experience increased the number of
cFos positive GCs. In humans odorants induced significant acti-
vation of the cerebellum56. In addition, human cerebellar lesions
caused olfactory impairments in the contralesional nostril, and
elicited sniffs with lower overall airflow velocity compared to
controls57. These findings implicate an olfactocerebellar pathway
prominent in odorant identification and detection that func-
tionally connects each nostril primarily to the contralateral
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cerebellum. Our study provides further evidence for involvement
of the cerebellum in olfactory tasks.

Here we found changes in MLI activity during learning in the
go–no go associative learning task in lobule VI where GCs29,30

and CF58 activity was proposed to encode aspects of reward
signaling. Recent work on the contribution of cerebellar proces-
sing to execution of reward-driven behaviors indicates that
multiple cerebellar regions are involved, including central and
lateral cerebellum11,29,30,58,59. As behavioral tests are refined, it is
likely that differences in how these regions process reward will
emerge, as suggested by the recent work on climbing-fiber sig-
naling11. Furthermore, we focused our recordings on the more
superficial regions of the molecular layer and therefore, most of
our measurements are from SCs. Recordings from synaptically
connected pairs of MLIs and PCs in slices showed that mean the
amplitude of synaptic currents decreases with distance from the
PC layer, suggesting a stronger impact of basket versus SC inhi-
bition on PC firing60. Recent recordings of PC spikes in vivo
following genetic deletion of MLIs confirm this prediction50

which is in accord with the morphological diversity of MLIs61.
Finally, the effect of chemogenetics (Fig. 7) should be on both
stellate and basket cells, and future experiments are necessary to
differentiate between the roles of the two cell types.

Our findings show that differential MLI activity develops
during learning in an associative learning task and that MLI
activity switches when the rewarded odorant is reversed. We find
that inhibition of MLI activity elicits decreased behavioral per-
formance in the go–no go task. Our data indicate that MLIs have
a role in learning valence. This would likely increase the infor-
mation capacity of the MLI-PC network and richness of PC
output dynamics10,62.

Methods
Animals. All animal procedures were performed in accordance with protocols
approved by the Institutional Animal Care and Use Committee of the University of
Colorado Anschutz Medical Campus. Mice were bred in the animal facility. We
used both male and female adult Parvalbumin-Cre (PV-Cre, Stock number 008069,
Jackson Laboratory, USA) mice and wild-type C57BL/6J mice. The animals were
housed in a vivarium with a 14/10 h light/dark cycle. Food was available ad libitum.
Access to water was restricted in for the behavioral training sessions according to
approved protocols, all mice were weighed daily and received sufficient water
during behavioral training to maintain ≥80% of original body weight. Animal are
housed at 72 ± 2 °F and a humidity of 40 ± 10%.

Immunohistochemistry. To perform immunostaining, mice were sacrificed and
transcardially perfused with ice cold 4% paraformaldehyde (Electron Microscopy
Sciences, USA), followed by incubation in 30% sucrose (Sigma-Aldrich, USA).
After the brain was incubated in the sucrose solution, 60-μm-thick slices were cut
with a cryostat. The slices were imaged using a confocal laser scanning microscope
(Leica TCS SP5II, Germany or Nikon A1R, Japan) to determine the GCaMP
expression patterns in the cerebellum. The slices were counterstained with DAPI
(Thermo Fisher Scientific, USA).

Window implantation. Adult mice (8 weeks or older) were first exposed to iso-
flurane (2.5%) and then maintained anesthetized by intraperitoneal
ketamine–xylazine injection (100 and 20 μg g−1). A craniotomy was made over the
vermis of cerebellum centered at midline 6.8 mm posterior to Bregma leaving the
dura intact (lobule VI). A square glass window (2 mm × 2mm) of No. 1 cover glass
(0.13–0.17 mm thick, Thermo Fisher Scientific, USA) was placed over the cra-
niotomy and the edges were sealed with cyanoacrylate glue (3M, USA). The
window was further secured with Metabond (Parkell, USA), and a custom-made
steel head bracket was glued to the skull.

Virus expression of GCaMP. In order to express GCaMP6f in cerebellar MLIs, we
injected the vermis of the cerebellum in three adult PV-Cre mice with 2.0 μl of
AAV1-Syn-Flex-GCaMP6f63 (Addgene, USA) (6.8 mm posterior to Bregma,
bilaterally ±0.5 mm lateral to midline and 200–400 μm below the brain surface).
The viral infection method we use has been reported to express GCaMP in MLIs,
and not in PCs64,65. Supplementary Fig. 2 shows that indeed expression of
GCaMP6 takes place only in MLIs. Note the absence of fluorescence from GCs as
well as from PC somata and dendrites. Expression in MLIs may reflect the dif-
ferential activity of the hSyn promoter, and has been described for a different

genetically encoded Ca2+ indicator65. In one C57BL/6 animal each, we used
AAV5-Syn-GCaMP6s or AAVrg-Syn-jGCaMP7f (Addgene, USA) with similar
results to those obtained with GCaMP6f (Supplementary Fig. 16a) and therefore
the data were pooled. After the injection, the animals were maintained for at least
3 weeks before behavior training and imaging.

Go–no go training. Mice were water deprived by restricting daily consumption of
water to 1–1.5 ml. Mice were monitored for signs of dehydration or a decrease in
body weight below 80% of the initial weight. If either condition occurred, the
animals received water ad-lib until they recovered. When the animals were water-
deprived, they were trained in a head-fixed olfactory go–no go task with 1% Iso vs
MO odorant application (Sigma-Aldrich, USA)26,66. Licks were monitored by an
electrical circuit monitoring the resistance between the lick spout and recorded
with Intan RHD2000 software (Intan, USA). The floor in an olfactometer that
controlled valves to deliver a 1:40 dilution of odorant at a rate of 2 L min−1. The LR
was calculated from the lick records and the time course was convolved with a 2 s
Gaussian for the experiments where we performed multiphoton calcium imaging.
We did not convolve the LR records for the experiments with chemogenetics. The
water-deprived mice started the trial by licking on the water port. The odorant was
delivered after a random time interval ranging from 1 to 1.5 s. In S+ trials, the mice
needed to lick at least once in two 2 s lick segments to obtain a reward (0.1 g ml−1

sucrose water) (Fig. 1a). The inter-trial interval (ITI) was 22.3–22.8 s. In S− trials,
the mice need to refrain licking one of the two 2 s segments to avoid a longer ITI
(22.3–22.8+ 10 s). The animal’s behavior performance was evaluated in a sliding
window of 20 trials and the calculated value was assigned to the last trial in the
window. Therefore, it estimated the performance in the last 20 trials. The percent
correct value represents the percent of trials in which the animal successfully
performed appropriate actions, and we considered the animal proficient if percent
correct performance is above 80%. In reverse go–no go training sessions, the
rewarded and unrewarded odorants were switched.

Movement of the mouse was imaged in the infrared to prevent light interference
with the non-descanned detection in the visible using a 1 Megapixel NIR security
camera (ELP-USB100W05MT-DL36, Amazon.com, USA) at 30 frames/s. Velocity
of body movement was estimated using the Farneback algorithm coded in Matlab67

(Mathworks, USA). Measurement of body movement with a single camera gives
limited information. Five mice were used for the go–no go experiments. Four mice
were imaged when they were naive. The window became opaque for two of the
mice preventing MLI imaging for the reversal experiment.

Go–go training. For the experiment in Supplementary Fig. 12, both odorants were
rewarded with the same volume of sugar water, and the volume of sugar water
reward was varied. The two odorants in this experiment were either 1% Iso and
MO, or the same odorant 1% Iso and 1% Iso. The results were similar for both
odorant pairs, and the analysis was performed for all trials regardless of
odorant pair.

Behavioral performance recorded after chemogenetic inhibition of MLI
activity. For chemogenetic inhibition of MLI activity38,39, 1.2 μl of AAV8-hSyn-
DIO-hM4D(Gi)-mCherry virus (Addgene, USA) was bilaterally injected into six
PV-Cre animals at ±0.5 mm lateral to midline, 6.8 mm posterior to Bregma and
200–400 μm below the brain surface. For control, an AAV8-hSyn-DIO-mCherry
virus (Addgene, USA) was injected in the same position in 6 PV-Cre animals. This
viral infection method results in expression of the protein in MLIs, and not in
PCs64,65. We performed two separate experiments: (1) For the experiments in
Fig. 7, four weeks after injection the animals were trained to proficiency in the
go–no go task with 1% Iso (S+) vs MO (S−). When they reached a proficient level,
the animals rested for 1 to 2 weeks, and were then injected IP with saline 40 min
before starting the session and were trained to discriminate between two odorant
mixtures: 0.1% of 60% heptanal+ 40% ethyl butyrate (S+) (Sigma-Aldrich, USA)
and 0.1% of 40% heptanal+ 60% ethyl butyrate (S−) for 3–4 sessions for a total of
400–500 trials. The animals then rested for 1 to 2 weeks and were subsequently
trained to discriminate the same odorant mixtures in sessions that took place 40
min after IP injection of 3 mg kg−1 CNO (Tocris, USA). (2) For the experiment in
Supplementary Fig. 13, the animals were naive for the discrimination of Iso vs. MO.
The animals were injected IP with 3 mg kg−1 CNO (Tocris, USA) 40 min before
starting the session and were trained to discriminate between 1% Iso (S+) and MO
(S−) for 6 sessions for a total of 500–600 trials. The reinforcement was then
reversed and the animals were again injected with CNO 40 min before the sessions
and were trained to discriminate between MO (S+) and 1% Iso (S−) for 5 sessions
for a total of 400–500 trials.

Two-photon imaging of MLI activity in animals undergoing the Go–no go task.
All the animals were first habituated to the setup to minimize stress during the
imaging experiments. All the imaging sessions started at least 10 min after mice
had been head fixed. We searched for active MLIs while imaging zones in the
vermis of lobule VI, between the midline and the paravermal vein, an area of the
cerebellum where GCs acquire a predictive feedback signal or expectation
reward29,30. The head-fixed two-photon imaging system consisted of a movable
objective microscope (MOM, Sutter Instrument Company, USA) paired with a
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80MHz, ~100 fs laser (Mai-Tai HP DeepSee, Spectra Physics, USA) centered at
920 nm. The MOM was fitted with a single photon epifluorescence eGFP filter path
(475 nm excitation/500–550 nm emission) used for initial field targeting followed
by switching to the two-photon laser scanning path for imaging GCaMP at the
depth of the MLIs. The galvometric laser scanning system was driven by SlideBook
6.0 (Intelligent Imaging Innovations, USA). The two-photon time lapses were
acquired at 256 × 256 pixels using a 1.0 NA/20x water emersion objective (Zeiss,
Germany) at 5.3 Hz. On the day of initial imaging, a FOV was selected to image a
large number of active cerebellar neurons located in the most superficial planes of
the molecular layer (within 50 μm beyond the dorsal surface of the molecular layer)
including mostly SCs, and several batches of 6000 frames (a time series) were
collected in each training session. After two-photon imaging a second image of the
vasculature was captured with wide field epifluorescence to reconfirm the field.

Data analysis. Raw imaging data were first surveyed in ImageJ 1.52 (NIH, USA) to
exclude image sequences exhibiting axial movement. We did not find evidence of
axial movement while the animal was engaged in the go–no go task. In addition, we
performed control imaging where we excited GCaMP6f at 820 nm, a two-photon
excitation wavelength where fluorescence emission is Ca2+-independent68. Sup-
plementary Fig. 16b, c shows that we did not detect transient changes in GCaMP6
fluorescence in a mouse engaged in the go–no go task when the cells were excited at
820 nm. If we found horizontal drift due to motion, we applied cross correlation-
based image alignment using the Turboreg, Image J plugin. The data were then
analyzed with CaImAn Matlab software that uses constrained nonnegative matrix
factorization to define independent spatial and temporal components corre-
sponding to changes in GCaMP fluorescence in individual MLIs31. CaImAn
identifies different spatial components (addressed here as ROIs) and a component
representing the background and neuropil signals. Baseline of intensity (F0) was
defined as the mean fluorescence intensity before trial start, defined as the time
when the animal first licked. This was when fluorescence started to increase above
baseline and the odorant was added at a random time 1–1.5 s after trial start.
Intensity traces (F) were normalized according to the formula ΔF/F = (F− F0)/F0.
After CaImAn analysis, the ΔF/F traces of the spatial components were sorted and
we assigned trial traces to different behavioral events (Hit, CR, Miss and CR) and
aligned them to trial start, odorant onset or water delivery. Finally, the time course
for the average ΔF/F did not differ greatly between the different GCaMP variants as
would be expected for a fast firing interneuron with small increases in Ca2+ per
action potential (Supplementary Fig. 16a).

Statistical analysis. Statistical analysis was performed in Matlab 9.6 (Mathworks,
USA). Statistical significance for changes in measured parameters for factors such
as learning and odorant identity (S+ vs. S−) was estimated using a GLM, with
post-hoc tests for all data pairs corrected for multiple comparisons using FDR33.
The post-hoc comparisons between pairs of data were performed either with a two-
sided t test, or a ranksum test, depending on the result of an Anderson–Darling test
of normality. 95% CIs shown in the figures as vertical black lines or shading
bounding the lines were estimated by bootstrap analysis of the mean by sampling
with replacement 1000 times using the bootci function in MATLAB.

PCA was calculated using the Matlab Statistics Toolbox. Classification of trials
using ΔF/F measured from all components in the FOV was accomplished via LDA
in Matlab. ΔF/F for all components for every trial except one were used to train the
LDA, and the missing trial was classified by its fit into the pre-existing dataset. This
was repeated for all trials and was performed separately for analysis where the
identity of the odorants was shuffled. Fluorescence intensity traces, LRs, and
kinematics in Fig. 6 were low-pass filtered with a hamming window of a time
constant of 0.59 s.

Dimensionality. Following Litwin-Kumar et al.69, we defined the dimension of the
system (dim) with M inputs as the square of the sum of the eigenvalues of the
covariance matrix of the measured ΔF/F for all ROIs in the FOV divided by the
sum of each eigenvalue squared:

dim
ΔF
F

� �
¼
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i¼1

λi

 !2 XM
i¼1

λ2i

 !�1

; ð1Þ

where λi are the eigenvalues of the covariance matrix of ΔF/F computed over the
distribution of ΔF/F signals measured in the FOV. If the components of ΔF/F are
independent and have the same variance, all the eigenvalues are equal and dim
(ΔF/F)=M. Conversely, if the ΔF/F components are correlated so that the data
points are distributed equally in each dimension of an m-dimensional subspace
of the full M-dimensional space, only m eigenvalues will be nonzero and dim
(ΔF/F)=m.

GLM estimate of contribution of different variables to changes in ΔF/F. In
order to quantify the contribution of different variables to neural activity, we used
GLM as described by Engelhard et al.37. We used the Matlab fitglm function to fit
the per trial ΔF/F time course for mice proficient in the go–no go task with a GLM.
We included event variables, whole trial variables and continuous variables.
Continuous variables quantified kinematics including the LR, the derivative of the

LR and the velocity and acceleration of movements made by base of the tail of the
head-fixed animal during the trial (body velocity and body acceleration, see Sup-
plementary Fig. 3). The identity of the odorant (S+/S− odorant) was an event
variable that increased from zero to one during the time for S+ or S− odorant
application. Finally, whole trial variables were accuracy (1 for correct responses and
0 for incorrect responses), reinforcement history (1 for reinforcement in the last
trial, 0 otherwise) and percent correct behavior calculated in a window of 20 trials.

Model of Purkinje cell and MLIs. For stellate cell simulation we used recon-
structed mouse SC morphology available in Neuromorpho (http://neuromorpho.
org/neuron_info.jsp?neuron_name = GlyT2_030_Slice3_Stellate_cell).

The morphology file was visualized using Blender 2.78 with the addon
NeuroMorphoVis 1.4.070: https://github.com/BlueBrain/NeuroMorphoVis.

We removed the axons from the original swc morphology file and exported the
reconstructed morphology into a NEURON 7.5 hoc file (https://www.neuron.yale.
edu/neuron/) using NLMorphologyViewer 0.3.0 (http://www.neuronland.org). We
proceeded to create the electrical compartmental model with passive and active
properties of the SC membrane. The passive parameters of the SC model were
adapted mainly from Molineux et al.71. We set the specific membrane resistivity
Rm= 20 kΩ cm2, the specific membrane capacitance Cm= 1.5 μF cm−2 71, and the
intracellular resistivity Ri= 115 Ω cm72. The input resistance Rin= 571.39 MΩ
and membrane time constant τm= 40.30 ms were obtained injecting a
hyperpolarizing current into the soma (−1 pA, 500 ms). The time constant was
obtained by a double exponential fit of membrane voltage decay. Those values are
within the range of experimental values measured in SCs71,73.

For modeling the active properties, we included voltage-dependent mechanisms
for modeling the ionic channels at the soma of SCs. The firing patterns of SCs are
regulated by fast sodium currents (Na), delayed rectifier potassium currents (KDR),
A-type potassium currents (KA) and transient calcium currents (CaT)71. Since SCs
and Golgi cells have similar firing properties73, we adapted the voltage-dependent
schemes of the conductances of Na, KDR, KA and CaT from a previous Golgi cell
model74 to reproduce the typical firing pattern of SCs71 (Supplementary Fig. 15a).

For Purkinje cell simulation we adapted a previous two-compartment model
that reproduces the typical spikes of PCs and is computationally efficient for
constructing the cerebellum circuit model75 (Supplementary Fig. 15b). The model
was stimulated with background inhibitory inputs to present the typical curve of
frequency versus current input from PCs76.

For synaptic input simulation we used double exponential conductances to
represent the synaptic inputs of the model with parameters taken from the
literature.

PF–SC AMPARs32: Imax= 96.42pA, �G = 1.3774 nS, τ1= 3.45 ms, τ2= 3.17 ms,
Erev= 0 mV.

PF–PC AMPARs77: Imax= 20 pA, �G= 0.2857 nS, τ1= 0.28 ms, τ2= 1.23 ms,
Erev= 0 mV.

SC–SC GABAaR78,79: Imax= 75.5 pA, �G= 1.0786 nS, τ1= 0.6 ms, τ2= 5.9 ms
to 11.3 ms, Erev=−60 mV

SC–PC GABAaR80: �G= 15 nS, τ1= 1.8 ms, τ2= 8.5 ms, Erev=−85 mV,
Delay= 2 ms.

CF–PC. The CF inputs were modeled as a strong activation of the PC AMPARs.
CF–SC. We assume that glutamate spillover from CF to SC has a delay of ~10

ms caused by glutamate diffusion81 to stimulate the SC AMPARs. Based on the
inferior olive neuron bursting patterns in response to CF inputs82, we assumed a
CF stimulus of 2 spikes at 300 Hz with an interval of 3.3 ms.

Synaptic plasticity was modeled by an increase or decrease of the maximum
conductance of the synaptic channels. For modeling learning of S+ and S− tasks,
we considered both the occurrence of LTD in SC-PC synapses42, and the existence
of LTD between the PF–SC synapses41.

All simulations were performed on the NEURON 7.5 simulator83. The model is
deposited in ModelDB (http://modeldb.yale.edu/266578).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available in GigaDB (https://doi.org/
10.5524/100724)84. The model is deposited in ModelDB (http://modeldb.yale.edu/
266578) and the data analysis code is available in https://github.com/restrepd/
CaImAnDR.
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