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Abstract
After pediatric kidney transplantation, immunosuppressive therapy causes an increased risk of severe viral complications,
especially from cytomegalovirus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr virus (EBV), and less frequent from
adenovirus (ADV). However, suitable predictive markers for the individual outcome of viral infections are missing and the
therapeutic management remains a challenge to the success of pediatric kidney transplantation. Virus-specific T cells are known
for controlling viral replication and there is growing evidence that virus-specific T cells may serve as a prognostic marker to
identify patients at risk for viral complications. This review provides an overview of the usability of virus-specific T cells for
improving diagnostic and therapeutic management of viral infections with reference to the necessity of antiviral prophylaxis,
timing of pre-emptive therapy, and dosing of immunosuppressive medication after pediatric kidney transplantation. Several
studies demonstrated that high levels of virus-specific T cells are associated with decrease of virus load and favorable outcome,
whereas lack of virus-specific T cells coincided with virus-induced complications. Accordingly, the additional monitoring of
virus-specific T cells aims to personalize the management of antiviral therapy, identify overimmunosuppression, and avoid
unnecessary therapeutic interventions. Prospective randomized trials in pediatric kidney recipients comparing standard antiviral
and immunosuppressive regimens with T cell-guided therapeutic interventions are needed, before monitoring of virus-specific T
cells is implemented in the routine care of pediatric kidney graft recipients.

Keywords BK polyomavirus . Cytomegalovirus . Epstein-Barr virus . Adenovirus . Virus-specific T cells . Kidney
transplantation . Pediatric transplantation . Immunosuppression . Viral infections . Prognostic marker

Introduction

After pediatric kidney transplantation, the immunosuppres-
sive treatment disturbs the individual balance between virus
replication and cellular immune response resulting in an ele-
vated incidence of severe viral complications. Post-transplant
primary infections or reactivations, especially by cytomegalo-
virus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr
virus (EBV), and less frequent by adenovirus (ADV), are as-
sociated with increased morbidity, mortality, and graft failure,
for example, CMV disease [1], BKPyV-associated nephropa-
thy (BKPyVAN) [2], and EBV-associated post-transplant
lymphoproliferative disease (PTLD) [3]. The outcome of

post-transplant viral infections is individually different, but
prognostic markers are missing. Virus DNA and serology
are the actual diagnostic standard to use for steering immuno-
suppressive and antiviral therapy in the case of primary infec-
tions or reactivations but they are insufficient to precisely
predict the individual risk of viral complications. An antiviral
prophylaxis or pre-emptive therapy is often recommended es-
pecially for CMV, but antiviral medication should be restricted
to patients with an elevated risk of viral disease because of the
high costs and severe side effects [4]. If antiviral drugs are not
available, a pre-emptive reduction of immunosuppressive
therapy is often performed in case of post-transplant viremia
to avoid viral complications, especially for BKPyV [5] or for
EBV [6], but on the other hand, it is associated with an in-
creased risk of underimmunosuppression and rejections.
Because of lack of prognostic markers, it is actually difficult
to limit therapeutic interventions to patients with risk of viral
complications like BKPyVAN and PTLD. Therefore, the ne-
cessity of antiviral prophylaxis, the timing of pre-emptive an-
tiviral therapy, and the optimal dosing of immunosuppressive
therapy remain a subject for debate opening a window for new
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with or without a need of therapeutic intervention as antiviral
medication and/or reduction of immunosuppressive therapy to
prevent viral complications.

Virus-specific T cells have been shown to play a significant
role in control of virus replication [7]: Virus-specific CD4-
positive T cells detect viral epitopes which are presented on
major histocompatibility complex (MHC) class II molecules
on antigen-presenting cells such as B lymphocytes, dendritic
cells and macrophages, and CD8-positive T cells locate and
destroy virus-infected cells which present viral antigens by
MHC class I molecules. Several studies, mainly in adults,
have shown that the number of virus-specific T cells is asso-
ciated with the risk of virus-specific complications [8–19].
Therefore, prophylaxis, diagnosis, and treatment of viral in-
fections after kidney transplantation may be improved by the
implementation of virus-specific T cells in routine monitoring
[7]. There is increasing evidence that virus-specific T cells
mirror not only the virus-specific but also the general cellular
immune defense. Thus, they might be additionally used for
steering of the intensity of immunosuppressive treatment to
avoid overimmunosuppression [7, 20]. This review will sum-
marize the current knowledge regarding the utility of virus-
specific Tcells as a diagnostic tool after pediatric kidney trans-
plantation. Currently, there is additional knowledge on diag-
nostic procedures and treatment with virus-specific T cells in
human stem cell transplantation. This review is limited to
kidney transplantation although insights from stem cell trans-
plantation that can be transferred to solid organ transplantation
are also included in the therapy section.

Methods for detection and quantification
of virus-specific T cells

A number of different assays are currently available for the
detection of the cellular response to viral antigens [7], the
main ones being the enzyme-linked immunospot (ELISpot)
assay, the enzyme-linked immunosorbent assay (ELISA), in-
tracellular cytokine staining followed by fluorescence-
activated cell sorting (FACS) analysis, and MHC multimer
staining. ELISpot, ELISA, and FACS assays are based on
stimulation of virus-specific T cells followed by induction of
activation markers. For stimulation, antigens such as virus-
infected cell lysates, virus particles, proteins, or peptides are
used. The easiest methodology is the ELISA, where cytokines
such as interferon y can be measured in the supernatant of
stimulated cells, and the ELISpot assay where interferon y is
locally captured in mircrotiter plates. The disadvantage of
these methods is that they do not allow a subclassification of
stimulated cells, i.e., in CD4- and CD8-positive cells. The use
of intracellular cytokine staining followed by flow cytometry
overcomes this drawback and allows a complete sub-

price of a longer and more difficult methodology. In contrast,
MHC multimer staining is rapid and independent of stimula-
tion but has the disadvantage that special MHC/peptide com-
plexes have to be manufactured for each antigen and MHC
allele so that this test is expensive and cumbersome, making it
unfeasible for use in routine care [21].

There are two easy to apply assays which are commercially
available for measuring the cellular response to CMV viremia
but they do not directly determine the number of virus-specific
T cells: QuantiFERON CMV, which is a whole blood
interferon-gamma release assay based on ELISA technology
[22] and T-Track CMV, which is an ELISpot assay [23]. Both
assays have been used in initial diagnostic trials to determine
diagnostic cutoff values [24, 25]. These assays are simple to
use but both have the limitation that they only give a rough
estimation of T cell activation. An analysis on the cellular
level is not possible. For QuantiFERON CMV, it has been
shown that it might provide false-negative results if compared
with flow cytometry analysis [10]. And in a comparison be-
tween both tests, “T-Track CMV” performed better than
“QuantiFERON CMV” [25]. To date, neither test has been
investigated in children so it is therefore difficult to rate their
diagnostic value for pediatric kidney recipients. Comparable
assays are not manufactured for other viruses.

Cytomegalovirus-specific T cells

CMV infections and CMV reactivations belong to the most
common viral complications after kidney transplantation and
can lead to severe morbidity by generalized CMV disease and
to impairment of graft function [1]. The risk assessment for
CMV-associated complications is made according to the pre-
transplant CMV serostatus of recipient and donor. For pediat-
ric kidney transplantation, the international consensus guide-
lines recommend the use of antiviral prophylaxis with
(val-)ganciclovir for 3–6 months in the case of a seropositive
donor and/or seropositive recipient; in seropositive recipients,
pre-emptive therapy is considered as an alternative [26], but
this medication has severe side effects such as neutropenia and
nephrotoxicity [27]. However, CMV serology and DNA load
are insufficient to predict the individual course of CMV
DNAemia and the risk of CMV-associated complications.
CMV-specific Tcells control virus replication and preliminary
studies have already found that the risk of post-transplant
CMV-induced disease correlated with the individual number
of CMV-specific T cells. Reduced frequencies of CMV-
specific T cells in transplant recipients are associated with
increased incidence of infectious complications [14, 28–30].
It was proven that after adult kidney transplantation, symp-
tomatic CMV reactivations are preceded by a decrease in
CMV-specific CD4 T cells frequencies and an increase in
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CMV load [30]. Gamadia et al. determined the kinetics and
characteristics of CMV-specific T cells in the course of prima-
ry CMV infections in adult renal transplant recipients. In
asymptomatic individuals, the CMV-specific CD4 T cells re-
sponse preceded CMV-specific CD8 T cells response, where-
as in symptomatic individuals, the CMV-specific effector
memory CD4 Tcell response was delayed and only detectable
after antiviral therapy [31, 32]. The number of CMV-specific
T cells before and after transplantation correlated with the risk
of post-transplant CMV-associated events and DNAemia [33,
34]. This was also true for patients receiving anti-thymocyte
globulin induction therapy [35]. Interestingly, in patients treat-
ed with the mammalian target of rapamycin (mTOR) inhibitor
everolimus, the CMV-specific T cell response was more ro-
bust as compared with standard immunosuppression [36]. In
immunocompetent individuals, CMV-specific T cells are in-
duced at onset of primary infection and persist lifelong,
whereas those without CMV infection do not show any spe-
cific cellular immunity. Usually, CMV-specific T cells corre-
late well with CMV serology [37], but in the case of unclear
CMV-serostatus, analysis of CMV-specific T cells provides a
reliable alternative to determine the pre-transplant CMVinfec-
tion status, especially in patients with passive humoral immu-
nity after infusions of plasma preparations [38], or in infants
with passive maternal antibodies [39]. The pre-transplant ab-
sence of CMV-specific T cells in CMV-IgG-positive patients
identifies CMV-naive patients at risk of post-transplant CMV-
associated complications. Recently, the reverse situation was
also reported, meaning that some CMV-IgG-negative kidney
recipients showed pre-transplant detection of CMV-specific T
cells associated with post-transplant protection from CMV
infection [8, 40, 41]. Accordingly, monitoring of CMV-
specific T cells offers a superior, more reliable risk assessment
of post-transplant CMV complications compared with CMV
serostatus alone. In a first interventional trial using the
QuantiFERON CMVassay, it was proven that CMV-specific
cell-mediated immunity can be used to steer the length of
antiviral therapy in the case of CMV viremia after solid organ
transplantation [42].

Especially in pediatric kidney recipients, who have a sig-
nificantly higher rate of CMV negativity at time of transplan-
tation and thereby a higher risk of post-transplant primary
CMV infection, pre- and post-transplant monitoring of
CMV-specific T cells might become a diagnostic tool to opti-
mize the post-transplant management of antiviral prophylaxis
and therapy. However, pediatric data concerning CMV-
specific T cell monitoring after solid organ transplantation
are rare. Our own observational study of pediatric kidney re-
cipients showed that symptomatic courses of CMV infections
and reactivations were found in the case of low CMV-specific
CD4 T cell levels, whereas children with high virus-specific
CD4 T cells showed asymptomatic courses. Until now, pedi-
atric data has only been available in abstract form. Analysis of

CMV-specific CD4 T cells might help to identify patients at
risk of symptomatic CMV infections/reactivations and to de-
cide upon necessity for and duration of antiviral prophylaxis
and therapy. Hence, pre- and post-transplant monitoring of
CMV-specific CD4 T cells may personalize CMV manage-
ment and avoid unnecessary antiviral medication in CMV-
IgG-positive children with sufficient levels of CMV-specific
T cells. Further studies guiding CMV prophylaxis and therapy
in children using virus-specific T cells are eagerly awaited.

Adenovirus-specific T cells

ADV infections are not uncommon after pediatric kidney
transplantation but seldom lead to clinical problems
[43–46], whereas morbidity is much higher after stem
cell transplantation [47]. There are only a few studies
available concerning ADV-specific T cells after solid or-
gan transplantation. The levels of ADV-specific T cells
were investigated in adult renal transplant recipients and
healthy individuals by cytokine flow cytometry [48]. In
Philadelphia, Olive et al. analyzed the ADV-specific T
cell response of healthy adults by ELISpot and flow cy-
tometry [49]. Some data on ADV-specific T cells was
generated by ELISpot in a small group of children after
liver transplantation [50]. In one child with ADV pneu-
monia, ADV-specific T cells were measured after lung
transplantation and the possibility of steering antiviral
therapy using ADV-specific T cells is reported [11]. In
our own cohort of 37 pediatric kidney recipients aged
between 1 and 17 years (median 13 years), the pre-
transplant prevalence of ADV-specific CD4 T cells was
76% (data not published) without any ADV-associated
complications after kidney transplantation. In accordance
with CMV-specific T cell data, ADV-specific T cells
were permanently detectable after primary infection and
fluctuated depending on the intensity of immunosuppres-
sion. Under the strengthened immunosuppression during
the initial post-transplant period, we found a temporary
decrease of virus-specific T cells. After reduction of the
immunosuppressive therapy, virus-specific T cells began
increasing again in our cohort of pediatric kidney recip-
ients. Regarding high prevalence in childhood, ADV-
specific T cells may serve as a suitable parameter to
estimate the post-transplant intensity of immunosuppres-
sion and to steer the doses of the immunosuppressive
medication, as is recently examined by our multicenter,
randomized controlled trial (IVIST trial) [20]. Besides
the use of ADV-specific T cells in our IVIST trial, no
other clinical application for ADV-specific T cell moni-
toring after pediatric kidney transplantation has been
published to date. This might be because of the very
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low incidence of ADV-associated complications after sol-
id organ transplantation in children.

BK polyomavirus-specific T cells

After kidney transplantation, primary BKPyV infections or
reactivations can lead to BKPyV-associated nephropathy
(BKPyVAN) with renal malfunction and risk of graft loss [5,
51–53]. In the absence of BKPyV-specific antiviral drugs,
BKPyV-DNAemia-triggered reduction of maintenance immu-
nosuppression is currently recommended in patients with
BKPyV-DNAemia [5]. However, the pathophysiology of
BKPyVAN is complex and the level of BKPyV-DNA in plas-
ma alone is insufficient to estimate the risk of onset of
BKPyVAN and to decide upon the necessity for therapeutic
intervention [54]. It is known that BKPyV viremia after kid-
ney transplantation does not result inevitably in BKPyVAN.
Many kidney recipients show self-limiting BKPyV viremia
without therapeutic interventions [53, 55, 56]. In these cases,
pre-emptive reduction of immunosuppression is not only un-
necessary but also associated with an increased risk of
rejection.

In contrast to BKPyV antibodies, BKPyV-specific cellular
immunity seems to play an important role in controlling viral
replication. A few adult studies recently observed that an in-
crease of BKPyV-specific T cells coincided with viral clear-
ance in kidney transplant recipients [57, 58]. Accordingly, an
insufficient level of BKPyV-specific T cells seems to be a key
mechanism of BKPyV-associated complications after kidney
transplantation. Ginevri et al. analyzed 13 pediatric kidney
recipients with BKPyV-DNAemia and confirmed that a reduc-
tion of BKPyV-DNA in plasma is associated with an increase
in BKPyV-specific T cells supporting the theory that the ex-
pansion of BKPyV-specific cellular immunity has a protective
role [59]. Concerning BKPyV reactivations, Costa and col-
leagues observed episodes of BKPyV reactivation only in pa-
tients without a BKPyV-specific cellular immune response
[19] and Schachtner et al. recently demonstrated that kidney
transplant recipients with loss of BKPyV-specific T cells over
the pre- to post-transplant period were at increased risk of
BKPyV replication [18]. In 2011 and 2014, Schachtner et al.
reported in a small study group of viremic patients that kidney
recipients with self-limited BKPyV reactivation developed
BKPyV-specific T cells without therapeutic intervention,
whereas patients with BKPyVAN showed BKPyV-specific T
cells only after successful treatment [55, 56]. Moreover, our
own monocentric prospective, non-interventional study in-
cluding 32 viremic children after kidney transplantation
showed the following result: High levels of BKPyV-specific
CD4 and/or CD8 T cells predicted asymptomatic BKPyV in-
fections with self-limiting, short-term viremia (< 120 days),
whereas lack or low levels of BKPyV-specific T cells were

associated with long-term viremia and florid BKPyVAN [60].
Of note, the BKPyV-specific T cell level correlated with the
subsequent duration of viremia but not with the BKPyV-DNA
load in plasma, highlighting the additional benefit of BKPyV-
specific T cells. The detection of BKPyV-specific CD4 T cells
(≥ 0.5 cells/μL) and/or CD8 Tcells (≥ 0.1 cells/μL) revealed a
positive predictive value of 1.0 and a negative predictive value
of 0.86 for self-limiting viremia. After minimization of immu-
nosuppressive therapy and/or switch to mTOR inhibitors,
BKPyV-specific CD4 T cells increased with subsequent de-
crease of plasma BKPyV-DNA [60].

These data highlight the predictive value of BKPyV-
specific T cells after pediatric kidney transplantation to distin-
guish patients with self-limiting, short-term viremia from
those with long-term viremia and need of therapeutic interven-
tion. Serving as a prognostic marker, BKPyV-specific T cells
may therefore identify patients at risk of BKPyVAN and there-
by individualize therapeutic interventions [61].

Epstein-Barr virus-specific T cells

Primary EBV infections or reactivations after solid organ
transplantation can lead to symptomatic EBV viremia and
to the development of post-transplant lymphoproliferative
disease (PTLD) [62]. It has already been shown that EBV-
specific T cells can be detected in children after kidney and
liver transplantation but results were not associated with
clinical events in this trial [13]. In a small group of pediatric
liver recipients, EBV-specific T cells were monitored dur-
ing first post-transplant year by ELISpot including three
patients with EBV reactivations. This prospective single
center study observed an immediate decline of EBV-
specific T cells after transplantation and an increase after
reduction of immunosuppression [50]. In addition, EBV-
specific T cells have been measured in children with
PTLD after solid organ transplantation, seven of whom
were kidney recipients [63]. They showed an increase dur-
ing PTLD treatment and a rapid re-increase in the case of
EBV viremia after PTLD and can therefore be used to esti-
mate the individual prognosis. Unfortunately, no trials have
been performed to date directing PTLD treatment based on
EBV-specific T cells levels. In thoracic transplantation, it
could also be demonstrated that the phenotype of EBV-
specific T cells varies with the severity of infection [64].
Our own data concerning EBV-specific T cells after pediat-
ric kidney transplantation, as yet only available in abstract
form, have shown that high levels of EBV-specific CD4 T
cells are associated with asymptomatic self-limiting EBV
viremia, whereas lack or low levels of EBV-specific CD4 T
cells are found in the case of symptomatic, long-term
viremia.
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Therapy with virus-specific T cells

The transfer of engineered virus-specific T cells has in-
creasingly been used to treat life-threatening CMV [65],
EBV [66], and ADV infections [67] after stem cell trans-
plantation. The safety and efficacy of broad-spectrum T
cells as treatment for ADV, EBV, CMV, and BKPyV
infections after stem cell transplantation was published by
Papadopoulou et al. [68]. However, data concerning ther-
apy with virus-specific T cells after solid organ transplan-
tation are rare. In 2016, Roemhild and Reinke summarized
the data on virus-specific T cell transfer in solid organ
transplantation, mainly concentrating on therapy with
EBV-specific T cells in adults [69]. After solid organ trans-
plantation, data on therapy with EBV-specific T cells are
far more frequently published compared with data for
CMV-specific T cells or other viruses. In children, there
are only a few case reports and small case series on EBV-
specific T cell therapy for treatment of EBV-associated
PTLD after kidney and liver transplantation [70, 71].
However, not even as much as a case report has been pub-
lished about adoptive T cell transfer in children after solid
organ transplantation with viral diseases other than EBV-
associated PTLD. As this method is expensive and associ-
ated with high risks for the recipient, future reports and
studies are awaited, so that the clinical utility of treatment
with virus-specific T cells can be assessed for children after
solid organ transplantation. It can be speculated that ther-
apy with virus-specific T cells will be limited to children
with infections that are associated with a high risk of graft
loss (i.e., BKPyVAN) or life-threatening disease (i.e.,
PTLD) and which are resistant to any other treatment.

Steering of immunosuppressive therapy
by virus-specific T cells

Post-transplant monitoring of virus-specific T cells
showed that levels of virus-specific T cells fluctuated de-
pending on the intensity of immunosuppression. During
the initial post-transplant period—at the time of very in-
tensive immunosuppressive therapy—virus-specific T
cells were decreased and showed increase after reduction
of immunosuppressants [7]. Accordingly, it is hypothe-
sized that virus-specific T cells represent not only virus
specific but also general cellular immune defense and
thereby correlate with the individual susceptibility to in-
fections. Serving as a marker of overimmunosuppression,
additional monitoring of virus-specific T cells might opti-
mize steering of immunosuppressive therapy compared
with blood level monitoring alone [7]. To our knowledge,
our IVIST trial is the first study considering the benefit of
additional steering of immunosuppressive drugs by virus-

specific T cells. The study protocol of this investigator-
initiated, multicenter, randomized controlled trial has been
already published [20]. Sixty-four pediatric kidney recip-
ients were randomized 4 weeks after transplantation either
to a non-intervention group with classical trough level
monitoring of immunosuppressants or to an intervention
group with additional steering by virus-specific T cell
levels against CMV, ADV, and herpes simplex virus
(HSV). Regarding high prevalence in childhood (especial-
ly of ADV-specific T cells) and long-term persistency af-
ter primary infection, CMV-, ADV-, and HSV-specific T
cells are suitable for post-transplant monitoring. Both
groups received the same immunosuppressive regimen
consisting of cyclosporine A and everolimus with the
same target range of trough levels. The primary endpoint
of the study is the glomerular filtration rate (GFR) 2 years
after transplantation. Secondary endpoints are the number
and severity of infections and the exposure to immuno-
suppressive drugs. In terms of an effect-related drug mon-
itoring, the study design aims to realize a personalization
of immunosuppressive management after transplantation.
The results of the trial are expected in 2020 and, hopeful-
ly then, the IVIST trial will answer the question of wheth-
er the new concept of steering immunosuppressive thera-
py by virus-specific T cell levels leads to optimization of
post-transplant management.

Conclusion

New diagnostic strategies using markers of the individual
cellular immune response such as virus-specific T cells
seem to be promising in pediatric kidney transplantation
to estimate the outcome of post-transplant viral infections
and to decide on the necessity of antiviral medication and/
or reduction of immunosuppressive therapy and thereby to
avoid unnecessary therapeutic intervention. Analysis of
virus-specific T cells may become an important step to-
wards the introduction of precision medicine in pediatric
kidney transplantation. The measurement of virus-specific
T cells at time of onset of viremia, challenging whether a
therapeutic intervention should be performed, could be-
come a part of routine care. Prospective, interventional
trials comparing standard of care with T cell-based steering
of antiviral and immunosuppressive therapy in case of
post-transplant viral infections are needed in order to con-
firm the usability of this strategy in viremic patients.
Furthermore, if the strategy can be confirmed in prospec-
tive trials, virus-specific T cells might also be used as an
additional routine tool to measure the intensity of immu-
nosuppression after pediatric kidney transplantation in or-
der to avoid overimmunosuppression.
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