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Abstract
Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active 
surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from 
the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/
chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic 
(HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 
2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) 
and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had 
over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate 
A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through 
contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential 
threats to human and animal health.

Introduction

Avian influenza viruses (AIVs) belong to the family Ortho-
myxoviridae. Among the AIV subtypes identified in wild 
aquatic birds based on two surface glycoproteins, hemag-
glutinin (HA1 to 16) and neuraminidase (NA1 to 9), H5Nx 
subtypes have been a major concern in the poultry industry 
and public health since the first highly pathogenic avian 
influenza virus (HPAIV) H5N1 subtype was detected in a 
goose in Guangdong (Gs/GD) province, China, 1996 [1, 2]. 

Based on their pathogenicity in chickens and the multi-basic 
cleavage site motif in the HA protein, H5Nx subtypes have 
both low pathogenic (LP) and HPAIV types [3]. Aquatic 
birds, being the major natural reservoir of AIVs, are sub-
ject to natural migration and factitious trading in live poul-
try markets (LPMs). Interaction among them through the 
intersection of wild birds and poultry sector, together with 
the specialized genome organization of AIVs, these factors 
have created numerous clades of H5 HPAIV and reassortant 
strains, which are variants differing in NA subtypes, such 
as H5N1, H5N2, H5N5, H5N6, and H5N8. These strains, 
along with variants originating from other internal genes, 
have caused outbreaks in poultry in over 80 countries world-
wide, including China, Japan, South Korea, Laos, and Viet-
nam thus far [4].

In 2013, the first clade 2.3.4.4 H5N6 HPAIV was identi-
fied and was the result of a reassortant between the HPAIV 
H5N1 subtype and LPAIV H6N6, which circulate broadly in 
duck populations in southern and eastern China [5]. Reassor-
tants with six internal genes such as PB2, PB1, PA, NP, M, 
and NS in H5N6 from the chicken H9N2 or H7N9 gene pool, 
have also been reported [6]. As of May 2020, 24 human 
cases of H5N6 HPAIV infection have occurred exclusively 
in China since 2014, and a mortality rate of ~66% (16/24) 
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was reported by the World Health Organization (WHO) [7]. 
Occasionally, H5N6 HPAI viruses have also been detected in 
mammals such as pigs and domestic cats [8, 9]. Swine have 
been considered for intermediate transmission of influenza 
A viruses between birds and humans because they have both 
α2,6- and α2,3-linked sialic acid receptors [1].

In Vietnam, the first Gs/GD lineage H5N1 HPAIV was 
detected in 2001 [10], and numerous clades have been iden-
tified since then [11–14]. Clade 1 was the primary cause 
of the first wave of massive outbreaks in poultry during 
2003–2005 and was subsequently replaced by other clades, 
such as clade 2.3.2 in 2005–2008 and 2.3.4 in 2007–2010 in 
the North and Central regions. Clade 1 and its descendants, 
including clade 1.1.1 and 1.1.2, continued to predominate in 
the South region. Clade 2.3.2.1 (a/b/c) replaced clade 2.3.4 
in parts of the North and Central regions beginning in 2009, 
and clade 2.3.2.1c spread to the South region after 2012. 
Since 2014, clades 2.3.2.1c and 2.3.4.4 have become concur-
rently predominant in Vietnam.

LPMs are integral components of the poultry trade net-
work in Vietnam. The behavior of poultry traders in Viet-
namese markets is a potential risk factor for human and 
animal health, making it more likely for AIVs to overcome 
the species barrier [15]. Hence, enhanced surveillance activ-
ity and complete viral genetic analyses are necessary for 
virus tracing and maintenance of human and animal health. 
In this report, we isolated and genetically characterized a 
new reassortant clade 2.3.4.4 group C H5N6 HPAIV strain 
from female chicken feces collected from LPMs in north-
ern Vietnamese provinces in December 2016. Our findings 
have extended our understanding of H5N6 HPAIV genetic 
diversity in poultry and how the trading network in Vietnam 
affects AIV evolution.

Materials and Methods

During the winter between 2016 and 2017, feces sampling 
in poultry was carried out at local LPMs and small-scale 
poultry farms in Ha Nam province, Vietnam (approximately 
60 km from Hanoi to the south). A total 353 of fecal, tra-
cheal, and cloacal swab samples were collected from four 
local live bird markets and poultry farms and plated into 
transportation medium (Noble Biosciences, South Korea) 
and stored at −80°C. Samples were then tested for AIVs 
using a matrix (M) gene-specific real-time reverse transcrip-
tion quantitative polymerase chain reaction (RT-qPCR) 
method according to the WHO guideline for animal influ-
enza virus detection [16]. Continuously, the samples con-
taining influenza A virus were examined for HPAIV and 
clade detection based on an RT-qPCR assay following a 
previous report [17]. Positive AIV samples were isolated 
by inoculating 10-day-old embryonated chicken eggs in a 

biosafety level two plus facility at the College of Veteri-
nary Medicine, Vietnam National University of Agriculture, 
Hanoi, Vietnam. The host sex and species was determined 
by analyzing the mitochondrial cytochrome oxidase (COI) 
and chromo-domain helicase DNA binding (CHD) genes 
following a previous report [18, 19].

For complete viral genome analysis of the new isolate, 
viral RNA was prepared from the allantoic fluid from the 
first egg passage using a QIAamp Viral RNA Mini Kit 
(Qiagen, CA, USA) following the manufacturer’s protocol. 
Viral genome amplification was performed using the con-
ventional RT-PCR method with PrimeScript™ First-Strand 
cDNA Synthesis Kit and Premix Taq™ (Takara, Japan) with 
universal primers previously described [20]. The DNA band 
for each target gene was excised from a 1% agarose gel and 
DNA was purified using the QIAquick Gel Extraction Kit 
(Qiagen, CA, USA). The purified DNA was then subjected 
to direct sequencing using an ABI3730XL DNA analyzer 
(Cosmo Genetech Service, South Korea). The sequences 
were assembled using CLC Sequence Viewer software ver-
sion 6.7. Non-coding regions containing primer sequences 
were trimmed. The open reading frames of eight genes were 
submitted to GenBank under accession number MT634255-
MT634262. A BLAST search on the GenBank database was 
used to determine the closest related strains to the newly 
isolated virus.

Phylogenetic analysis based on each gene sequence was 
conducted using Molecular Evolutionary Genetics Analy-
sis Version 7.0 software (MEGA 7.0). The evolutionary 
distances were computed using the Maximum Composite 
Likelihood method with 1000 replicates. Input nucleotide 
sequences included both the new isolate and reference 
sequences from the open access resources for the GenBank 
database of influenza virus. The length of eight segments 
containing the PB2, PB1, PA, HA, NP, NA, M, and NS 
genes used for phylogenetic analysis were 2280, 2274, 2151, 
1704, 1497, 1380, 982, and 823 nucleotides, respectively.

Results

Among the eight confirmed positive samples of influenza 
A virus by M-gene-specific RT-qPCR, we identified three 
of H5N1 and four of H9N2 avian influenza viruses (Sup-
plementary Table 1). Interestingly, a fecal sample collected 
from a local LPM on December 30th, 2016 was suspected 
to be positive for HPAIV. In the first egg passage, the isolate 
showed signs of HPAI virus infection, such as death of the 
embryos and allantoic fluid in red at 36 h post-inoculation. 
The new reassortant strain of clade 2.3.4.4c H5N6 HPAIV 
was identified and named A/Chicken/Vietnam/AI-1606/2016 
(abbreviated as A/AI-1606/16). The geographical location 
of the A/AI-1606/16 isolate was shown in Fig. 1. A female 
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chicken (Gallus gallus) was the host of A/AI-1606/16 fol-
lowed to COI and CHD partial genes analysis (Supplemen-
tary Fig. 1).

Based on the genetic analysis, suggested that the A/
AI-1606/16 isolate was closely related to domestic-poul-
try-origin AIVs. The six segments of PB1, HA, NP, NA, 
M, and NS genes were most closely related to the H5N6 
HPAIV virus that circulated among domestic poultry in 
Vietnam between 2015 and 2016. The sequence similarity 
was greater than 99%. However, the PB2 gene was most 
closely related to A/duck/Mongolia/543/2015(H4N6), with 
98.82% identity; and the PA gene was most closely related 
to A/duck/Hokkaido/20/2015 (H3N8), with 98.84% identity. 
The closest similarities of the eight gene segments of the A/
AI-1606/16 virus are listed in Table 1, and Fig. 2I shows 
how the virus may have been generated.

In the phylogenetic tree analysis, the eight genes of 
the A/AI-1606/16 virus belonged to Eurasian lineages 
(Fig. 2A–H). The HA gene fell into group C of clade 2.3.4.4, 
the NA gene grouped into reassortant B type, and the PB2 
and PA genes associated with LPAIVs; domestic ducks in 
Mongolia (H4N6) and Japan (H3N8), respectively. The NS 
gene belonged to allele A.

The predicted amino acid sequence of the A/AI-1606/16 
viral genome was analyzed to better understand the new 
isolate, and specific regions of the A/AI-1606/16 viral 
genome were examined (Table 1). The HA protein contains 
PLRERRRKR↓GLF at the cleavage site, indicating a highly 

pathogenic phenotype. The virus harbors two conserved 
amino acid residues in the receptor-binding site of the HA 
protein (Q226 and G228), suggesting preference for avian-like 
receptors. Remarkably, the substitutions H107Y, S137A, and 
T160A were detected in the isolated virus, indicating human-
like receptor recognition and the possibility of transmissibil-
ity in ferrets [8]. The NA protein contains an 11 amino acid 
deletion (59–69) in the stalk region, promoting adaptation and 
enhancing virulence toward poultry and mammals [8]. The 
NS1 protein contains a five amino acid deletions (80–84), sug-
gesting increased virulence in chickens and mice [27]. Similar 
to mouse models that have identified substitutions associated 
with increased viral pathogenicity and replication, substitu-
tions have been detected in the isolated virus in the PB2 pro-
tein (L89V, G309D, T339K, R447G, and I495V), M1 protein 
(N30D and T215A), and NS1 protein (P42S, D92E, and PDZ-
motif ESEV) [8]. The molecular markers of NA inhibitors 
(oseltamivir and zanamivir) [22] and ion-channel inhibitors 
(amantadine and rimantadine) [26, 28] in the NA and M2 pro-
teins of the A/AI-1606/16 virus exhibited no mutations, sug-
gesting susceptibility to these antiviral influenza drugs.

Discussion

Clade 2.3.4.4 H5N6 HPAIVs have evolved and been reas-
sorted from Gs/GD since 2013. Based on the HA gene, the 
clade was clustered into four groups, A, B, C, and D, among 

Fig. 1   Location of putative origins of genomic compositions of the new reassortant A/chicken/Vietnam/AI-1606/2016 (H5N6). The brown cir-
cles were isolates in previous reports and red arrows were reassortant A/chicken/Vietnam/AI-1606/2016 isolate in this report
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which group C is predominant and has been disseminated 
in Asia and Southeast Asian countries such as China, Viet-
nam, and Laos [4]. Most prior instances of human H5N6 
infections have been from viruses in group C [21]. There 
are two types of NA genes, reassortant A (no amino acid 
deletion) and B (an 11 amino acid deletion from 59 to 69 
in the stalk region) [29]. Here, in the newly isolated virus, 
phylogenetic analysis of A/AI-1606/16 revealed that six 
out of eight genes were most closely related to the H5N6 
HPAIV, which has a domestic-poultry-origin in Vietnam 
between 2015 and 2016. The new isolate also fell into group 
C and shared over 97% identity with the human isolate A/
Guangzhou/39715/2014(H5N6). The NA gene belongs to 
the reassortant B type. Interestingly, the PB2 and PA genes 
were closely related to LPAIV strains from domestic ducks 
in Mongolia (H4N6) and Japan (H3N8), respectively.

The 2.3.4.4 H5N6 HPAI virus was detected in Vietnam 
immediately after its initial detection in China in 2013 [13]. 
Nguyen et al. [30] showed that in the period from 2014 to 
2017, two predominant clades of H5 HPAI viruses, 2.3.2.1c 
and 2.3.4.4, evolved from homologous clade viruses endemic 

Table 1   Closest related viruses and identification of amino acids deduction of A/chicken/Vietnam/AI-1606/2016 (H5N6) isolate involved in 
binding to human-type influenza receptor, enhancing antiviral drug resistance, and causing pathogenesis in mammals

*Amino acid position, A alanine; D aspartic acid; E glutamic acid; G glycine; H histidine; I Isoleucine; K lysine; L leucine; M methionine; N 
asparagine; P proline; Q glutamine; R arginine; S serine; T threonine, V valine; Y tyrosine

Top BLAST H5N6 HPAI strains Viral protein* Molecular and phenotypic impact of amino acid 
[reference]

A/chicken/Quang Tri/MT11/2016 (H5N6) HA PLRERRRKR↓GLF Cleavage site Expanded viral tropism; increased virulence in 
mice [8]

107Y H→Y H5 transmissibility in ferrets [8]
137A S→A Increased α2,6-SA recognition [21]
160A T→A H5 transmissibility in ferrets [8]

A/chicken/Vietnam/NCVD-15A51/2015 
(H5N6)

NA 59→69 deletion Stalk region Increased virulence in mice [8]
274H H→Y Oseltamivir resistance [22]
294 N N→S Oseltamivir resistance [22]

A/duck/Mongolia/543/2015 (H4N6) PB2 89 V L→V Increased pathogenicity in mice [21]
309D G→D Increased virulence and replication in mice [21]
339 K T→K Increased virulence and replication in mice [21]
477G R→G Increased virulence and replication in mice [21]
495 V I→V Increased virulence and replication in mice [21]

A/muscovy duck/Viet Nam/HN-2504/2015 
(H5N6)

PB1 99H H→Y H5 transmissibility in ferrets [8]
368I I→V H5 transmissibility in ferrets [8]

A/duck/Hokkaido/20/2015 (H3N8) PA 97 T T→I Enhanced polymerase activity; increased virulence 
[8]

PA-X 195R R→K Increased replication and transmission in ferrets 
[23]

A/muscovy duck/Viet Nam/QN-2612/2016 
(H5N6)

NP 286A A→V Attenuated the virulence in mice [24]
319 N N→K Enhanced replication efficiency [25]
437 T T→M Attenuated the virulence in mice [24]

A/duck/Vietnam/HU4-879/2015 (H5N6) M1 30D N→D Increased virulence in mice [8]
215A T→A Increased virulence in mice [8]

M2 31S S→N Amantadine resistance [26]
A/duck/Vietnam/HU4-879/2015 (H5N6) NS1 42S P→S Increased virulence in mice [8]

92E D→E Increased virulence in mice and pigs [21]
80→84 deletion
ESEV

C-terminal
PDZ-motif

Increased viral virulence in chicken and mice [27]
Increased virulence in mice [21]

Fig. 2   Phylogenetic and genotype illustration analysis of A/chicken/
Vietnam/AI-1606/2016 (H5N6) virus. Phylogenetic tree based on 
nucleotide sequences of eight genes (A–H) were conducted using 
Molecular Evolutionary Genetics Analysis Version 7.0. The evo-
lutionary distances were computed using the Maximum Compos-
ite Likelihood method with 1000 replicates. The input nucleo-
tide sequences included both new isolate and reference sequences 
obtained from the influenza virus resource at the National Center 
for Biotechnology Information (NCBI). The statistic values greater 
than 70% a measure of reliability from a bootstrap (n = 1000) itera-
tions were showed. Genotype illustration (I) of the new reassortant A/
chicken/Vietnam/AI-1606/2016 (H5N6)

◂
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to China and prevalent from 2012 to 2013 [5]. Phylogenetic 
analysis revealed elaborate genetic linkages of the Vietnam 
and China clade 2.3.4.4 viruses to clade 2.3.2.1c viruses. 
The recently isolated A/AI-1606/16 virus was detected in 
chickens in LPMs where many cases of reassorted AIVs 
were reported [31]. Interestingly, the PB2 and PA genes of 
A/AI-1606/16 isolate were found to be closely related to 
LPAIV strains from ducks in Japan (H3N8) and Mongolia 
(H4N6), which is a long distance away from Vietnam. We 
thus hypothesized that the parent gene pool of the Japanese 
and Mongolian LPAIV strains was possibly transmitted to 
wild birds which may have interacted with poultry before 
migrating along the East Asian-Australasian flyway to Viet-
nam [32]. In particular, free-range duck farms where poultry 
share water sources with wild waterfowl are very popular in 
Asian countries hence the high risk of AIV reassortment and 
transmission [33]. Ducks exhibited notably higher resistance 
to H5N6 HPAIVs compared to chickens [34]. Therefore, 
we speculated that the newly isolated A/AI-1606/16 virus 
might have reassorted in free-ranging poultry management 
practices in Vietnam, at the intersection of wild birds and 
the poultry sector, and later presented in LPMs.

Vietnam is also part of the East Asia-Australasian fly-
way and Thinh et al. [35] showed avian influenza A viruses 
including H5 and H6, and H9 subtypes were isolated from 
wild migratory birds in Vietnam. Indeed, a live poultry 
movement network between Vietnam and other neighbor-
ing countries revealed the epidemiological links for AIV 
importation to Vietnam [36]. For example, the clade 7.1 
H5N1 HPAIVs were detected in seized chickens at ports of 
entry in Lang Son Province, and this clade was also detected 
in an LPM in the Hai Duong Province [37]. Additionally, 
an A/Muscovy duck/Long An/AI470/2018 (H5N6) isolate 
in southern Vietnam shared 99% homology with the human 
isolate A/Guangxi/32797/2018 (H5N6) in China (Fig. 1) 
[38].

Sites of trade and marketing of live poultries are hot 
spots for AIV transmission, with multiple subtypes of AIVs, 
including HPAIVs and LPAIVs, having been detected in 
LPMs [25]. AIVs have also frequently been detected in poul-
try farms with poor conditions and those that are free-range 
[39]. This formed a conducive ecosystem for AIV cohabita-
tion in bird populations. Close contact between humans and 
live poultries provides opportunities for AIVs to cross the 
species barrier; indeed, most H7N9 infected human cases 
have a history of exposure to LPMs [40]. In summary, to 
control zoonosis of AIVs, enhanced feeding biosecurity, 
strict transport management, and active surveillance must 
be implemented.
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