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Abstract Sepsis is a common cause of death in hospitalized patients worldwide. The early detection of sepsis
remains a great challenge for clinicians, and delayed diagnosis frequently undermines treatment efforts, thereby
contributing to high mortality. Omics technologies allow high-throughput screening of sepsis biomarkers. This
review describes currently available and novel sepsis biomarkers in the context of genomics, transcriptomics,
proteomics, and metabolomics. The combination of these technologies can help refine the diagnosis of sepsis. This
review paper serves as a reference for future studies that employ an integrated, multi-omics approach to disease
identification.
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Introduction

Sepsis is a leading cause of death among hospitalized patients
worldwide. Despite recent advances in terms of management,
sepsis remains a life-threatening condition with poor prog-
nosis. The risk factors for sepsis usually include patient-
related physiological characteristics, underlying diseases, or
clinical treatment backgrounds. Patients with one or more of
these factors are susceptible to sepsis. The most vulnerable
are the elderly and infant populations; patients with chronic
diseases, severe trauma, or burns; individuals who are
immunocompromised or receiving immunosuppressive ther-
apy; and malnourished and debilitated patients. The early
diagnosis of sepsis is critical because mortality increases by
7.6% for each hour that appropriate antimicrobial therapy is
delayed [1]. However, the accurate and timely detection of
sepsis remains a great challenge because of its various
nonspecific clinical manifestations and its complex and
indeterminate pathophysiology. Therefore, neither microbial
detection, which is considered the gold standard for
identifying infection, nor traditional biomarkers can fulfill
the existing need for the early diagnosis and management of
sepsis [2].

Infection involves an extensive and complex pathogen-host
interaction. Sepsis develops when the initial appropriate host

response to an infection becomes amplified and then
dysregulated [3]. The host immune defenses determine the
fate of infecting organisms. That is, these organisms could
remain localized; be phagocytosed and removed by immu-
nocytes, leading to the release of pathogen components into
the circulation; or multiply in local tissue and enter the
bloodstream, resulting in bacteremia and sepsis. The patho-
gen and its structural components not only cause extensive
changes in both the innate and acquired immune responses
but also affect the nervous, endocrine, respiratory, circulatory,
metabolic systems, etc. [3]. Traditional biomarkers for sepsis
are mainly derived from this host immune/inflammatory
response. Various high-throughput omics technologies facil-
itate comprehensive screening of sepsis-specific biomarkers.
This review paper describes currently available and novel
sepsis biomarkers in the context of genomics, transcrip-
tomics, proteomics, and metabolomics to provide novel
insights into the development of sepsis and ultimately offer
new tools for overcoming the present diagnostic limitations.

Traditional biomarkers

Biomarkers are molecular indicators used to diagnose and
predict the outcome of illnesses, as well as identify
susceptible individuals. They are quantifiable measures of
biological homeostasis that provide a frame of reference for
identifying abnormal processes [2], and are important factors
in the decision-making process of disease assessment.
Commonly used biomarkers for sepsis include C-reactive
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protein (CRP) and procalcitonin (PCT) [4,5], cytokines
[tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-
10, osteopontin] [6,7], chemokines [macrophage migration
inhibitory factor (MIF), high-mobility-group box 1] [8,9], and
soluble receptors [soluble triggering receptor expressed on
myeloid cells 1 (sTREM-1), soluble urokinase-type plasmi-
nogen activator receptor (suPAR)] [10,11].

The use of a single biomarker cannot satisfy all require-
ments for sepsis diagnosis and treatment management
because sepsis has a complex pathophysiology that involves
hundreds of mediators or single molecular complexes [12].
For instance, CRP is frequently used to identify infection and
sepsis [2]. The plasma concentration of CRP is positively
correlated with the risk of organ dysfunction and death
[13,14]. However, the level of CRP cannot accurately reflect
the severity of infection and sepsis because it increases during
minor infection or remains high even after the time course of
infection [2]. The level of CRP may also increase during an
inflammatory response to noninfectious events, such as
myocardial infarction, tumorigenesis, or operation. These
findings suggest that CRP lacks specificity as an early-stage
sepsis biomarker. By contrast, the elevation of PCT is listed as
a diagnostic criterion for sepsis [15]. A recent meta-analysis
that included 30 studies has revealed that PCT has a mean
sensitivity of 0.77, a mean specificity of 0.79, and an area
under the receiver operating characteristic curve (AUC) of
0.85 [16]. Despite its value for the early diagnosis of sepsis in
critically ill patients, PCT remains unsuitable as a definitive
diagnostic measure [16].

Using different combinations of biomarkers could over-
come the above limitations. In a prospective cohort study of
151 patients with systemic inflammatory response syndrome
(SIRS), suPAR, sTREM-1, MIF, PCT, neutrophil count, and
CRP were used as biomarkers to detect the bacterial cause of
inflammation, with AUCs of 0.5, 0.61, 0.63, 0.72, 0.74, and
0.81, respectively [17]. The combined AUC of the six
biomarkers was determined to be 0.88 using a statistical
estimation of the optimum linear combination test and the
associated maximum AUC [18]. This result showed that
using the six biomarkers simultaneously had better diagnostic
accuracy than using any of the biomarkers alone for detecting
the bacterial versus nonbacterial causes of inflammation. In
another prospective study of critically ill patients [19], a
bioscore that combined the polymorphonuclear neutrophil
CD64 index with PCT and sTREM-1 serum levels was used
to diagnose sepsis with an AUC of 0.97. This result showed
that the biomarkers had better performance when used in
combination than when used alone. The diagnostic accuracy
of the bioscore was confirmed in a validation cohort, with
90.9% of patients being correctly classified. Although the
combination of biomarkers improves diagnostic sensitivity
and specificity, factors including time, cost, sample avail-
ability, and the practicability of the detection method limit the
application of this approach in clinical practice.

Genomics

Genomics requires large data sets obtained from recombinant
DNA methods, DNA sequencing, and bioinformatics
approaches to analyze genomes and explain physiological
or pathophysiological events. Similar to many pathological
states, sepsis is a polygenic syndrome initiated by infection.
Genetic factors determine the susceptibility and response of
patients to infection [20] and can thus influence clinical
outcomes [21,22]. Genomic approaches can be used to
identify genetic polymorphisms and epigenetic marks that can
serve as bioindicators for the detection of sepsis.

Single nucleotide polymorphisms (SNPs)

A genetic polymorphism is a regular occurrence ( > 1%) of
two or more alleles at a given chromosome location. Several
genetic polymorphisms involved in inflammation, immunity,
and coagulation have been linked to sepsis susceptibility or
prognosis [20]. Such polymorphisms have become the focus
of most gene association studies of sepsis. SNPs, the most
common type of gene polymorphism, are substitutions,
deletions, or insertions of a single nucleotide occurring in
approximately one of every 1000 base pairs in the human
genome. SNPs could produce an altered protein, change the
expression level of a normal protein, or have no discernible
effect on protein function [23]. Thus, studying the SNP
genotypes in sepsis is necessary to identify the potential
markers of susceptibility, severity, and clinical outcome.

SNP genotyping of several genes, including CD14 [24–
27], Toll-like receptors (TLRs) [22,28], lipopolysaccharide
binding protein [29], cytokines [21,28,30,31], and coagula-
tion factors [32,33], has provided information that is
clinically relevant to sepsis. For example, burn patients with
TLR4 and TNF-α polymorphisms are 1.8 times more likely to
develop severe sepsis than patients who are homozygous;
however, this increase in susceptibility is not significantly
associated with mortality [28]. TLR1 SNPs are associated
with increased mortality in patients with Gram-positive
bacterial sepsis after traumatic injury; thus, they may serve
as a novel marker for the risk of death in critically injured
patients [22]. A recent study has revealed an association
between the vascular endothelial growth factor+ 936CC
genotype and risk of developing acute kidney injury in
patients with severe sepsis [30]. Genome-wide SNP genotyp-
ing assays enable the accurate detection of hundreds of
thousands of SNPs in a single experiment [34,35]. Therefore,
such assays are valuable to the identification of novel sepsis
susceptibility-associated SNPs.

Several factors should be considered in evaluating the
validity and applicability of these studies. Potential con-
founding variables must be identified and matched; positive
association studies and replicate studies must be validated and
analyzed based on the primary hypothesis rather than on
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multiple comparisons; and large-scale analyses of sepsis
susceptibility-associated SNP genotypes should be performed
to determine new significant risk factors [20,36].

Epigenetics

Genes associated with immunity and inflammation are subject
to epigenetic regulation [20], which refers to hereditary gene
expression changes that are not caused by alterations in DNA
sequence [37]. DNA methylation marks and histone post-
translational modifications are major indicators for the
epigenetic regulation of gene expression [38], and greatly
impact host defense responses.

Sepsis induces epigenetic changes in dendritic cells and
lymphocytes that incapacitate host defenses for an extended
period after the initial immune challenge [39–41]. This late-
phase immunosuppression has been confirmed in a post-
mortem study [42]. Epigenetic mechanisms affect an early
stage in the progression of sepsis by suppressing proin-
flammatory gene products and subsequent immune cell
activation and proliferation. Thus, epigenetic markers can
serve as biomarkers for the early diagnosis of sepsis and offer
insights into the progression of this condition [43].

Transcriptomics

Gene expression

The immune response to sepsis is complex, and the exact
mechanisms have yet to be fully elucidated [44]. The balance
between pro- and anti-inflammatory responses is achieved
through a tight regulation of gene expression [45]. Thus,
evaluating the expression profiles of key genes using high-
throughput DNA microarrays can reveal the immune status of
septic patients. In a mouse model of sepsis, specific changes
in gene expression were identified by microarray analysis of
various organs and tissue, including the heart [46], liver [47],
spleen [48], and leucocytes [49].

In a study of 92 intensive care unit (ICU) patients who were
at risk of developing sepsis, the mRNA levels of IL-1β, IL-6,
IL-8, IL-10, TNF-α, FasL, and CCL2 in the blood leukocytes
were measured daily using real-time reverse transcription
PCR (RT-PCR) and then analyzed with a nonlinear method
(i.e., neural network analysis) [50]. The data correctly
predicted the onset of sepsis in an average of 83.09% of
patient cases with high sensitivity (91.43%) and selectivity
(80.20%) between one and four days before a clinical
diagnosis was conducted. In another study, microarray and
multiplex tandem PCR were used to evaluate transcriptional
profiles in circulating white blood cells of ICU septic patients,
postsurgical patients, and healthy control subjects [51]. A
panel of 42 gene expression markers was identified, and the
prediction of sepsis from a mixed inflammatory cell
population had an AUC between 86% and 92%. The gene

expression profile of patients with sepsis differs from that of
patients with inflammation alone, and changes in marker gene
expression become apparent 0 h to 48 h prior to a clinical
manifestation [52]. Therefore, changes in the expression of
genes involved in innate immunity, T cell differentiation,
protein synthesis, and cytokine receptor production can serve
as a marker for the early diagnosis of sepsis.

Transcriptomic methods only partially reflect steady-state
mRNA abundance, which is influenced by multiple factors;
these methods do not provide any direct information on gene
end products (proteins) and on post-translational modifica-
tions of protein function [53]. The source of RNA used in the
analysis can also present a potential confounding factor. The
use of whole blood as RNA source complicates gene profile
analysis because of the heterogeneity of blood cell popula-
tions; meanwhile, the use of a specific cell type can result in
relevant expression information from other cells being
overlooked [53]. These significant shortcomings highlight
the need for more reliable and clinically useful approaches.

MicroRNAs (miRNAs)

miRNAs are short RNAs of 18 to 25 nucleotides that post-
transcriptionally regulate gene expression through a
sequence-specific interaction with target sites in mRNA
[54]. miRNAs have been linked to normal physiological and
pathological processes [54]. Serum and plasma levels of
miRNAs are consistent among individuals of the same
species; moreover, miRNAs are resistant to RNase A
digestion and remain stable even after multiple freeze-thaw
cycles and long-term storage [55,56]. This stability makes
miRNAs potentially useful candidates for diagnostic and
other clinical applications. Although the source of circulating
miRNAs is still unclear, they have been implicated in a wide
range of diseases, including cancer [57,58], trauma [59,60],
acute pancreatitis [61], and hepatitis [62].

Microarrays and quantitative RT-PCR were used for the
genome-wide miRNA profiling of peripheral blood leuko-
cytes and plasma of septic patients. The results demonstrated
that miR-150 levels are significantly reduced in both
leukocytes and plasma, and are negatively correlated with
the level of disease severity as measured by the Sequential
Organ Failure Assessment score, making miR-150 an early
biomarker of sepsis [63]. A similar investigation on the levels
of miR-150 and miR-143 in the peripheral blood leukocytes
of septic patients using RT-PCR found that the expression of
these miRNAs is significantly decreased and is weakly
correlated with the severity of the condition. Thus, these
miRNAs are useful for assessing inflammatory responses and
for acting as prognostic markers of sepsis [64,65].

The pathophysiology of sepsis involves various tissue and
organs. Simple screening for miRNAs differentially
expressed in leukocytes excludes the mRNAs secreted by
other cells that can also be contributing factors. A genome-
wide microarray screen was performed to identify the serum
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miRNAs that were differentially expressed in septic patients
who survived and those who did not; two (miR-297 and miR-
574-5p) of the identified miRNAs were further validated by
RT-PCR in a larger subject group [66]. The combined
assessment of serum levels, sepsis stage, and Sepsis-Related
Organ Failure Assessment scores of miR-574-5p has a better
predictive value than any single above-mentioned indicator
for mortality. In addition, the serum levels of miR-146a and
miR-223 are significantly reduced in septic patients compared
with SIRS patients and healthy control subjects; therefore,
these miRNAs can potentially serve as novel, highly
sensitive, and specific biomarkers for sepsis [67]. Knowledge
of miRNAs in the serum remains incomplete. In addition,
parameters such as the expression levels of circulating
miRNAs at different stages of sepsis and their potential
correlation with injured organs require further investigation.

Long noncoding RNAs (lncRNAs)

In addition to DNA methylation and histone modifications,
noncoding RNAs (ncRNAs) are also involved in the
epigenetic control of gene expression. ncRNAs have a
range of sizes and can originate from intergenic regions,
introns, or enhancers [40]. Among these ncRNAs, long
ncRNAs (lncRNAs) are transcripts longer than 200 nucleo-
tides. These transcripts have widespread, differential expres-
sion in response to severe acute respiratory syndrome
coronavirus infection [68], suggesting a possible link between
lncRNAs and the host defense response against infection.
Thus, lncRNAs can potentially become a new class of
biomarkers and therapeutic targets for infectious diseases.
However, future studies on the regulatory effects of lncRNAs
during infection are needed.

Proteomics

The proteome is the set of all proteins that are expressed by an
organism. Proteomics provides an analysis of the expression,
localization, function, and interaction of proteomes. Com-
pared with other immunologic tests, proteomics is a novel
method that has the advantages of high throughput,
sensitivity, and specificity. The development of proteomics
has provided a means for studying cellular processes, such as
cell signaling, identifying protein modifications, and char-
acterizing specific biological markers [69].

Therefore, proteomics approaches are invaluable for
clinical applications and studies of sepsis biomarkers. For
instance, intravenous injection of Pseudomonas aeruginosa
in a rabbit model of sepsis leads to the differential expression
of 11 proteins in lymphocytes after 24 h, as identified using
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry. These factors are involved in the folding,
assembly, transport, and degradation of proteins required for
signal transmission, inflammation, immunization, energy

metabolism, proliferation, differentiation, and apoptosis
[70]. A recent study has established a rat model of
Acinetobacter baumannii-induced sepsis and revealed 41
differentially expressed proteins in neutrophils using 2D
electrophoresis and mass spectrometry [71]. The detected
proteins include antioxidant proteins, cytoskeletal and
regulatory proteins, proteins involved in signaling and energy
metabolism, and proteases.

Proteomics-based analyses revealed that YKL-40 has high
expression in serum samples from septic patients; thus, YKL-
40 is considered a possible biomarker of sepsis [72]. Plasma
profiling, which couples protein chip array with surface-
enhanced laser desorption ionization time-of-flight mass
spectrometry, was used to analyze the plasma of postoperative
patients that had undergone liver transplantation; results
revealed that five protein peaks in combination are potential
diagnostic biomarkers of postoperative sepsis [73]. However,
despite this promising result, the proteins have yet to be
identified, and their diagnostic value must be assessed
through clinical trials.

Metabolomics

Although many potential sepsis biomarkers have been
identified through genomics, transcriptomics, and proteo-
mics, the changes in cellular metabolism during sepsis cannot
be ignored. Metabolomics is an emerging omics approach
that focuses on metabolites with molecular weights less than
1000 kDa under physiological or pathological conditions.
This approach can be used to analyze biochemical events in
cells, tissue, or organs and to evaluate diseases in terms of
severity. The main experimental techniques used in metabo-
lomics include nuclear magnetic resonance (NMR), gas
chromatography/mass spectrometry (GC/MS), and high
performance liquid chromatography/mass spectrometry
(HPLC/MS).

The development of sepsis involves the interaction of
multiple systems that affect the expression levels and
activities of metabolic enzymes. A more timely diagnosis
and prognosis of sepsis may be achieved by detecting changes
in the concentrations and ratios of metabolites [74]. A
previous research identified the metabolic profiles of sera
from septic rats with cecal ligation and puncture using NMR
and HPLC/MS [74]. Compared with the rats that survived,
those that did not survive exhibited lower levels of free fatty
acids. This finding can be explained by a heightened systemic
demand for energy during sepsis, suggesting that the level of
free fatty acids can serve as a useful bioindicator. Moreover,
an increase in the level of certain polyunsaturated fatty acids
was observed; this increase can be indicative of an increased
anti-inflammatory response. The metabolic profile analysis
was used as a reference to develop a model for predicting
outcome; this model serves as a novel tool for assessing sepsis
prognosis. NMR-based metabolic profiling revealed differ-
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ences in metabolites of energy metabolism and inflammation
in lung tissue, bronchoalveolar lavage (BAL) fluid, and serum
samples obtained from septic and control rats [75]. Compared
with the control rats, the septic rats had higher creatine
concentration in the three samples. However, only alanine
and phosphoethanolamine levels were higher in the lung
tissue and serum samples of the septic rats compared with the
control rats. Myo-inositol was higher in the lung tissue but
lower in the BAL fluid of the septic rats compared with the
control rats. In addition, the septic rats had higher
acetoacetate content but lower formate content in the serum
compared with the control rats. With the generation of a
predictive model using partial least-squares discriminant
analysis, a diagnosis of sepsis was successfully achieved
using this approach.

Outlook

Sepsis involves numerous pathophysiological changes in
various organ systems; thus, systematic identification of
sepsis biomarkers and examination of the molecular mechan-
isms underlying sepsis using omics approaches may provide
insights into the physiological state of patients following
infection.

Several issues need to be considered before omics-based
approaches can be efficiently used for the diagnosis and
monitoring of sepsis in clinical settings. First, appropriate,
highly specific biomarkers with high diagnostic value must be
identified. The gold standard for determining infection still
depends on microbial detection, which can provide a false
negative result even in patients exhibiting the clinical
manifestations of infection, because of the mildness of the
disease, the load/type/growth capacity of pathogens, and the
use of antibiotics [76]. Conversely, false positive results may
be observed because of sample contamination. Therefore,
perfections to this standard diagnostic method are needed.

Second, universally applicable biomarkers for sepsis,
especially for multi-centered or multi-indexed investigations,
are still lacking. Validation studies must be undertaken to
determine the utility of diagnostic indicators; only indicators
with high sensitivity, high specificity, and clinical applica-
tions should be retained.

Third, most studies of sepsis rely on a single omics
approach (Table 1) rather than on a combination of omics
approaches. Various omics may reveal sepsis mechanisms at
different levels for a specific molecule or group of molecules;
thus, a multi-pronged strategy using two or more omics can
provide integrated information on particularly significant
biomarkers. For instance, the Multi Analyte Pathway
Inference Tool algorithm enables the principled integration
of epigenomics, transcriptomics, and proteomics data for
cancer diagnosis, prognosis, and biomarker discovery [77].

The lack of a clear understanding of the pathophysiology of
sepsis limits biomarker identification [2]. However, the

application of new technologies and the combination of
multiple omics approaches are necessary to develop tools for
the effective diagnosis of sepsis and to improve the prognosis
for this condition.
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