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Abstract: Angiogenesis is a process of generation of de-novo blood vessels from already existing
vasculature. It has a crucial role in different physiological process including wound healing, embryonic
development, and tumor growth. The methods by which therapeutic drugs inhibit tumor angiogenesis
are termed as anti-angiogenesis cancer therapy. Developments of angiogenic inhibiting drugs have
various limitations causing a barrier for successful treatment of cancer, where angiogenesis plays
an important role. In this context, investigators developed novel strategies using nanotechnological
approaches that have demonstrated inherent antiangiogenic properties or used for the delivery of
antiangiogenic agents in a targeted manner. In this present article, we decisively highlight the recent
developments of various nanoparticles (NPs) including liposomes, lipid NPs, protein NPs, polymer
NPs, inorganic NPs, viral and bio-inspired NPs for potential application in antiangiogenic cancer
therapy. Additionally, the clinical perspectives, challenges of nanomedicine, and future perspectives
are briefly analyzed.
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1. Introduction

Similar to normal tissues, tumors need nourishments by means of food and oxygen as well as
a capacity to remove metabolic excretes and carbon dioxide. Diverse patterns of tumor-associated
neovascularization, obtained by angiogenesis, cope with these demands. Angiogenesis, sprouting of
new vessels from existing quiescent ones, remains almost always turned on during the process
of tumorigenesis for sustenance of neoplastic expansions [1–3]. A riveting account of studies
corroborates that the “angiogenic switch” is regulated by counterbalancing factors like signaling
proteins for induction (vascular endothelial growth factor (VEGF)-signaling via three receptor tyrosine
kinases, etc.) or inhibition (thrombospondin-1, etc.) of angiogenesis and gets inclined towards
angiogenesis when stimulated by hypoxia or inflammation [4–12]. Other pro-angiogenic signals
fibroblast growth factor ((FGF) family members, transforming growth factor-β, etc.), when persistently
upregulated, also contribute to sustain tumor angiogenesis [5,13]. Amid all plausible ways to
treat cancer, anti-angiogenic therapy—targeting tumor vasculature to prevent aberrant capillary
sprouting—has received an astounding outpouring of research in the last few decades [14,15].
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The idea to decouple tumors from surrounding blood vessels has led to discovery and clinical
approval of several anti-angiogenic drugs, namely, monoclonal antibody inhibitors (Bevacizumab,
IMC-1121B, 2C3), receptor tyrosine kinase inhibitors (sorafenib, sunitinib, pazopanib), soluble receptor
chimeric protein (VEGF-Trap), inhibitors of endothelial cell proliferation (thalidomide, angiostatin),
inhibitors of integrin’s proangiogenic activity (Cilengitide, medi-522), matrix metalloproteinase
inhibitors (Neovastat, Prinomastat, Marimastat), vascular targeting drug (combretastatin), etc. [16–19].
However, many of these meteoric developments, alone or in combination with chemotherapy or
radiotherapy, were vitiated by sparse clinical efficacy to combat tissue invasion and metastases.
Drug resistance, upregulation of various proangiogenic signals, hypoxia resistance, delayed response to
radiotherapy, toxicity issues, etc., have hindered the preponderance of antiangiogenic therapy [8,20–23].

To this end, nanotechnology offers an attractive biomedical platform, involving smart design
of vehicles with unique physicochemical properties for targeted delivery and sustained release of
therapeutics at the site of action along with their tracking details, which holds the promise to circumvent
the existing limitations [13,22,24–27]. In the present review, we shall elaborately discuss the limitations
of current therapies, advent of nanomedicine as an alternative modality in antiangiogenic cancer
therapy including lipid-based and polymer-based nanoparticles, inorganic nanoparticles, protein and
viral based nanocarriers, their safety, challenges, clinical outlook, and future perspectives.

2. Cancer, Statistics, Conventional Therapy, Challenges

Cancer is the leading cause of death throughout the world and is second to cardiovascular diseases
and causes enormous health and economic burden. As per the World Health Organization (WHO)
and an approximate of 9.6 million people died worldwide due to cancer in 2018 only. In 2019 alone,
an estimated 1,762,450 new cancer cases were reported and approximately 606,880 cancer deaths
happened in the United States. The data presented by the National Center for Health Statistics
(NCHS) is promising as it shows an overall decrease in cancer date rate by 27% during the period
of 1991 to 2016. Conventional cancer therapies have several limitations and associated side effects.
The data presented by NCHS, WHO, and NCI suggests that early detection, and diagnosis coupled
with better treatment strategies can reduce the burden of cancer [28,29]. Angiogenesis promotes
tumor progression and metastasis. Metastatic disease is overwhelmingly the predominant cause of
cancer death [30]. Several data suggest that angiogenesis is the prerequisite for the dissemination
and establishment of metastatic tumor cells to distant organs. Hence combination therapies with
emphasis on anti-angiogenic and antilymphangiogenic treatments to prevent the spread of cancer [31].
Understanding the morphology and molecular differences of the newly formed angiogenic blood
vessels is critical in designing antiangiogenic therapies. Considering the success of antiangiogenic
treatment and advances made in nanoparticles-based specific delivery of therapeutics to the newly
formed blood vessels during neo-angiogenesis and tumor infiltration may reduce the cancer burden
significantly. Considering, the recent success in immunotherapy and cancer vaccination and the
close link between immune microenvironment and angiogenesis is unique. Combinations should be
used to reduce the cancer burden [21]. Nanobiotechnology may play a key role in effective detection,
targeting, and delivery of immune-therapeutics and antiangiogenic therapeutics at the tumor site.
Nanotechnology and nanoparticles offer several advantages like increased half-life, reduced toxicity,
specific and selective delivery over the free drugs/therapeutics [13,22,26]. Nanovectors have also
opened up new avenues for noninvasive imaging and can be successfully used to create angiogenic
maps for patient specific therapeutic planning [21].

3. Angiogenesis and Cancer

Angiogenesis is the process of formation of new blood vessels orchestrated by proangiogenic
and antiangiogenic factors during development, reproduction, and repair. Of utmost importance is
pathological angiogenesis, especially in the context of neoplastic disease. Tumor cells rapidly proliferate
and need a continuous supply of oxygen and nutrients and thereby requires steady requirement
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for infiltrating blood vessels. Angiogenesis is one of the hallmarks of cancer [32]. Targeting the
angiogenic process is regarded as a logical approach to the treatment of various malignancies and
various antiangiogenic treatment agents have been developed and tested in clinical trials. The concept
of antiangiogenic therapy came into being while Dr. Folkman discovered that tumors require
steady oxygen and nutrient supply, and the neogenesis of tumor-infiltrating vessels helps sustain
the continuous growth of the tumor. The inhibition of angiogenesis can lead to tumor starvation
and tumor cell death [33,34]. Angiogenesis or the formation of new blood vessels from pre-existing
vasculature is the common mechanism of new angiogenesis [35]. Angiogenic blood vessel formation
may occur by three major processes, sprouting angiogenesis, vasculogenesis, and intussusception.
Sprouting angiogenesis is considered the most critical process of blood vessel formation in the tumor
but evidence suggests that a non-angiogenic process called vessel co-option is also essential. Tumor
cells opt for vessel co-option at different anatomical sites by hijacking pre-existing blood vessels from
the normal neighboring issue [36,37].

Hypoxia is the key factor that regulates tumor angiogenesis. Tumor cells grow rapidly and are
hypoxic in nature, and secrete vascular endothelial growth factor A (VEGFA). Not only the tumor cells
but also the tumor associated stromal cells produce proangiogenic factors. The endothelial cells in
the microenvironment express VEGF receptor (VEGFR2). The gradient of VEGF can be sensed by the
endothelial cell based on the VEGF–VEGFR interaction; this leads to the formation of new endothelial
sprout towards the tumor cell [35,38].

Tumor cell induces a complex cascade of angiogenic signaling and activates downstream
cellular events in multiple cell types, especially the endothelial cells, leading to angiogenesis.
Proangiogenic factors include fibroblast growth factor (FGF) families, vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), transforming growth factors-alpha/beta (TGF-α/β),
and angiopoietin (Ang 1,2) and the associated receptors. The detachment of the perivascular cells
from the mature blood vessels initiates vessel remodeling and endothelial cell proliferation. Platelets
become activated and recruited to the sites of the exposed basement membrane. Tumor-associated
macrophages (TAM) produce angiogenic factors such as VEGF, Matrix metalloproteinases (MMPs),
and urokinase-type plasminogen activator (uPA). On the other hand, precursor endothelial cells move to
the perceived wound site and release angiogenic factors. The activated endothelial cells release proteases
and lead to extracellular matrix (ECM) remodeling, followed by directional sprouting. The signaling
cascades activate tube formation and branching, followed by vessel arterio-venous patterning and
maturation. Cancer progenitor/stem cells can differentiate to endothelial cells, and thereby participates
directly in angiogenesis.

The process of vessels sprouting is a coordinated process including the tip/stalk cell selection,
followed by tip cell directed migration, stalk cell proliferation, branching coordination, elongation of
stalk, lumen formation, and vessel maturation [39]. Additional signaling molecules like delta-ligand-like
4 (DLL4) and angiopoietin 2 (ANGPT2) also play an important role in the process of angiogenesis.
Until proangiogenic signals fade away, the establishment of the basement membrane, the sprouting and
branching continues on, followed by vessel maturation. In cancer, however, the angiogenesis process
is rapid but considerable variation exists in the vessel morphology, functionality, and integrity [40].
Figure 1 is an overall presentation of angiogenic signaling pathway and angiogenesis.
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Figure 1. Angiogenic signaling pathway and angiogenesis. Tumor cell induces a complex cascade
of angiogenic signaling and activates downstream cellular events in multiple cell types, especially
the endothelial cells, leading to angiogenesis. Pro-angiogenic factors include fibroblast growth factor
(FGF) families, vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF),
transforming growth factors-alpha/beta (TGF-α/β), and angiopoietin (Ang 1,2) and the associated
receptors. The detachment of the perivascular cells from the mature blood vessels initiates vessel
remodeling and endothelial cell proliferation. Platelets become activated and recruited to the sites of
the exposed basement membrane. Tumor-associated macrophages (TAM) produce angiogenic factors
such as VEGF, MMPs and urokinase-type plasminogen activator (uPA). On the other hand, precursor
endothelial cells move to the perceived wound site and release angiogenic factors. The activated
endothelial cells release proteases and lead to extracellular matrix (ECM) remodeling, followed by
directional sprouting. The signaling cascades activate tube formation and branching, followed by
vessel arterio-venous patterning and maturation. Cancer progenitor/stem cells can differentiate to
endothelial cells, and thereby participates directly in angiogenesis.

4. Current Antiangiogenic Therapies in Cancer and Their Limitations

Angiogenesis inhibitors are designed to target existing tumor infiltrating blood vessels and
inhibit the formation of newly formed blood vessels and thereby halt the tumor metabolism and
growth. Based on the inherent nature of the neo-angiogenesis in primary tumors, angiogenesis
inhibitors might activate the destruction of immature angiogenic vessels or stop the angiogenic switch
thereby preventing vascular metastasis [13]. Angiogenic inhibitors in conjunction with combination
chemotherapy, may increase the antitumor potency to a significant level as these agents can halt the
tumor progression but not eliminate them. There are two types of angiogenesis inhibitors; the first
group includes direct inhibitors, agents that block main angiogenesis proteins. The second group
comprises indirect inhibitors that target the tumor cell or stromal cells and modulate angiogenesis
regulators [41]. The direct angiogenesis inhibitors exert their antiangiogenic effect by binding with
angiogenesis inducers like VEGF, bFGF, and PDGF. Bevacizumab was the first antiangiogenic therapy
that was approved by the FDA in 2004 for the treatment of colorectal cancer. Antiangiogenic treatment
is the fourth modality of cancer therapy, as the treatment targets microvascular endothelial cells in
the tumor microenvironment and not the tumor directly [13,42]. Fast-growing tumors need greater
microvasculature and are more susceptible to antiangiogenic therapy. Table 1 shows the balance
between pro and antiangiogenic factors is the key to antiangiogenic treatment. Table 1 shows the
chemical structure and the mechanism of action of a list of FDA approved angiogenesis inhibitors for
different cancers. Several clinical trials are in progress that can induce modest disease-free survival
advantages. Table 1 also shows a list of potential drugs that have demonstrated antiangiogenic
properties in preclinical trials.
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Table 1. FDA approved angiogenic inhibitors, trade name, chemical structures, target, and FDA and approved treatments.

Drug (Trade Name) Structure Chemical Name, Target, and FDA Approved to Treat Patients with Ref.

Bevacizumab (Avastin®) Anti-VEGF monoclonal antibody

Anti-VEGF monoclonal antibody
Cervical cancer: Nonresponsive to other treatment/metastastatic/recurrent.
Colorectal cancer: metastastatic. Glioblastoma: Nonresponsive to other
treatment/recurrent. Nonsquamous non-small cell lung cancer: locally
advanced, nonresectable/metastastatic/recurrent. Ovarian epithelial,
fallopiantube, orprimary peritoneal cancer: stage III/stage IV/recurrent.
Renal cell carcinoma: metastastatic.

[13,43–45]

Thalidomide (Synovir, Thalomid®)
(±)-2-(2,6-Dioxo-3-piperidinyl)-1H-isoindole-1,3(2H)-dione
Immune modulator and inhibits VEGF and bFGF production
Multiple myeloma: newly diagnosed.

[46]

Lenalidomide (Revlimid®)

1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-aminoisoindoline
VEGF-induced PI3K-Akt pathway signaling and HIF-1α expression
Anemia associated with certain types of myelodysplastic syndromes.
Follicular lymphoma: Nonresponsive to other treatment. Mantle cell
lymphoma: Nonresponsive to other treatment/recurrent. Marginal zone
lymphoma: Nonresponsive to other treatment. Multiple myeloma and as
maintenance therapy

[13,42,47]

Sorafenib (Nexavar®)

4-[4-(([4-chloro-3-(trifluoromethyl)phenyl]carbamoyl)
amino)phenoxy]-N-methylpyridine-2-carboxamide
Small molecule inhibitors of the VEGFR-2 tyrosine kinase activity.
Hepatocellular carcinoma: Nonresectable. Renal cell carcinoma:
Advanced. Thyroid cancer: Progressive/metastastatic/recurrent.

[41,48]
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Table 1. Cont.

Drug (Trade Name) Structure Chemical Name, Target, and FDA Approved to Treat Patients with Ref.

Sunitinib (Sutent®)

(Z)-N-(2-(diethylamino)ethyl)-5-((5-fluoro-2-oxoindolin-3-ylidene)
methyl)-2,4-dimethyl-1H-pyrrole-3-carboxamide
Small molecule inhibitors of the VEGFR-2 tyrosine kinase
Gastrointestinal stromal tumor: nonresponsive to imatinibmesylate.
Pancreatic cancer: progressive neuroendocrine tumors that are
nonresectable/metastastatic. Renal cell carcinoma: advanced disease.

[13,41,42,49]

Temsirolimus

42-[3-Hydroxy-2-(hydroxymethyl)-2-methylpropanoate]-rapamycin
Reduces synthesis of VEGF and targets the mammalian target of
rapamycin (mTOR)
Retinoblastoma. Renal cell carcinoma: advanced disease.

[50]

Axitinib (Inlyta®)

N-Methyl-2-((3-((1E)-2-(pyridin-2-yl)ethenyl)-1H-indazol-6-
yl)sulfanyl)benzamide
Inhibitor of VEGF-1, -2, and -3
Renal cell carcinoma: Advanced/nonresponsive to other treatment.

[13,42,51]
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Table 1. Cont.

Drug (Trade Name) Structure Chemical Name, Target, and FDA Approved to Treat Patients with Ref.

Pazopanib (Votrient®)

5-((4-((2,3-dimethyl-2H-indazol-6-yl)(methyl)amino)pyrimidin-2-
yl)amino)-2-methylbenzenesulfonamide
Small molecule multi-targeted receptor tyrosine kinase inhibitor
Renal cell carcinoma: Advanced. Soft tissue sarcoma: Advanced.
Nonresponsive to other treatment.

[13,52]

Lenvatinibmesylate (Lenvima®)

4-(3-chloro-4-(3-cyclopropylureido)phenoxy)-7-methoxyquinoline-6-
carboxamide methane sulfonate
Lenvatinib inhibits tyrosine kinase activity of VEGF1, 2 and 3, fibroblast
growth factor receptors (FGFRs) 1–4
Endometrial carcinoma: Advanced/nonresponsive to other treatment.
Hepatocellular carcinoma: first-line treatment in nonresectable tumor.
Renal cell carcinoma: Advanced. Thyroid cancer:
Progressive/recurrent/metastatic/nonresponsive to radioactive iodine
treatment.

[53]

Cabozantinib (Cometriq®)

1,1-cyclopropanedicarboxamide,
n′-[4-[(6,7-dimethoxy-4-quinolinyl)oxy]phenyl]-n-(4-fluorophenyl)-
c-MET and VEGFR2 Inhibitor
Hepatocellular carcinoma: already been treated with sorafenib. Medullary
thyroid cancer: Progressive/metastatic. Renal cell carcinoma: Advanced.

[41,54]
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Table 1. Cont.

Drug (Trade Name) Structure Chemical Name, Target, and FDA Approved to Treat Patients with Ref.

Everolimus (Afinitor®)

(1R,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,35R)-1,18-
dihydroxy-12-((2R)-1-[(1S,3R,4R)-4-(2-hydroxyethoxy)-3-
methoxycyclohexyl]propan-2-yl)-19,30-dimethoxy-
15,17,21,23,29,35-hexamethyl-11,36-dioxa-4-azatricyclo[3
0.3.1.0(4,9)]hexatriaconta-16,24,26,28-tetraene-2,3,10,14,20-pentone40-
O-(2-hydroxyethyl)-rapamycin
Immunosuppression and targets the mTOR pathway
Breast cancer: Advanced hormone receptor–positive (HR+) breast cancer
that is also HER2 negative. Pancreatic cancer, gastrointestinal cancer,
and lung cancer: Neuroendocrine tumors/nonresectable/metastatic. Renal
cell carcinoma: Advanced. Subependymal giant cell astrocytoma:
Nonresectable.

[13,41,55]

Vandetanib (Caprelsa®)

(4-Bromo-2-fluoro-phenyl)-[6-methoxy-7-(1-methyl-piperidin-4-
ylmethoxy)-quinazolin-4-yl]-amine
Dual Inhibitor of VEGFR and Epidermal Growth Factor Receptor (EGFR)
Tyrosine Kinases and also inhibits the mTOR–HIF-1 alpha–VEGF signaling
axis
Medullary thyroid cancer: Nonresectable/metastatic.

[13,41,42,56]

Ramucirumab (Cyramza®) Anti-VEGFR2 monoclonal antibody

Anti-VEGFR2 monoclonal antibody
Colorectal cancer: Metastatic/nonresponsive to other treatment like
bevacizumab, oxaliplatin, and fluoropyrimidine. Hepatocellular
carcinoma: Nonresponsive to sorafenib. Non-small cell lung cancer:
Metastatic/aggravated after platinum chemotherapy/with a mutation in
the EGFR gene or ALK gene. Stomach adenocarcinoma or
gastroesophageal junction adenocarcinoma: Advanced/metastatic

[41,57]
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Table 1. Cont.

Drug (Trade Name) Structure Chemical Name, Target, and FDA Approved to Treat Patients with Ref.

Regorafenib (Stivarga®)

4-(4-(3-(4-Chloro-3-(trifluoromethyl)phenyl)ureido)-3-fluorophenoxy)-
N-methylpicolinamide.
Dual targeted VEGFR2-TIE2 tyrosine kinase inhibition.
Colorectal cancer: Metastatic/nonresponsive to other treatment.
Gastrointestinal stromal tumor:
Advanced/nonresectable/metastatic/nonresponsive to imatinibmesylate
and sunitinib malate.
Hepatocellular carcinoma: Nonresponsive to sorafenib.

[41,58]

Ziv-aflibercept (Zaltrap®)
A recombinant fusion protein comprising the

extracellular domains of human VEGF receptors 1 and 2
Inhibitor of VEGF
Colorectal cancer: Metastatic/nonresponsive to other treatment. [41,59]
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Although the concept of targeting tumor angiogenesis has opened up new possibilities to treat
cancer, many limitations need to be addressed to make this therapy successful. Toxicity is one of the
main drawbacks of antiangiogenic treatment, the main side effects being hemorrhage, hypertension
proteinuria, thrombosis, and poor wound healing. Preclinical data have suggested that the medication
affects not only the tumor vasculature but also the vasculature in multiple organs, especially vasculature
rich organs. Optimal dose calculation, especially in combination chemotherapy, is very challenging.
Current decisions in chemotherapy management do not consider inter-tumoral vessel vasculature to
decide the dose and type of antiangiogenic therapy [60,61]. Another drawback is the development of
acquired resistance to antiangiogenic therapy, causing transient disease stabilization and activation of
alternative pathways, vessel co-option, vessel mimicry, and enhanced metastasis. Cancer cells can
develop resistance to antiangiogenic treatment by multiple mechanisms [61]. Cancer cells upregulate
proangiogenic factors like angiopoietins (Ang), epidermal growth factor (EGF), fibroblast growth
factor (FGF), interleukin 8 (IL-8) etc., to activate compensatory pathways to stimulate blood vessel
formation [60,61]. Activation of hypoxia inducing factor (Hif1) and downstream ZEB2 are the
alternative angiogenic pathway that can be targeted.

Cancer cells also secrete several growth factors that recruit cells that ultimately cause resistance to
therapy. Bone marrow-derived cells, monocytes, macrophages, endothelial precursor cells, myeloid-
derived suppressor cells, and cancer-associated fibroblasts can infiltrate and produce proangiogenic
factors which might lead to VEGF-independent new blood vessel formation. The association between
the immune system and angiogenesis is not well understood and is a bottleneck in antiangiogenic
therapy. Vascular heterogeneity, especially in tumor vessels, is quite remarkable, leading to a variable
degree of pericyte coverage and VEGF expression; vessel leakage can thereby lead to altered anti-VEGF
response [62,63]. Non-angiogenic cancers exploit the process of vessel co-option (by hijacking
pre-existing vessels) and thereby cause resistance to antiangiogenic therapy as evident from the
results of several clinical trials [63]. The other potential mechanism operations can be extracellular
vesicles, post-translational modification, genetic polymorphism. Therefore, the knowledge of acquired
resistance will help design theranostic drugs.

5. Alternative Therapy: Nanomedicine

In this context, nanomedicine plays an important role to overcome the existing limitations
of present antiangiogenic therapy due to their interesting physicochemical properties (small size
and high surface area) at nanoscale. Recently, many investigators as well as our group exhibited
various, multifunctional theranostics applications of nanomedicine in different diseases including
cancer, diabetes, neurodegenerative disease, cardiovascular diseases, antibacterial, spinal cord injury,
etc. [23,25,64–66]. Nanoparticles conjugated to various targeting ligands can be employed to utilize
active targeting of antiangiogenic drugs for better therapeutic efficacy. Additionally, various reports
showed the anti and proangiogenic properties of several inorganic nanoparticles (NPs) including
silver NPs (AgNPs), gold NPs (AuNPs), copper nanoparticles (CuNPs), carbon nanotubes (CNT),
europium hydroxide nanorods (EHNs), graphene oxides (GO), zinc oxide nanoflowers, and cerium
oxide nanoparticles (NCe) [13,22,67,68]. Moreover, various other nanomaterials including liposomes,
lipid NPs, protein NPs, polymer NPs, viral and bio-inspires NPs are utilized for the targeted delivery
of antiangiogenic agents to tumors for the suppression of tumor angiogenesis [26,69–72] (Figure 2).
Active targeting of antiangiogenic drugs also help to reduce the unwanted side effects and toxicity.
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Figure 2. Schematic representation of multiple nanomedicine approaches that may be used for the
diagnosis and treatment of angiogenesis.

6. Lipid-Based Nanoparticles for Antiangiogenic Therapy

Amid a variety of nanocarriers, lipid-based systems such as liposomes, solid lipid NPs,
lipid-polymer hybrid NPs, and nanostructured lipid carriers are most widely explored for cancer
therapeutics including antiangiogenic therapeutics, as lipid-based vehicles have advantages to solubilize
insoluble drugs, encapsulate multiple hydrophobic and hydrophilic drugs, and deliver them at specific
tissue sites to accomplish enhanced bioavailability while avoiding off-target side-effects. In this section,
we will highlight the recent advancements in lipid-based NPs in antiangiogenic therapy. As discussed
earlier, VEGF and its receptors (VEGFRs) play a crucial role in angiogenesis and proliferation of many
type of cancer cells, including melanoma, breast, lung, and brain cancer [73]. Downregulation of VEGF
expression or inhibiting its receptors activity through various methods, thus, was proposed to efficiently
suppress tumor angiogenesis with simultaneous tumor growth inhibition (in combination with some
other chemotherapeutics). Recently, Prof. Leaf Huang’s laboratory developed a polymetformin
(PolyMet) containing hyaluronic acid decorated lipid NPs for systemic gene delivery. PolyMet
NPs were shown to be highly capable of VEGF siRNA delivery for VEGF knockdown in a human
lung cancer xenograft, leading to enhanced tumor activity by inhibiting angiogenesis [74] (Figure 3).
The same group also developed lipid-based dual functionalized NPs to VEGF siRNA in vivo [75].
Recently, Yang and his colleagues developed a low-density lipoprotein receptor-related protein receptor
(Angiopep-2) and neuropilin-1 receptor (tLyP-1) targeting cationic liposomes for delivery of siRNA and
docetaxel to gliomas. The dual peptide-decorated liposomes showed efficacious antiangiogenic activity
by knocking down VEGF siRNA along with antiproliferative apoptotic effects exerted by docetaxel in
U87 MG tumors [76]. Dr. Wang’s laboratory developed a miRNA loaded cRGD-functionalized lipid
NPs for antiangiogenic therapy [77]. Another report showed promising VEGF inhibition results by
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using dual receptor targeting liposomes [78]. Guo and his team demonstrated that Lcn2 siRNA loaded
ICAM-1-targeting liposomes showed a potent antiangiogenic effect in triple-negative breast cancer
(TNBC) [79]. Several other research groups also developed similar lipid-based NPs for gene-mediated
angiogenesis inhibition [80–87]. Sorafenib inhibits angiogenesis and proliferation via binding to
VEGFR-2, VEGFR-3, and PDGFR-b tyrosine kinases. The clinical trials of sorafenib are suggesting that
it displays a high antiangiogenic efficacy in several cancers and it also strengthens the efficacy of other
chemotherapeutics. However, very poor water solubility and off-target side effects of sorafenib limit
its clinical usage. Scientists are using nanotechnology tools to overcome these issues. For example,
Meneiand his team developed sorafenib-encapsulated lipid NPs for the treatment of glioblastoma,
which showed high efficiency in the suppression of angiogenesis by inhibiting CD31 [88]. More recently,
Zang and his group demonstrated that co-delivery of VEGF-siRNA and Sorafenib through pH-sensitive
liposomes showed a synergistic effect in hepatocellular carcinoma [89]. Several other lipid-based
NPs, along with other chemotherapeutics, are also being used for better antiangiogenic and antitumor
therapy [90,91]. mTOR inhibitor like rapamycin and its analogs also proved their antiangiogenic
capability. Many studies confirmed that these analogs inhibit the expression of VEGF in tumor cells.
Recently, several studies elicited that rapamycin and its analogs, loaded as single and in combination
with other drugs onto lipid-based NPs, could be used for effective antiangiogenic therapy [92–95].

Figure 3. Lipid nanoparticles made up of PolyMet can systemically deliver vascular endothelial
growth factor (VEGF)siRNA to the tumor site and inhibit tumor growth. (a) H460 tumor-bearing mice
were injected i.v. every other day and tumor volumes were measured every day. (b) H460 tumor
VEGF protein levels after two injections were measured by Western blot analysis. The bar chart in (b)
represents the quantitative analysis of relative normalized VEGF band intensity (Image J). Data are
mean ± s.e.m. (n 1

4 5 per group) analyzed by two-way analysis of variance with Tukey’s correction.
Data are representative of (b) or combined from (a) three independent experiments. NS, not significant;
* p < 0.05, ** p < 0.01, *** p < 0.005. Reproduced with permission from [74]. Copyright, 2016, NPG.

There is a piece of evidence that somatostatin receptors (SSTRs), mainly subtype 2 (SSTR2),
are significantly expressed in both glioma and glioma vasculature endothelial cells. Recently, Misra’s
lab developed paclitaxel (PTX) loaded solid lipid NPs (SLN) functionalized with Tyr-3-octreotide
(ligand for SSTR2) to facilitate dual-targeted chemotherapy by targeting both brain tumor and tumor
neovasculature cells. The study demonstrated excellent tumor growth inhibition and enhanced survival
by an antiangiogenic (CD31 inhibition) and antitumor effect of PTX in orthotopic glioma-bearing
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rats. Additionally, the authors studied tumor vasculature and tumor targeting efficiency of NPs by
conjugating99 mTc [96].In another recent study, the authors demonstrated significant suppression
of angiogenesis by targeting oxaliplatin loaded PEGylated cationic liposomes in a dorsal air sac
mouse model [97]. Earlier this century, Sengupta et al. [98] and Ebos et al. [20] developed polymer
lipid hybrid nanocarriers for delivery of combretastatin (an anti-angiogenesis drug) along with
doxorubicin as a chemotherapeutic. In summary, there is an enormous amount of progress observed in
lipid-based antiangiogenics.

7. Polymeric Nanomedicine

Among all the commonly used biodegradable materials, polymers offer a superior advantage in
the drug delivery field for tumor angiogenesis. Poly (lactic-co-glycolic acid) (PLGA) is a widely used,
FDA approved biocompatible polymer, which offers a versatile platform to load multiple hydrophobic
and hydrophilic small molecule drugs or in combination using various emulsion procedures [99,100].

After Judah Folkman unequivocally enunciated the “angiogenic switch” hypothesis for
tumor progression in 1991, angiogenesis has become an important component of tumor growth
and development and there has been an incredible rush in targeting angiogenesis for cancer
therapeutics [101]. Therefore, there is an urgent need for efficient angiogenesis inhibitors development.
O-(chloracetyl-carbamoyl) fumagillol (TNP-470, angiogenesis inhibitor) reduced tumor growth in
patients with metastatic cancer. However, at required higher doses, many patients experienced
neurotoxicity. To overcome this, Folkman and his team developed a water-soluble TNP-470
conjugated 2-Hydroxypropyl methacrylamide (HPMA) copolymer and nanopolymeric micelles
(Lodamin). These formulations demonstrated beneficial drug delivery features, such as prolonged
systemic circulation half-life, targeting capabilities, controlled drug release, and used as oral nontoxic
antiangiogenic drugs [102,103].

Importantly, as shown in Figure 4, TNP-470 conjugated HPMA copolymer significantly
inhibitedA2058 human melanoma and Lewis lung carcinoma (LLC) tumor growth which suggesting
compelling future antiangiogenic and anticancer treatment options for patients [102]. In another
study, Harfouche et al. described LY294002 loaded PLGA nanoparticles, which can efficiently inhibit
melanoma tumor growth by inducing apoptosis in zebrafish tumors [104]. A combination of chemo- and
anti-angiogenesis therapy holds immense potential for effective tumor growth inhibition. For example,
Yao and his group developed heparin–gambogic acid-containing and c(RGDyK)-functionalized
self-assembled polymeric amphiphilic nanosystem. This formulation showed considerable inhibition
of VEGF, hypoxia inducible factor-1 alpha, and CD31 expression with significant downregulation of
pVEGFR2. These results offer a versatile nanoplatform for efficient combinatorial tumor therapy [105].
In a similar study, nanopolymer was developed for targeted co-delivery of multiple anticancer and
antiangiogenic agents using LyP-1 peptide as a targeting ligand [106]. Later on, several other hybrid
polymers have been developed for antiangiogenic therapy; for example, mitomycin C and doxorubicin
co-encapsulated polymeric.
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Figure 4. HPMA copolymerTNP-470 inhibitsA2058 human melanoma and LLC growth. (a) Effects
of TNP-470 (�), HPMA copolymerTNP-470 conjugate (N) and saline (n) on male SCID mice bearing
A2058 human melanoma (n = 5 mice per group). (b) Excised tumors (from (a)) on day 8 of treatment.
(c) Effects of TNP-470 (30 mg/kg q.o.d. s.c.; �) and HPMA copolymerTNP-470 (30 mg/kg q.o.d. s.c.; N)
on C57 mice bearing LLC tumors and untreated control mice (n); n = 10 mice per group). (d) Dose
escalation of HPMA copolymerTNP-470 inC57 mice bearing LLC tumors. Data at 30 (N), 60 (�), and 90
mg/kg q.o.d. (�) and controls (n) are shown (n = 5 mice per group). All data represent mean ± s.e.
* p < 0.05; ** p < 0.03; *** p < 0.01 compared with control [102]. Reproduced with permission from [102].
Copyright, 2004, NPG.

Nanoparticles exhibited superior anti-angiogenesis and antitumor activity with minimal systemic
toxicity in both sensitive and drug-resistant orthotopic xenografts of breast cancer [107]. Lung metastasis
is one of the primary causes of mortality with no cure available currently. The dual-treatment
options, such as, targeting anticancer and anti-angiogenesis agents may offer some advantages.
Recently the same group developed a similar approach using RGD peptide as a targeting moiety
and demonstrated significant inhibition of the lung metastasis progression and extended median
survival [108]. As shown in Figure 5, Chen and coworkers developed a poly(L-glutamic acid)-CA4
containing polymeric NPs for selective disruption of unusual tumor vasculature, in addition to
elevating the hypoxia level of the tumor microenvironment to further boost up the antitumor ability of
Tirapazamine in metastatic tumors [109]. Additionally, developments in gene therapy for antiangiogenic
cancer therapy has become more attractive [110]. For example, therapeutic gene combinations
of siMyc, siVEGF, and siBcl-2 and an imaging agent containing poly(d,l-lactide-co-glycolide)
(PLG) multi-model nanomaterials functionalized with rabies virus glycoprotein (RVG) peptide for
neuroblastoma-targeting delivery showed potential antitumor efficacy in a neuroblastoma mouse
model [111]. A similar study was performed using block catiomer of poly (ethylene glycol)
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(PEG)-b-poly[N′-[N-(2-[aminoethyl)-2-aminoehtyl]aspartamide]-cholesteryl conjugated with RGD and
an antiangiogenic gene which demonstrated promising results [112]. For interested readers, we provide
a few more reviews describing recent advances of nanotherapeutic-based cancer starvation therapy,
challenges, and future prospects of these anticancer strategies [21,71,113–115].

Figure 5. Schematic illustration of hypoxia-inducing vascular disrupting agents (VDA) nanodrug
combined with hypoxia-activated prodrug for cancer therapy (A). Tumor volume changes of BALB/c
mice bearing 4T1 tumors with both moderate sizes (≈180 mm3) (n = 6) (B) and large sizes (≈500 mm3)
(n = 6). (C). All data points are presented as mean ± standard deviation (s.d.) (* p < 0.05, ** p < 0.01,
*** p < 0.001). Reproduced with permission from [109]. Copyright, 2019, Wiley-VCH.

8. Inorganic Nanoparticles

Inorganic nanoparticles including AuNPs, AgNPs, CNTs, PtNPs, CuNPs, ZnO, and Fe3O4,
etc., have gained immense attention due to their multifunctional properties, easy synthesis,
easy functionalization, and inherent pro and/or antiangiogenic properties [22,25,26]. Several
investigations, including ours, demonstrated the antiangiogenic properties of various inorganic
nanomaterials in cancer therapy in recent times [13,22,116,117].

Mukherjee et al. demonstrated that 5 nm sized AuNPs inhibited the function of VEGF165
(HBGF) demonstrating anti-angiogenesis [67]. Balakrishnan and co-workers reported the use of
chemically synthesized gold nanoparticle conjugated with naturally available photochemical quercetin
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for the inhibition of tumor angiogenesis, epithelial–mesenchymal transition, and tumor metastasis
via EGFR/VEGFR-2-controlled pathway in in vitro and in vivo breast cancer (Figure 6) [118]. Pan et al.
showed the antigenesis and tumor inhibition of AuNPs by inhibiting VEGF165-influenced VEGFR2
and phosphorylation of AKT pathways in mouse xenograft models [119]. Gurunathan et al. exhibited
the antiangiogenic properties of biosynthesized silver nanoparticles using Bacillus licheniformis [120]
observed by several in vitro (cell proliferation, tube formation, migration etc.) and in vivo (Matrigel
plug assay) models. Song et al. showed the inhibition of angiogenesis using CuNPs causing inhibition
of HUVEC migration, tube formation, and cell cycle arrest at various doses of treatment [121]. Giri et al.
reported the use of nanoceria (NCe) nanoparticles for the inhibition of ovarian cancer growth in
an in vivo mouse model that caused activation of MMP2 apart from inhibition of endothelial cell
proliferation and migration [122]. In another recent report, Setyawati et al. demonstrated the
antiangiogenic and antitumor activities of mesoporous silica nanoparticles in a size-dependent manner
causing generation of ROS further activating the tumor suppressing p53 signaling pathways [123].

Figure 6. Effect of free Qu and AuNPs-Qu-5 on DMBA-induced mammary carcinoma in Sprague-
Dawley rats. AuNPs-Qu-5 inhibited the DMBA-induced tumor growth in Sprague-Dawley rats:
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(a) representative photographs of breast tumors in each group; (b) weight of breast tumors in each
group; (c) body weight of all the animals in each group. “a” DMBA alone vs. others; “b” DMBA
induced animals +free AuNPs vs. others; and “c” DMBA induced animals + free Qu.(d) Effect of
free Qu and AuNPs-Qu-5 on histopathological examination. (d) Histopathological examination of
DMBA-induced breast cancer in Sprague-Dawley rats. Histopathological changes in the mammary
tissues of cancer-induced vehicle and experimental animals (hematoxylin and eosin, 10×). L1: Cancer-
induced breast cancer animals show the extensive solid areas and several neoplastic cells lobular
structural disruption; L2: CI + free AuNPs show extensive solid tumors; L3: free quercetin-treated
animal shows a small amount of neoplastic structure; L4: AuNPs-Qu-5-treated animal shows normal
mammary epithelial cells appearance.*Represents neoplastic cells.

Mukherjee et al. showed the dose-dependent manipulation of anti-angiogenesis and angiogenesis
using the treatment of graphene oxides by the modulation of ROS in in vitro (endothelial cell
proliferation assay, scratching assay, and tube formation assay) and ex vivo models (chicken embryonic
angiogenesis assay) [72].

9. Protein Based Nanoparticles

Protein-based NPs have also attracted substantial attention owing to their high biodegradability,
highly symmetrically organized edifices, ideal size for delivery, ability for different interfaces
functionalization, etc. [124–127]. For example, as shown in Figure 7, Lin et al. developed albumin
based NP encapsulating paclitaxel and 4-HPR (angioprevention vitamin A analog) functionalized with
blood brain barrier (BBB) crossing targeting peptide. These dual drug-loaded NPs showed excellent
anti-glioma efficacy on the subcutaneous glioma mouse model by inhibiting angiogenesis, regulating
tumor immune microenvironment, andinducing apoptosis [128]. Itraconazole (ITA) is originally an
antifungal drug, but in recent years, it is being used in cancer as a multitarget anti-angiogenesis
agent [129]. ITA inhibits several angiogenic pathways, including VEGF, VEGFR-2, FGF, etc. [129].
However, its poor water solubility is obstructing its usage as an effective antiangiogenic drug.
Recently, Zhang and his team developed an ITA encapsulated BSA-NP for effective antiangiogenic
and antitumor therapy on a patient-derived xenograft NSCLC model [129]. Rapamycin is one of the
best angiogenic inhibitors that blocks angiogenesis by inhibiting downstream signals such as mTOR.
Nevertheless, its reduced chemical stability, poor water solubility, and significant side effects limit its
usage. Desai and his team employed albumin-based NP to overcome all issues related to rapamycin
and demonstrated superior antiangiogenic and antitumor efficacy using nab-rapamycin in combination
with nab-paclitaxel in human colon and breast cancer xenograft models. In another study, researchers
developed PEG-modified gelatin-based nanovectors for sFlt-1 plasmid DNA delivery to solid tumor
xenograft of breast cancer [130]. In summary, protein-based NPs provide a large contribution to
antiangiogenic cancer therapy.



Int. J. Mol. Sci. 2020, 21, 455 18 of 31

Figure 7. Antiglioma efficacy on the subcutaneous glioma mouse model. (A) Tumor growth curve.
(B) Tumor weight and tumor inhibition rate. (C) Representative tumor tissues. (D) Bodyweight
variations in the treatment course. (E) Organ coefficients (* p < 0.05, ** p < 0.01). Reproduced with
permission from [128]. Copyright, 2016, ACS.

10. Viral and Other Bio-Inspired Nanoparticles

During prior decades, the understanding of viral-based nanotechnology has improved,
simultaneous with development in their design and production [131,132]. Among various virus-based
nanoparticles (VNPs), plant-derived VNPs are considered safe from a human health perspective because
they are not pathogenic in mammals and proteinaceous plant VNPs have appeared as a key platform for
engineering with multiple drugs, imaging molecules, and targeting ligands [133,134]. VNPs emanated
in various sizes, shapes, and each virus species is highly symmetrical and monodisperse. Numerous
VNPs including plant viruses including Cowpea mosaic virus (CPMV), the Human papillomavirus
(HPV), Brome mosaic virus (BMV), Cowpea chlorotic mottle virus (CCMV), Red clover necrotic
mottle virus (RCNMV) and Hibiscus chlorotic ringspot virus (HCSRV) are materialized for various
nanomedical applications [134,135]. Recently, VNPs are also being used in antiangiogenic therapy.
For example, in 2019, Gamper et al. developed a nanocarrier containing coat protein (CP) of Tobacco
mosaic virus (TMV) fused with a highly hydrophobic, insoluble peptide that targets the transmembrane
domain of Neuropilin-1 (NRP1) receptor in cancer cells. The virus conjugated nanopeptide inhibited
angiogenesis and cell migration by disrupting the NRP1-PlexA1 complex and downstream [136].
In another study, Dawson and co-workers developed Cowpea mosaic virus (CPMV) NPs fused with
a fluorescent PEGylated peptide and VEGFR-1 ligand for tumor targeting and imaging. These NPs
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showed a high affinity towards VEGFR-1 on endothelial cell lines and VEGFR1-expressing tumor
xenografts in mice [137]. The vimentin overexpression in tumor endothelium shows a relationship
with the CPMV uptake in tumor endothelial cells, as revealed in studies using the chick choreoallantoic
membrane tumor model. The fluorescent CPMV sensors allowed for the visualization of the flow
of blood and further exploited in tumor angiogenesis imaging [138]. The use of CPMV as a natural
endothelial probe in imaging vascular disease may provide novel insights into the expression pattern
of surface vimentin [138,139]. Similarly, a fluorescent plant VNPs with specific targeting ligands
TMV-BF3 were developed for intravital imaging of the mouse brain vasculature (Figure 8). Further,
these VNPs were used for delivery of therapeutic agents such as drugs or peptides and may lead to the
development of novel cost-effective tools for in vivo theranostics [140].

Figure 8. Intravital imaging of the mouse brain vasculature with Tobacco mosaic virus (TMV)-BF3
particles. (A) Mouse brain vessels labeled with TMV-BF3 at 1 h after intravenous injection into
the tail vein. (B) Same observation window as shown in (A) but after a second injection, this time
with sulforhodamine B; blue, fluorescence emitted from TMV-BF3; red, fluorescence emitted from
sulforhodamine B. The 3D projections were performed with Fiji software using the standard deviation
projection method. Reproduced with permission from [140]. Copyright, 2016, Frontiers.

Regardless of the enormous development in VEGF mediated antiangiogenic therapies available
for therapeutic use, clinical evidence is escalating to recommend that targeting only VEGF may not be
effective in inhibiting tumor angiogenesis. The epidermal growth factor-like domain 7 protein (EGFL7,
30 kDa) is only expressed by vascular remodeling endothelial cells and identified as a key controller
of various angiogenic pathways [141]. Recently, researchers developed EGFL7 ligand decorated
CPMV viral nanoparticles for intravital imaging of tumor neovasculature [141]. They further used
68Ga-labeled E7p72 radiotracer for in vivo targeting PET imaging. These studies suggest that using
EGFL7 expression as a biomarker for tumor angiogenesis would be beneficial since it is expressed
in cells associated with tumor blood cell remodeling and not by mature blood vessels [134,141].
Several other nanoparticles for antiangiogenic therapy were discussed in detail in the recent literature
cited [13,21,22,142–146].

We have tabulated the recent examples of various nanomaterials used for the antiangiogenic
therapy (Table 2).
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Table 2. Various nanomaterials and their anti-angiogenesis applications.

S.No Nanoparticle Therapeutics Application Ref

1 Liposomes
Honokiol (potent
anti-angiogenesis

agent)

Liposomal honokiol improved efficacy of
radiotherapy and chemotherapy in lung
andovarian tumors.

[147–149]

2 Liposomes Gd-DTPA Rhodamine
PE

Gd-RGD-liposomes for target-specific
MRI imaging and therapy of tumor
angiogenesis.

[150]

3 Liposomes Anginex-peptide Anginex-liposomes used imaging for the
angiogenesis-dependent disease. [151]

4 Liposomes EverolimusmTOR)
EG00229 (VEGF/NRP1)

Showed effective tumor growth inhibition
in a highly aggressive syngeneic
immune-competent mouse model.

[152]

5 Solid-lipid
nanoparticle Bevacizumab BSLNPs showed highly more effective

than the parent in glioblastoma. [153]

6 Liposomes Fenretinide
Fenretinide–liposomes showed enhanced
antiangiogenic and antitumor activity on
human neuroblastoma.

[154]

7 Liposomes ALK-siRNA ALKsiRNA loaded liposomes induce
apoptosis and inhibit angiogenesis. [155]

8 Liposomes Clodronate

Clo-liposomes efficiently deplete
tumor-associated macrophages and
showed antiangiogenic and antitumor
effects in primary and metastatic
melanoma.

[156]

9 Gold nanoparticles
Recombinant human

endostatin
(antiangiogenic agent)

Endostatin-gold nanoparticles
normalized vessels in metastatic
colorectal cancer.

[116]

10 Gold nanoparticles GNPs Gold nanoparticles inhibit subsequent
angiogenesis-related signaling events. [67]

11 Gold nanoparticles Quercetin Quercetin-GNPs inhibits EMT,
angiogenesis and invasiveness in cancer. [118,157–160]

12 Gold NPs Peptides Inhibit angiogenesis. [161–163]

13 Nanoparticles Small molecules Inhibits tumor angiogenesis and tumor
growth.

[99,142,143,
164,165]

14 Lipid conjugates PTX/LGC
IRGD-nanoconjugates improve tumor
vessel normalization to achieve optimal
chemo drug delivery into solid tumors.

[144]

15 PLA -NPs Delta-like ligand 4
(Dll4-GD16-PTX

GD16-PTX-NPdemonstrated significant
antiangiogenic and anticancer activity. [166]

16 Cerium oxide-NPs Nanoceria (NCe) NCe-FA demonstrated excellent
antiangiogenic effect in ovarian cancer. [167,168]

17 Tetrac-NP Tetraiodothyroacetic
acid

Tetrac-NP significantly suppressed tumor
growth and angiogenesis in murine
xenograft models.

[169]

18 Polymeric
Nanoparticle

Diamino Propane
Tetraiodothyroacetic

Acid

NPs showed excellent pharmacokinetics,
biodistribution, and antiangiogenesis
properties.

[170]

19 Carbon-NPs Angiogenesis
inhibitors

Inhibits tumor angiogenesis and tumor
growth. [146,171]

20
Silver

nanoparticles
(Ag-NPs)

Ag-NPs
Ag-NPs inhibit vascular endothelial
growth factor (VEGF) and the formation
of new blood microvessels.

[120,172]

21
Chitosan

nanoparticles
(CNP)

Alphastatin/CNPs

AsCs-NPs inhibited the SphK1-S1P
signaling pathway and enhanced the
antiangiogenic effect of Alphastatin both
in vitro and in vivo.

[173,174]
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Table 2. Cont.

S.No Nanoparticle Therapeutics Application Ref

22 Graphene-NPs Graphite(G),
rGOandnGO

Graphite nanoparticles and graphene
oxide nanoplatelets showed potential
antiangiogenic effects.

[175,176]

23 Chitosan-derived
micelles Apatinib Apatinib-micelles showed effective

anti-angiogenesis cancer therapy. [177]

24 Cationic PEGylated
liposomes Gambogic acid GAL significantly inhibited angiogenesis

against TNBC. [178]

25 PLGA copolymer Osseltamivirphosphate
(OP)

PLGA-OP actively impedes tumor
neovascularization, growth,
and metastasis in a mouse model of
human pancreatic carcinoma.

[179]

26 Lipid-PA
nanoparticles Rapamycin and DiR

RDLPNPs showed an excellent antitumor
effect with the enhanced photothermal
and antiangiogenic effect.

[180]

27 Selenium
nanoparticles VEGF siRNA

Showed enhanced in vivo VEGF-siRNA
silencing and fluorescence imaging
efficacy.

[113]

28 Mesoporous silica
nanoparticle

Combretastatin A4
doxorubicin

Tumor vascular-targeted co-delivery
iRGD-NPs presented excellent
anti-angiogenesis and antitumor activity.

[181]

29
pH-sensitive

polymeric
nanoparticles

Doxorubicin curcumin Displaced enhanced proapoptotic and
antiangiogenic activities. [182]

30 Multifunctional
nanodrugs

LMWH and ursolic
acid

Demonstrated excellent anti-angiogenesis
and antitumor activity. [183]

11. Challenges of Nanomedicine, Conclusion, and Future Perspective

Various nanomaterials were comprehensively utilized for different biomedical applications
including cancer theranostics and anti-angiogenic cancer therapy. Nevertheless, some of these
nanomaterials occasionally show significant toxicity and other side effects causing potential challenges
for successful clinical application. Hence, it is crucial to test their biosafety, long term metabolic
activity, degradation property, pharmacokinetics and pharmacodynamics, interaction with immune
cells, sustainable circulation in the body, etc., before their use in humans [25]. The future challenge is to
develop robust cancer targeted anti-angiogenic nanomedicine with minimum side effects. Additionally,
combination of FDA approved anti-angiogenic drugs to these nanomaterials can potentially increase
the therapeutic effects and decrease the dose of treatment and subsequent toxicity. Additionally,
vital information about NPs interaction, uptake, circulation, retention, and excretion are necessary and
need to be thoroughly investigated. Apart from that, more studies are required to reduce the cost of
industrial scale production, develop better technologies to synthesize multifunctional nanomaterials,
and to identify the best route of drug administration [26].

The erratic structure and aberrant functionalities of tumor-associated neo-vessels provide much
needed information to fight and evade the challenges associated with anticancer therapies. It is quite
evident that these therapeutic modalities exhibited an efficacious management of cancer under certain
settings, yet a substantial range of benefits is to be realized for many patients in the form of metastasis
as well as overall survival. Moreover, such approaches and associated with untoward toxicity to
normal cells along with many adverse side effects. The primary future challenge, thus, boils down to
designing novel targeted nanomedicine for anti-angiogenic therapeutics. This should be accompanied
by combinatorial strategy with chemotherapeutics to enhance the anticancer efficacy along with
antiangiogenic tumor growth inhibition. Discovery of novel biomarkers is also urgently needed to
accomplish efficacious drug treatment and their safety. Formulating new strategies to overcome drug
resistance is a must as cancer cells routinely become impervious to drugs. For sure, pharmacokinetics
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and pharmacodynamics parameters of the nanomaterials should be assessed properly, biodegradability
and clearance should be determined meticulously, and route of administration and dose regimen
should be optimized accurately. Obviously, the future cancer nanomedicine will demand a more intense
understanding of metabolic aspects of cancers, possibility of immune destruction, circumventing
various physiological barriers, exploring material properties, etc., to achieve exceedingly efficient
nanocarriers for anti-angiogenic cancer therapy.
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