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Simple Summary: Among all taxa, messages transmitted via chemical signals are the oldest and
most universal. For Asian and African elephants, odors convey information between individuals, and
between elephants and their environment. Pheromones are chemical signals used within a species
and while thousands of pheromones have been identified for insects, only a few dozen have been
elucidated in mammals and other vertebrates. Amazingly, two pheromones are known for Asian
elephants: one signals receptivity in females and the other a heightened reproductive state in males.
The elephant trunk serves numerous functions including detecting airborne odors and transporting
chemicals in substrates such as urine to be detected by multiple sensory systems. Obvious trunk
behaviors provide clear means to assess the interest of elephants in scent sources. Thus, elephants
can serve as a model system for investigating chemical signaling. Prior to the 21st century, research
on elephant chemical signaling focused on within species communication. In the 21st century, these
studies expanded with increasing fieldwork. Studies also revealed the use of odors to detect threats
and forage for food. Chemical signaling in elephants remains a bouquet for further exploration with
promising applications for the conservation of wild elephants and the management of elephants in
human care.

Abstract: Chemical signals are the oldest and most ubiquitous means of mediating intra- and
interspecific interactions. The three extant species of elephants, the Asian elephant and the two
African species, savanna and forest share sociobiological patterns in which chemical signals play a
vital role. Elephants emit secretions and excretions and display behaviors that reveal the importance
of odors in their interactions. In this review, we begin with a brief introduction of research in elephant
chemical ecology leading up to the 21st century, and then we summarize the body of work that has
built upon it and occurred in the last c. 20 years. The 21st century has expanded our understanding
on elephant chemical ecology, revealing their use of odors to detect potential threats and make
dietary choices. Furthermore, complementary in situ and ex situ studies have allowed the careful
observations of captive elephants to be extended to fieldwork involving their wild counterparts.
While important advances have been made in the 21st century, further work should investigate the
roles of chemical signaling in elephants and how these signals interact with other sensory modalities.
All three elephant species are threatened with extinction, and we suggest that chemical ecology can
be applied for targeted conservation efforts.

Keywords: chemical signals; conservation; husbandry; interspecific interactions; mate assessment;
musth; pheromone; reproduction

1. Introduction

Field studies from all three elephant species (Asian elephants, Elephas maximus; African
savanna elephants, Loxodonta africana; and African forest elephants, L. cyclotis) indicate com-
mon sociobiological patterns [1,2]. Females are at the center of elephant social structures in
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which they exhibit philopatry and retain close bonds with their natal groups for life [3–6].
These groups are multileveled with older females exhibiting dominance over younger
ones, and social organization is maintained by fission-fusion processes [2,4,7,8]. Upon
reaching sexual maturity, male elephants remain on the periphery of these female-centered
groups; younger males often form social relationships with each other before becoming
more solitary at their sexual peak [9–12]. Male and female elephants are generally spatially
segregated, except during periods of reproduction when females are in estrus and/or
males are in a heightened reproductive period called “musth” [13–15]. While musth occurs
regularly (although asynchronously between males), female elephants are only in estrus
for several days every four to five years due to long gestation and weaning periods [16–19].
Therefore, synchronized breeding is critical, and elephants must navigate complex social
environments to reproduce. Elephants rely on a milieu of chemical signals to announce
their reproductive intent and to ascertain the receptivity of conspecifics. All three species
are megaherbivores with broad yet selective palates [1,20,21]. Because of their size, ele-
phants are considered largely free from predation. Nevertheless, large carnivores can be
a threat to young, sick, and old elephants, and humans have hunted elephants and their
relatives for millennia [22]. Thus, elephants like other species are likely to use chemical
signals in food selection and predator detection.

By the end of the 20th century, we had a reasonable understanding of the importance
chemical signals play in elephant society. A deeper knowledge existed about chemical
signaling in Asian elephants, but the commonality of behaviors, similarities in estrus and
musth, and general social dynamics of the species supported hypotheses that African
elephants would use chemical signals and perhaps specific pheromones for inter- and
intra-sexual communication. More work was needed in understanding the mechanisms of
pheromone synthesis and reception. The degree of chemoreception sensitivity by elephants
remained to be explored. Of course, chemical signals do not work in isolation. Elephants
have excellent hearing and sensitive touch capabilities as well as reasonable eyesight. These
senses are covered elsewhere in this issue, so they will not be reviewed here. Nevertheless,
we realize the need for research on the interactions across the senses in both perception
and signaling [23].

Our enhanced understanding on the importance of chemical signaling to elephants
has since prompted investigations into the potential applications in science, husbandry,
and management. We first give a background on elephant chemical ecology up to the 21st
century; earlier reviews cover these findings in greater depth. Here, we strive to update
our knowledge of elephant chemical ecology with research that has occurred over the
past twenty years for both pure and applied purposes. Because so little work has been
conducted on the chemical ecology of forest elephants, the use of “African elephants”
throughout this review relates only to the savanna species (L. africana).

2. Background up to Turn of 21st Century

By the turn of the current century, intraspecific chemical signaling by Asian and
African elephants had received considerable attention (e.g., reviews included [24–28]).
One of the critical findings up to this time was the determination that African elephants
exhibited musth similar to what had been known for centuries by Asian elephants [14,15,29].
Males of both species dribble urine, secrete an odorous, viscous fluid from the temporal
gland (i.e., temporal gland secretions, TGS), can act aggressively, and focus their energies on
locating receptive females (reviewed in [23,30–32]). Common aspects of musth in behavior
and apparent function supported investigating other similarities in the chemical ecology of
Asian and African elephants. A second landmark discovery was the identification of the
pre-ovulatory pheromone, (Z)-7-dodecen-1-yl (Z7-12:Ac) in the Asian elephant [33,34]. The
compound is common in lepidopteran chemical signals, revealing an intriguing example
of convergent evolution. With only a few known pheromones in mammals at the time, the
identification of a single compound that tracks the receptivity of a female Asian elephant
bordered on ground-breaking. Chemical signals appeared to be mediating intersexual
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elephant reproductive behavior with musth excretions and secretions attractive to females,
and at least in Asian elephants, a urinary signal that attracts males.

Chemical signals also play a role for interactions within the sexes. The chemical
milieu of musth changes over its duration in Asian elephants with distinct stages [31,35].
In captivity, male Asian elephants distinguish musth and nonmusth urine [36]. African
elephants display not only similar behaviors but also hormonal profiles and compounds
from TGS comparable to Asian elephants in musth [37]. Males, especially younger ones,
may avoid musth males or their secretions [30,38,39]. In Asian and African elephants,
the chemistry of TGS, breath, and urine before and during musth was explored with
single compounds (e.g., 2-butanone as an indicator of impending musth) or types of
compounds (e.g., ketones, alcohols, and aldehydes) as candidates for chemical signals in
one or both species [26,40]. Females also respond to chemicals released or emitted by same
sex conspecifics (e.g., [41]). Before the 21st century, no compounds from these sources
were isolated as chemical signals. Because the secretions and excretions from elephants
are so chemically complex, the possibility that chemical signals are composed of blends or
bouquets rather than single compounds also was considered likely.

In addition to the behavior and chemistry of these inter- and intra-sexual signals,
the anatomy of the structures and physiology of the senders and receivers also had been
examined [26,27,30,35]. The elephant trunk serves to sample volatile compounds in the
air and chemicals in a liquid medium such as TGS and urine [42]. The African elephant
trunk terminates in dorsal and ventral tips, while the Asian trunk exhibits only the dorsal.
The tips house sensory vellus vibrissae that likely play tactile and chemosensory roles [43].
Mucus drips from the trunk orifice and proteins can bind with chemicals in liquids such as
urine [26]. These anatomical features provide the structural foundation for the observed
trunk behaviors.

The availability of discrete, obvious chemosensory behaviors by elephants makes
them excellent models for studies on chemical signaling (Figure 1). The trunk can hover
over a sample or be lifted to sniff the air, but it also can check a liquid by contact with
the trunk tip or even flatten onto the substrate (a place behavior). Once the substrate is
contacted, the trunk can transfer chemicals to the openings of the vomeronasal organ in
the roof of its mouth in a behavior known as flehmen, which can serve as an indicator of
male interest in a female or her urine [44]. For example, in a study with captive Asian
elephants, the chemosensory responses of females to male urine depended on the estrous
condition of the female and the stage of musth/nonmusth of the male (as determined by
serum progesterone and testosterone, respectively) [45].
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Figure 1. Series of stereotyped chemosensory behaviors present in African and Asian elephants (shown here with a male
Asian elephant), adapted from [45,46]. Sniff: elephant holds trunk over signal of interest. Check: dorsal tip (“finger”) of
trunk contacts signal. Place: entire end of trunk contacts signal. Flehmen: trunk transports signal to orifice of vomeronasal
ducts. In order, these behaviors indicate the level of interest in a signal and may be used readily in bioassays among wild
and captive elephant populations. Yellow circles are chemical signals of interest, and blue arrows show points of contact of
the trunk with the chemicals.

Compared to intraspecific signaling, the study of interspecific chemical signals and
odors used by elephants has received less attention. Elephants are megaherbivore browsers
and grazers with a broad, yet selective diet in that while they can feed on numerous
plant species, they tend to prefer relatively few [21,47–52]. From these studies and others,
elephant selectivity is based upon plant quality and the degree of plant chemical defenses.
Similar to carnivores detecting prey via scent, elephants use the chemical composition of
plants to make diet choices, but at the time further work was needed to understand the
bases of such choices. Because of their large size as adults, elephants are relatively free
from predation, except when elderly or ill. Young, smaller individuals also are susceptible
to predation, especially by lions (Panthera leo) but also by other predators such as tigers
(P. tigris), crocodiles (Crocodylus spp.), and possibly hyenas (Crocuta and Hyaena spp.) [53].
Humans have posed the greatest threat to elephants both through direct killing and indirect
effects that include climate change and habitat modification [54]. The extent to which odors
play a role in the detection of predators or human threats also needed further investigation.
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3. 21st Century Gains in Understanding
3.1. Introduction

The importance of chemical sending and receiving to elephants continues to be solidi-
fied in the new century. One of the most powerful recent discoveries in this vein determined
that the African elephant genome contained the largest repertoire of olfactory receptor
(OR) genes (some 2000) of the 13 placental mammals investigated [55]. When intact gene
clusters were determined, elephants had a similar quantity of clusters, but with more
genes per cluster, compared to mice and humans. The authors conjectured that the number
of OR genes correlates with olfactory discriminatory ability. In a study along such lines
with Asian elephants, trained individuals could discriminate among 11 aliphatic acetic
esters [56]. The compounds used had been tested with other species, and elephants showed
a similar or faster rate of learning to discriminate. In addition, elephants performed better
at these olfactory than comparable visual trials. In further exploration of their olfactory
abilities, an additional homologous series of aliphatic compounds were tested along with
enantiomeric pairs [57]. Elephants were capable of such discrimination within like pairs,
and a ten-fold reduction in concentration did not affect their ability. African elephants have
been trained to successfully identify trinitrotoluene (TNT) used in land mines [58]. Thus,
compounds that may have intra- or inter-specific meaning and even those that likely have
no evolutionary context can be perceived and discriminated by elephants.

The anatomy of the chemoreceptive sensory system has received somewhat less
attention than the behavioral aspects. The main olfactory bulb in elephants is similar to
other mammals with its large size being a notable feature [59]. Interestingly, despite the
prevalence of vomerolfactory behavior (i.e., flehmen responses) exhibited by elephants,
no accessory olfactory bulb has been located as is found in many mammals [60,61]. The
VNO develops in the womb and appears fully functional in newborns, supporting the
observation of flehmen-like behaviors in young calf elephants [62,63]. Two decades ago,
interdigital glands were identified in Asian elephants that are akin to human eccrine
glands [64,65]. We still do not understand the function of these glands and if they contribute
to chemical signaling by elephants. Another intriguing finding that has potential for
chemical signaling is the antimicrobial properties of TGS [66]. While this could have
evolved as a defensive mechanism against infection, the possibility exists that the microbes
play a role in chemical signaling as the TGS streams down the cheek and is rubbed on
objects in the environment.

3.2. Intraspecific Chemical Signaling and Capabilities

Chemical signaling plays an important role both within and between the sexes in
elephants (Figure 2). We illustrate some of the landmark discoveries in this section.

In the new century, perhaps the most profound contribution recently was the identifi-
cation of the compound frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane) as a musth
pheromone in the TGS of Asian elephants [67]. Frontalin is not contained in the temporal
secretions of young males; these males release a sweet, honey-like TGS [68]. As males age,
frontalin levels increase and the ratio of the two enantiomeric forms changes from a greater
proportion of the (+) [1R,5S] enantiomer to an almost racemic mixture in older, mid-musth
males [69]. Female Asian elephants in their follicular phase distinguish among ratios and
concentration of frontalin [70], but this line of investigation was never completed (Dr. L.E.L.
Rasmussen was conducting this investigation when she passed away). A study by LaDue
et al. [46] used a range of concentrations of racemic frontalin in bioassays with male and
female Asian elephants at zoological facilities throughout North America. Older males
that had undergone musth were more responsive than younger males who had not been
through musth. Similarly, older, sexually experienced females also were more responsive
than their younger counterparts. The roles of frontalin still require further investigation;
the compound is not only present in TGS but also elephant blood, breath, and urine [30,71].
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Figure 2. Summary of 21st-century findings in intraspecific chemical signaling among elephants. EM = Elephas maximus, the
Asian elephant. LA = Loxodonta africana, the African savanna elephant. Red indicates female–female signals, blue indicates
male–male signals, and purple indicates intersexual signals.

Research on pheromones in African elephants used the progress with Asian elephants
as a starting point. Chemical analyses of urinary volatiles from captive and wild African
elephant males revealed similarities across location and provided prospective signals of
musth [72]. The Asian musth pheromone, frontalin, also occurs in the ovulatory urine
of African elephants [73]. However, bioassays of frontalin in water with wild elephants
in Tanzania elicited no heightened responses compared to a vanilla extract control [74].
Additional study suggested that microbes in these secretions may play a role in the signals
of musth [75–77]. Similar to Asian elephants, hormones, behavior, secretions, and excretions
show complementary alterations in African male elephants during musth [78,79]. In
general, hormones alter gene expression and cellular function, the effects of which are often
observable through behavior. Yet, we also know that the environment (e.g., interactions
with conspecifics) can modify behavior that affects hormonal activity. In this regard, we
still need a better understanding of the interaction between hormones and intraspecific
behavior in elephants.

In situ and ex situ studies with African elephants pursued pure and applied scientific
objectives (e.g., [80,81]). Such studies led to an expanded chemosensory ethogram, incorpo-
rating not only the main chemosensory behaviors of sniff, check, place, and flehmen [45] but
also accessory trunk behaviors [82]. While the displays of main and accessory chemosen-
sory behaviors are not limited to intraspecific communication, their correlation was eluci-
dated through such studies. Using these behaviors, the chemosensory behavior of elephants
in response to conspecific urine and feces from two populations—one in Tanzania and
the other in South Africa—showed similar patterns across age and sex classes, although
somewhat different patterns emerged developmentally between the sexes across the pop-
ulations [80,83]. Interestingly, chemosensory response patterns in response to luteal and
estrous conspecific urine were similar by male African elephants housed at facilities in
North America to males in the wild [84]. In the South African population at Addo Elephant
National Park, males expressed chemosensory behaviors to a greater extent than females,
thus appearing more reliant than females on signals emanating from conspecific feces and
urine [85,86]. However, more work on female elephant olfaction needs to be conducted
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including the role of familiarity (e.g., see [87]) and the possibility of estrous synchrony
mediated through chemical signals [88]. Together these findings support the generality of
chemosensory behavior at least in African savanna elephants.

Following the discovery of the Asian elephant estrous and musth pheromones, studies
were conducted to determine if such signals existed in African elephants. In bioassays
at zoological facilities, male African elephants distinguished estrous status from urinary
signals [84], yet even with the advent of new techniques that provided candidate com-
pounds [73,89–91], a pre-ovulatory pheromone has not been identified. Like Asian elephant
females, African elephant females can distinguish the estrous stage of conspecifics but
unlike Asian elephants not through urinary signals [92]. In a study of male African ele-
phants at zoological facilities, males performed significantly fewer flehmen behaviors to
musth than nonmusth urine but did not show differential responses to urine from early
and late stages of musth [93]. In addition, the responding elephants did not show different
rates of olfactory behaviors, only flehmen that activates the vomeronasal system. Thus,
behavioral studies support the existence of chemical signals—perhaps single compound
pheromones—as indicators of estrus and musth in African elephant, but chemical iden-
tification and verification is lacking at the present. African elephant intraspecific signals
may not be single compounds, but it also seems likely that they are not overly complicated
chemical images [94].

While we have been aware of elephants’ abilities to detect intraspecific signals in
breath, TGS, and urine, other potential primary or secondary sources of chemical signals
are just starting or have yet to be investigated. Male Asian elephants exhibit greater inter-
est in dung from pre- (follicular) compared to post-ovulatory (luteal) phase females [95].
African elephants use olfactory cues (e.g., urine-soaked earth) along pathways and around
waterholes potentially to determine the identity and location of conspecifics [86,96–98].
Other secretions that potentially release pheromones for intraspecific signaling include
saliva, mucus, and fluid from the ears and interdigital glands [24,99]. In particular, saliva
may be a potentially rich source of pheromones (or hormones functionally serving as
pheromones), as has been observed in other mammals [100–102]. The existence of sali-
vary pheromones could explain trunk-to-mouth exchanges frequently observed between
elephants [103,104]. Elephants also exhibit a variety of chemosensory behaviors when
examining a dead conspecific, although we have little understanding of what information
they might be gathering [86,105–107]. The ubiquity of intraspecific chemical signaling by
elephants challenges our imagination as to the types of information they are gathering. As
stated above, a better understanding of their natural products chemistry would help along
with further work on the role of microbes [76,108] and anatomy. All these avenues of future
research could inform us on not only intraspecific but also interspecific chemical signaling.

3.3. Interspecific Chemical Ecology

Animals should be expected to use chemical information from their predators to
exhibit a wide range of appropriate responses based on where, when, and how the predator
cue is perceived [109]. Except for humans and large cats, elephants are largely free from
the danger of predators; in many cases, humans pose the biggest threat. African elephants
distinguished between clothing worn by Maasai and Kamba tribesmen using olfactory
and visual cues [110]. Their response to the Maasai clothing was more aggressive, perhaps
reflective of the increased threat by this tribe in which a rite of passage for men involves
spearing an elephant. Lions and tigers are known to prey on elephants where they co-occur,
especially calves [53,111,112], and elephants can distinguish the sounds of these predators
from controls, responding in a way indicative of delineating degree of threat [113,114].
Using dung from lion and other cats or animals not known to regularly prey on elephants
as well as chemicals unique to lion dung, five semi-tame African elephants in South
Africa responded in a manner indicative of greatest threat from the lion samples [115].
Interestingly, in this same study, elephant responses did not differentiate between lion and
cheetah (Acinonyx jubatus), yet the latter would never prey on elephants. Further work
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is needed to determine if elephants are generalizing across large cats, large carnivores,
carnivores in general, or some other categorization. For African elephants, perceived threat
can affect movements and grouping behavior [7,113,116], and chemical cues are likely
indicators of such threat.

In addition to detecting potential predators, the query arises as to what extent ele-
phants may use odors to inform foraging decisions. One concern for elephants while
foraging is the presence of bees. Elephants foraging on trees with hives in them may
disrupt the hive, resulting in angry bees attacking them. The sound of angrily buzzing
bees evokes alarm calls and avoid behavior in elephants [105]. The smell of honey is asso-
ciated with bees, and honey odor couples with bee buzzing sounds may indicate danger
to elephants [106]. The multimodal signal may be more meaningful and thus resistant
to habituation compared to single modality signals [107]. In addition, plant secondary
metabolites (PSMs) have been proposed to have evolved in part to reduce mammalian
herbivory [117,118], although the relationship between types of herbivory and chemical
responses can be complex [119,120]. Elephant foraging behavior has received attention
regularly (e.g., [121–130]), with African elephants classified as mixed-feeders demonstrat-
ing selectivity in species and plant parts [131,132] that is influenced by nutritional value,
the palatability:tannin ratio, and levels of plant toxins ([133] and citations therein). A
study conducted with handled elephants in South Africa showed that foraging choices
were based on plant volatiles, especially monoterpenes, that were correlated with PSM
content [134,135]. Because male and female African elephants differ in their feeding pat-
terns [121], it would be interesting to examine intersexual differences in preferences to
plant volatiles. Asian elephants can use odor but not sound to locate hidden food [136], and
they can assess the quantity of a single food type through olfaction [137]. Recently, African
elephants were shown to detect olfactory cues associated with water [138]. The body of
work to date suggests that odors play an important role in elephant foraging decisions, but
more research is needed.

3.4. Conservation and Management Applications of Chemical Ecology of Elephants

All three elephant species are threatened with extinction [139–141], and many in
situ and ex situ elephant populations are intensely managed to control dynamics such as
movement, foraging patterns, health, and reproduction that maximize sustainability. The
use of olfaction for intraspecific signaling, threat detection, and foraging suggests that a
push-pull approach [142] could be useful for elephant management [143,144] (Figure 3).

The ex situ propagation of elephants may be vital for the long-term viability of E.
maximus and L. africana, but even many established captive populations are currently
unsustainable [1,145,146]. Therefore, elephant husbandry has been an ongoing area of
study with interest in a variety of topics relevant to captive breeding efforts including health,
welfare, and enrichment [147–151]. For most terrestrial mammals, the detection of odors is
a major means of evaluating their environment and communicating with conspecifics [152],
and thus scents have a high potential for enhancing welfare and providing enrichment [153].
However, the selection, implementation, and assessment of scents related to animal well-
being can be difficult and requires additional research [154]. The indiscriminate application
of chemical signals could result in sensory habituation to these odors, decreasing their
efficacy in captive applications. Therefore, a goal-centered approach to olfactory enrichment
is necessary, incorporating well-defined behavioral outcomes that indicate success or
that suggest modifications are necessary [155,156]. For instance, because many captive
elephants commonly exhibit stereotypies and inactivity [157], zoo elephant managers
may wish to use pheromones to stimulate activity and increase behavioral diversity. The
functionality of these pheromones is sex- and age-specific, so their application should
be targeted. Indeed, a recent study of captive Asian elephants showed that while both
sex pheromones can effectively increase behavioral diversity and activity, the degree
to which these compounds function is influenced by sex, sexual experience, age, and
social access [158]. One of the benefits of using pheromones is their inherent biological
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relevance; thus, we propose that they would be resistant to habituation. Behavioral and
physical health is often important in determining reproductive success [159,160]. The ex situ
propagation of other threatened mammals (e.g., the giant panda, Ailuropoda melanoleuca)
has been bolstered by using chemical signals to stimulate reproductive function and
activity [161]. Because of the unique reproductive biology of elephants and the artificial
social environments of many captive elephants, sex pheromones may also hold promise in
enhancing captive breeding efforts in these species. More experimental work is needed to
assess how chemical signals could benefit elephant husbandry and captive sustainability.

Figure 3. Potential applications of chemical signals for the conservation, management, and husbandry of elephants, using
the push-pull approach [142] to manipulate elephant movement.

In the wild, elephant conservation is complicated by the issues of illegal take by
humans and competition with humans for limited resources in the forms of habitat, water,
and food [162–166]. Chemical ecology has not played a major role in the issue of poaching,
although the chemical composition of poached ivory can be used to trace the date of
death [167] and DNA analysis helps to isolate location [168]. However, for mitigating
human–wildlife conflicts (HWC) including human–elephant conflict (HEC), chemical
ecology has been an important contributor [143]. Human–elephant interactions (HEI)
can turn into conflict when the two species vie for a common, limited resource such as
space, food, or water. HEC may not be an issue of too many elephants or people [169], but
rather their distribution when resources are limited (e.g., water during a drought) or at a
premium (e.g., crops approaching harvest). At the population level, carrying capacities for
elephants have been estimated by considering the negative effects of PSMs on elephant
foraging [170]. Intraspecific chemical signals are posited as honest means of communication
and thus have potential for modifying the behavior of particular categories of elephants
(e.g., adult males or females) in predictable ways [80]. To date, only pheromones for
Asian elephants have been identified. Yet, even with Asian elephants, application of the
pheromones in the field for conservation purposes has not been conducted in part because
the compounds are not readily available, can be somewhat expensive, and a practical means
of dispensing has not been formulated. Fortunately, research on the responses of African
elephants to bee pheromones [171] has used SPLAT® (Specialized Pheromone and Lure
Application Technology) formulated to reduce insect pests [172] in order to dispense the bee
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pheromones. This matrix might be useful for dispensing the Asian elephant pheromones
as well.

In addition to bee pheromones, other odors have been used to deter elephants from
human habitations and crops. One avenue is to grow aromatic plants that elephants
avoid [173,174]. A problem so far with this approach is that aromatic plants often have
medicinal or spice uses but do not provide sustenance. In contrast, sustenance crops such
as rice and maize are not highly aromatic. Thus, aromatic plants may be consumed less
by elephants, but they may not enhance food security for people. Chili peppers (Capsicum
spp. or other hot chilis) have been used for as a deterrent in a variety of forms, including
growing chilis around sustenance crops, making a motor-oil based extract and creating a
cloth and rope fence, by burning, and via gas dispensers (e.g., see these papers and refer-
ences therein: [175–180]). A recent study used high performance liquid chromatography
coupled with mass spectrometry to quantify the two major active ingredients, capsaicin
and dihydrocapsaicin, [181]. Success using chilis to protect crops has varied widely. The
active ingredients are capsaicinods that activate the trigeminal nerve in the elephant trunk,
leading to an aversive reaction. The reasons for variable success are potentially many.
Further work is needed to examine the responses of elephants to known concentrations
of the capsaicinoids. Predatory odors in the form of lion dung and its major, signatory
chemical components evoked aversive behavior in handled elephants in South Africa [115].
Field testing is needed to see if these responses translate to effective deterrence in the
wild. Santiapillai and Read [182] conjectured as to the possibility of masking the odor of
ripening crops such as rice to reduce elephant consumption. General unpleasant odor
mixtures also are displeasing to elephants also may aid in deterring elephants. For example,
Oniba and Robertson [183] used a mixture of chili, garlic, ginger, neem leaves, eggs, and
cow or elephant dung, which in this preliminary study was effective at reducing crop
raiding. Rasmussen and Riddle [184] tried a mixture of plant and animal products as
an olfactory deterrent, and they concluded that olfaction alone was insufficient to deter
elephants from food. This is a good recommendation to keep in mind; it is unlikely that a
single sensory ‘silver bullet’ will be identified to mitigate crop raiding and similar forms of
human-elephant conflict. Nevertheless, chemical signals are vitally important to elephants,
so their potential roles for husbandry and conservation should not be underestimated.

4. Conclusions

Elephants serve as an excellent model system for mammalian chemical ecology. Behav-
ioral, biochemical, genetic, and physiological studies all point to elephants as highly reliant
on their chemical senses. Their presence in zoological facilities, their capability of learning,
and the relative ease at which they can be observed in the wild make them good candi-
dates as a model system for further understanding mammalian chemical ecology [185].
African elephants use urinary odors to recognize conspecifics and create expectations of
where particular individuals are located spatially [96]. African and Asian elephants can
distinguish scents from different humans through operant conditioning [186,187]. Studies
like these, the ability to work with and train elephants, and their distinct, readily displayed
chemosensory behaviors show that elephants and their use of odors make them good
subjects for the investigation of cognition related to olfaction in non-primate mammals.

Despite the social complexity and cognitive capabilities of elephants, single or a small
set of compounds may well be important in orchestrating elephant society (e.g., [94] for
chemical signaling in mammals). Challenges for the 21st century remain to identify addi-
tional pheromones in elephants and to examine further how these signals work in elephant
society, especially in a multimodal way with other signal types (e.g., [188]). As Rasmussen
and her colleagues have shown, the identification of the pheromone (Z)-7-dodecen-1-yl can
be used as a tool to understand pheromone transport, associated physiological conditions,
and condition-dependent behavioral responses. We should eagerly pursue identifying
the intraspecific chemical signals (i.e., pheromones) and relevant context in elephants and
all vertebrates [189]. Further, as illustrated in this review, numerous intraspecific and
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interspecific interactions are mediated at least in part by chemical signals in elephants.
Thus, we should continue to explore the broad chemical ecology of elephants.
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