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Abstract

Background: Multi-locus sequence typing (MLST) is a standard typing technique used to associate a sequence type
(ST) to a bacterial isolate. When the output of whole genome sequencing (WGS) of a sample is available the ST can
be assigned directly processing the read-set.

Current approaches employ reads mapping (SRST2) against the MLST loci, k-mer distribution (stringMLST),
selective assembly (GRAbB) or whole genome assembly (BIGSdb) followed by BLASTn sequence query.

Here we present STRAIN (ST Reduced Assembly IdentificatioN), an R package that implements a hybrid
strategy between assembly and mapping of the reads to assign the ST to an isolate starting from its read-
sets.

Results: Analysis of 540 publicly accessible Illumina read sets showed STRAIN to be more accurate at correct
allele assignment and new alleles identification compared to SRTS2, stringMLST and GRAbB. STRAIN assigned
correctly 3666 out of 3780 alleles (capability to identify correct alleles 97%) and, when presented with
samples containing new alleles, identified them in 3730 out of 3780 STs (capability to identify new alleles
98.7%) of the cases. On the same dataset the other tested tools achieved lower capability to identify correct
alleles (from 285 to 96.9%) and lower capability to identify new alleles (from 1.1 to 97.1%).

Conclusions: STRAIN is a new accurate method to assign the alleles and ST to an isolate by processing the
raw reads output of WGS. STRAIN is also able to retrieve new allele sequences if present. Capability to
identify correct and new STs/alleles, evaluated on a benchmark dataset, are higher than other existing
methods. STRAIN is designed for single allele typing as well as MLST. Its implementation in R makes allele
and ST assignment simple, direct and prompt to be integrated in wider pipeline of downstream
bioinformatics analyses.
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Background

Multi-locus sequence type (MLST) is a standard tech-
nique used to associate a sequence type (ST) to a bacterial
isolate. An ST is a numeric code assigned to a unique
combination of allele variants for a small set of housekeep-
ing genes (commonly seven or eight, depending on the
species). Sequence typing methods are essential epidemio-
logical tools in infection prevention and control for dis-
criminating different bacterial isolates of the same species.
A review of MLST methods has been published by
Maiden et al. in 2013 [1].

The broad availability of high throughput sequencing
technologies (HTS) makes bacterial whole genome sequen-
cing (WGS) feasible in research and clinical laboratories.

In the near future, it is likely that WGS will replace
currently locus-wise typing methodologies due to its
limited costs and high throughput readout. However,
the analysis of short reads, the common output of se-
quencing technologies, still represents an open issue.

So far, two families of methods have been described
to assign ST from short reads. The standard approach
is the whole genome assembly of the short reads that
produce “contigs” spanning the entire genome se-
quence. These contigs, are used to query a reference
database of deposited known alleles of the housekeep-
ing loci to identify perfect matches and determine the
allele sequence harbored by the isolate which must be
typed. Such allele assignment procedure is imple-
mented by the BIGSdb application [2], which is the
reference web application tool for the assignment of
alleles and ST identifiers. One major advantage of this
procedure is that it is able to return new allele se-
quences if present. A non-negligible disadvantage is
represented by the fact that the genome assembly is
time-consuming and many parameters must be tuned
to achieve satisfactory quality levels.

In 2014, Inouye et al. proposed SRST2 [3], a tool for
the detection of genes, alleles and multi-locus sequence
types (MLST) based on the mapping of the entire set of
short reads against the reference allele database. This ap-
proach uses a statistical method to determine the likeli-
hood of alleles without assembling short reads. SRST2
has been proved to outperform the assembly-based ap-
proaches because it is computationally faster and more
sensitive. A disadvantage is that in case of indels, the
new allele consensus sequence is not included in the
output FASTA files and ad hoc assembly of the reads is
needed.

More recently an assembly- and alignment-free,
platform-independent program called stringMLST has
been released [4]. The program implements a simple
hash table data structure to find exact matches between
short sequence strings (k-mers) and an MLST allele li-
brary. An advantage of stringMLST is that it is very
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rapid. However, it does not report the sequences of new
alleles.

In 2016 a new program named GRAbB (Genomic
Region Assembly by Baiting) [5] was developed and
released by researchers of the Fungal Biodiversity
Centre (Utrecht, the Netherlands). GRAbB is dedi-
cated to assembling specific genomic regions from
NGS data.

Here we present STRAIN: a hybrid strategy between
assembling-only and mapping-only methods for ST
assignment. STRAIN is implemented as an R package,
this analysis environment being used in the bioinfor-
matics field. STRAIN is parallelized, reducing the
computational time on modern computers and pro-
vides higher level of accuracy. We conceived STRAIN
i) to overcome the whole-genome assembly step, fo-
cusing only on the loci of interest, ii) to improve cap-
ability to identify correct STs, iii) to improve the
capability to reliably identify new alleles and finally
iv) to infer the sequences of new alleles in case they
are present in the sample.

Implementation

An overview of STRAIN implementation is depicted
in Fig. 1. The idea of our methodology is to recon-
struct the sequences of each locus of interest by as-
sembling the subset of reads that map, either partially
or totally, to the reference databases of its known
alleles.

In the first step bowtie2 [6] is used to map the en-
tire set of reads against the allele sequences of the
locus. Bowtie2 is run against the allele variants of
each of the seven loci of interest. The output of bow-
tie2 is saved in seven different files, one for each
locus. We use bowtie2 to filter the reads that match
the seven loci of interest from the reads that match
the rest of the genome. We run bowtie2 with low
stringency parameters to allow the program to return
a good number of matching reads. Such matching
reads can align for different percentages of their
length to the reference alleles. We apply three filters
on the minimal percentage of read alignment in order
to test increasing informative matchings.

The second step (red square in Fig. 1) consists in
the assembly performed by SPAdes [7] of the subset
of reads. At the end, if the resulting contig(s) per-
fectly matches for the entire length only one known
allele with no mismatches and no indels, we assign
the isolate to that allele variant. If the subset of reads
assembles in contig(s) shorter, longer or different
(with mismatches or indels) to any deposited allele
we do not assign the isolate to any known allele and
the program returns a message “New?”, envisioning
the presence of a novel variant. A directory called
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Fig. 1 Summary of STRAIN pipeline. The program starts with input sequence file(s) in FASTQ format (compressed or not) and a dataset of
reference allele sequences in FASTA format. Using bowtie2, reads are mapped against the reference alleles dataset. Four separate sets of mapped
reads are formed according to an increasing match criterion (all mapped reads, reads perfectly matching at least 30, 60 and 90% of their lengths).
As highlighted in the red box, each set of reads is separately assembled by SPAdes or Velvet to produce the locus contig(s). Each contig is finally
aligned by BLASTn against the reference alleles dataset to identify the perfect match. The program stops i) when there are no reads to be
assembled, ii) when no contigs are produced by the assemblers, iii) a new allele variant sequence is identified or iv) a perfect match is found

“new alleles” is created and contains the sequences of
the putative new alleles. Instead, if the number of
reads is insufficient for the assemblers to create a
contig (low coverage) the program returns a message
“low coverage”.

Algorithm description

STRAIN is designed to be run on a standard
computer and requires only minimal information:
the path to a directory containing the gzipped
FASTQ files (fastq.gz) generated by the isolate
WGS experiment and a path to a folder containing
the reference FASTA files of the known allele
sequences for the loci of the MLST profile. For
species annotated in PubMLST the FASTA files

together with the profile definition can be
downloaded using the function getMLST() designed
to dump the sequences directly from the public
repository PubMLST (http://pubmlst.org/).

FASTAQ files are merged into a single file
disregarding read pairing, i.e. both forward and
reverse reads are merged together in a single file (if
sequencing consisted of one million paired-end
reads 150 bps long, the merged file will be of two
million reads 150 bps long). Each locus is processed
separately in parallel. All reads are mapped against
known allele sequences using bowtie2 (version 2.2.6
and above) program with —very-fast-local to handle
soft clipped reads. Direct assembly of these reads
can introduce a variety of allele chimeras catching
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non-specific reads especially at the border of the
locus. To overcome this problem all mapped reads
are also filtered to generate 3 additional sets:

1. reads perfectly matching at least 30% of their

lengths;

2. reads perfectly matching at least 60% of their
lengths;

3. reads perfectly matching at least 90% of their
lengths.

These four sets (all, 30, 60 and 90%) are assembled
separately by SPAdes (version 3.6 and above) [7]
with the options --k-mer 11, 15, 21, 33, 35 and
--only-assembler. To overcome the cases in which
SPAdes may fail to reconstruct a contig because of
high GC, low or uneven coverage (SPAdes
documentation: http://cab.spbu.ru/software/spades/)
we set another assembler, Velvet [8], as backup
step.

Then each resulting contig is aligned to the
reference database of known alleles using BLASTn
(version 2.3.0 or higher) looking for any perfect
match. If none of the contigs perfectly match a
specific allele a self-explaining message “New?” is
reported and its sequence stored in a directory
called “new alleles”.

Results

To assess the performance of STRAIN we used the same
dataset published in Inouye et al., 2014 [3]. The 543 sets
of reads were downloaded in FASTQ format from the
EBI SRA public database (ftp://ftp.sra.ebi.ac.uk/) in De-
cember 2017. Out of these 543 isolates, 2 samples of E.
faecium ST 187 were not available because they were
not deposited in SRA, and the sample S. sonnei ST152
ERR025725 was duplicated (personal communication).
For the sample NC_007384, reads were simulated like in
the original dataset using simNGS with a coverage of
150x. Therefore, the reference benchmark dataset was
made up of 540 samples (Additional file 1). The ST be-
ing composed by 7 loci, the total number of allele calls
is 540*7 = 3780.

Definitions of the performance metrics used to compare
STRAIN to other tools
We defined three performance metrics:

1) Percentage of no-output.
2) Capability to identify the correct alleles.
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3) capability to identify new alleles.

Extended definitions of 1), 2) and 3) are the following.

Percentage of no-output: it is the percentage of times
a program reports a blank output. The lower the per-
centage of no-output the better the performance of the
program.

A blank output or NA (Not Available) might happen
when the reads in the sample are few or uninformative.

Capability to identify correct alleles: is the fraction of
times a program infers an allele variant equal to the cor-
rect one. This measure goes from 0% (inferred allele var-
iants are always wrong because different from the
correct ones) to 100% (allele variants are always right be-
cause equal to the correct ones).

Our benchmark dataset of 540 samples was analyzed
trough PCR or capillary sequencing as reported in
Inouye et al, 2014 [3]. Allele variants and the STs
assigned through these experimental assays are consid-
ered as the correct ones.

Capability to identify new alleles: is the fraction of
times a program returns a new allele sequence or an
indication that a new allele is present when testing
against a reference dataset of alleles from which we
removed the correct allele sequences.

If a bacterial isolate contains an allele sequence not
yet deposited in the reference dataset, a good pro-
gram should be in fact able to ascertain that the sam-
ple manifests a new allele. To measure this capability,
one could proceed by genetically engineering bacterial
isolates substituting an allele sequence with a com-
pletely new one and then performing the sequencing
and analyses of the reads. An alternative procedure is,
on the other hand, to keep the reads of the sample as
they are and to remove from the set of reference al-
lele sequences the alleles assigned by PCR. A program
that tested on this modified reference set infers al-
ways the presence of a new allele has a capability to
identify new alleles of 100%. On the contrary a pro-
gram that returns always another allele of the refer-
ence set will have a capability to identify new alleles
of 0%. We therefore created for each sample a refer-
ence allele dataset lacking the alleles assigned by
PCR. The predictions of the programs are in this case
right when they report the new allele sequence or an
indication that a new allele is present; wrong when
they report another allele of the reference.

The ST is given by the combination of the seven al-
lele predictions. As just described for alleles, we de-
fine capability to identify correct ST the fraction of
times in which the ST predicted by a program is
equal to the correct ST (assessed by PCR or capillary
sequencing); capability to identify new STs the frac-
tion of times in which the predicted ST is new when
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testing with a reference set of alleles missing the cor-
rect ones.

Evaluation of the output of stringMLST and SRST2
As reported in the documentation, when the output of
SRST2 (version 0.2) is in the form of “allele *”, it indi-
cates that one or more of the best scoring alleles have at
least one mismatch (SNP or indel, according to majority
rules consensus of the aligned reads vs the allele se-
quence). This often means that a new allele is present.
For stringMLST, depending on its parameter called
fuzzy (default 300), the output “allele *” indicates poten-
tially new alleles, like SRST2.
Accordingly, we set for both programs two different
levels of stringencies based on the interpretation of the

#7,

output “allele *”:

e High stringency: “allele *” is considered as an
indication that a new allele is present.

e Low stringency: “*” is ignored and the “allele” is
considered the program prediction.

For example, suppose that sample A has by PCR “al-
lele_1” for the locus adk which in total has 100 different
alleles. “allele_1” is considered the correct one. Table 1
exemplifies the different cases for capability to identify
the correct alleles and capability to identify new alleles
at stringency levels high and low.

STRAIN outperforms the other tested programs in the
capability to identify correct alleles

Table 2 shows a summary of the percentage of no-
output and capability to identify correct alleles for
STRAIN and the other tools. For detailed running setup
of the tools see Additional file 2.

STRAIN show higher capability to identify correct al-
leles in respect to all other methods. The improvement
against SRST2 goes from 0.1 to 2.2% considering the
two filters low or high respectively and it is even wider
against stringMLST, from 0.1 to 68.5% (low and high
stringency). Against GRAbB the improvement is 4.4%.
Consequently, STRAIN delivers improvement also at ST
level (Additional file 2: Table S1).
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STRAIN outperforms the other tested programs in the
capability to identify new alleles

As shown in Table 3, STRAIN outperforms the other
tools also in terms of their capability to identify new al-
leles with a minimum difference of 1.6% compared to
GRADB (98.7% versus 97.1%) to a maximum difference
of 98.7% compared to stringMLST low stringency
(98.7% versus 0%). The advantage in respect to GRAbB
is also that STRAIN has a lower percentage of no-
output (0.6% versus 2.7%).

Moreover, STRAIN improves the capability to identify
new STs (Additional file 2: Table S2).

Accounting together the values of capability to identify
correct and new alleles achieved by each tool —where
possible considering different stringency filters (high and
low)- STRAIN shows the best combination, as summa-
rized graphically in Fig. 2 where x-axis represents cap-
ability to identify correct alleles and y-axis capability to
identify new alleles.

Preprocessing of reads does not affect STRAIN capability
to identify correct alleles
To test if preprocessing of reads — trimming — could
further improve the sensitivity of the programs at allele
level, we run them on the benchmark dataset prepro-
cessed by Trimmomatic [9].

As shown in Table 4 the preprocessing doesn’t seem to be
a step necessary to improve the performance of STRAIN. In-
stead we noticed an effect, both positive and negative, intro-
duced by the trimming of reads for the other tested
programs. GRAbB has not been tested since in its current re-
lease doesn’t allow in input reads of different lengths.

By setting up parallel computation STRAIN drastically
reduces its running time

STRAIN implementation leverages on embedded par-
allelism in R environment through package parallel.
As shown in Additional file 3 Figure S1 Panel A, run-
ning time for STRAIN and the other programs in-
creases with the total number of input reads. Further
details on how running time has been calculated to-
gether with computational resource specifications are
reported in Additional file 2, Section Running times.
When STRAIN was run without parallelism, process-
ing one allele at the time and with one thread for

Table 1 Interpretation of the output of stringMLST and SRST2 with “*”

Capability to identify correct alleles

Capability to identify new alleles

SRST2 / stringMLST output  High stringency Low stringency

High stringency Low stringency

allele_1* Missed the correct allele

allele_2* to allele_100* Missed the correct allele

Hit the correct allele

Missed the correct allele

(this case doesn’t exist because
allele_1 is not present)

(this case doesn’t exist because
allele_1 is not present)

Hit a new allele is present Missed a new allele is present

Synoptic table describing differences in the interpretation of output containing “*” with high and low stringency criteria for both capability to identify correct and
new alleles. To measure the capability to identify new alleles, in this example “allele_1" has been removed from the set of reference alleles
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Table 2 Capability to identify correct alleles
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Software

Percentage of no-output

Capability to identify correct alleles

STRAIN
SRST2 high stringency

0.6% (22/3780)
1.8% (69/3780)
1.8% (69/3780)

(

SRST2 low stringency (
0.3% (9/3780)

(

(

stringMLST high stringency
stringMLST low stringency
GRADbB

0.3% (9/3780)
2.7% (101/3780)

97.0% (3666/3780)
94.8% (3583/3780)
96.9% (3662/3780)
28.5% (1076/3780)
96.9% (3664/3780)
92.6% (3499/3780)

Summary of percentage of no-output and capability to identify correct alleles for STRAIN, SRST2, stringMLST and GRAbB. In bold the maximum value

bowtie2, it showed a median of 3h and 7 min (IQR =
51 min).

To measure the maximal reduction in running time
provided by parallel computations, we reanalyzed the
most computationally intense cases selecting for each
one of the seven species present in our benchmark
the sample with the maximum number of reads (me-
dian 10,136,800, IQR 8554499). Executed on a Linux
machine equipped with 48 CPUs and 250 Gb of RAM
(see further specification on Additional file 2), tuned
to analyze 7 alleles in parallel and allowing 7 threads
for Bowtie2, STRAIN dropped its running times to a
median of 8 min and 13 s (decreasing running time by
23-fold) as shown in Additional file 3: Figure S1
Panel C.

As shown in Additional file 3: Figure S1 Panel A, me-
dian RAM consumption for STRAIN is low, 259 MB
(IQR 39 Mb), and it is not influenced by readset sample
size. Further details on how RAM peak for each
program has been calculated are reported in Additional
file 2, Section Peak of RAM.

Other potential applications

STRAIN can be used beyond the analysis of MLST
genes; provided by any other appropriate database of al-
leles, it can annotate any locus, i.e. drug resistance genes,
ribosomal genes and antigens.

Discussions and conclusions

STRAIN uses a hybrid strategy between read mapping
and assembly to assign sequence types (STs) to bacterial
isolates.

Table 3 Capability to identify new alleles

In terms of capability to identify correct alleles and
capability to identify new alleles outperforms the
existing typing methods. When compared to SRST2,
stringMLST and GRADbB, it improves the proportion
of correct allele assignments to the total number of
isolates from a minimum of 28.5% to a maximum of
97%.

When tested simulating the presence of new alleles it
was efficiently capable to detect the new variants. In
comparison with the other programs, STRAIN improves
the capability to identify new alleles from a minimum of
1.1% to a maximum of 98.7%.

Even if the existing tools (SRST2, stringMLST and
GRADB) show already high performances, STRAIN
delivers yet a key improvement over them because
it is able to increase concomitantly capability to
identify correct alleles and capability to identify
new alleles. This key improvement brings STRAIN
towards the asymptote of 100% in both capabilities.
Such an asymptote might be hard to be achieved
because even golden standard PCR typing might be
erroneous in a small fraction of cases. In fact,
among the 540 samples constituting our
benchmark, 450 had a whole-genome assembly of
the reads deposited in publicly available databases
(PubMLST at http://pubmlst.org or Enterobase at
https://enterobase.warwick.ac.uk) and the ST
assignment by BLASTN against reference alleles
databases was possible. Out of the 450 isolates, 10
(2.2%) resulted to have exactly the same ST
assignment with all the tested typing tools based

Software

Percentage of no-output

Capability to identify new alleles

STRAIN
SRST2 high stringency

0.6% (22/3780)
1.8% (69/3780)
1.8% (69/3780)
)
)

(

SRST2 low stringency (
0.3% (12/3780

(

(10

stringMLST high stringency
0.3% (12/3780
2.7%

stringMLST low stringency
GRAbB

1/3780)

98.7% (3730/3780)
85.9% (3247/3780)
1.1% (41/3780)
80.5% (3057/3780)
0% (0/3780)

97.1% (3669/3780)

Summary of percentage of no-output and capability to identify new alleles for STRAIN, SRST2, stringMLST and GRAbB. In bold the maximum value
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on reads but different to the one assigned by the
PCR or capillary sequencing, pointing out the prob-
lem to ascertain who is actually measuring the real
sample ST.

A distinct step in STRAIN analysis is represented
by its locus-wise assembly strategy. For this reason,
we decided to evaluate the software GRADB, designed
to selectively assembly genomic regions. Respect to
GRADbB, STRAIN improves the capability to identify
correct alleles from 92.6 to 97% and the capability to
identify new alleles from 97.1 to 98.7%.

The sequences of the new detected alleles are
reported by STRAIN together with the output for
further evaluations or eventual submission to dedi-
cated reference repositories. Being database driven,
STRAIN, might be used to type also other loci

Table 4 performances measured on trimmed datasets

Software Capability to identify Capability to identify Difference
correct alleles correct alleles with
without trimming trimming

STRAIN 97.0% (3666/3780) 97.0% (3666/3780) =

SRST2 high 94.8% (3583/3780)  96.0% (3630/3780)  +

stringency

SRST2 low 96.9% (3662/3780)  96.6% (3655/3780) -

stringency

stringMLST 28.5% (1076/3780) 24.1% (911/3738) -

high stringency

stringMLST 96.9% (3664/3780) 96.2% (3638/3738) -

low stringency

Capability to identify correct alleles without and with trimming pre-processing
of the reads. In Difference column “=" means no difference, + and - mean
increased and decreased capability, respectively. In bold the maximum value

beyond MLST, provided appropriate databases are
used as input.

STRAIN depends on very few external programs, com-
monly present in the toolbox of end-users working on
short read sequencing data. Its implementation as an R
package together with a containerized solution in
Docker makes it very easy to install and use.

Additional files

Additional file 1: Table. containing for each of the 540 isolates used in
the present study the SRA sample accession number (i.e ERR016635), the
species of origin, the expected ST, the total number of reads in the
sample, the RAM peak (kB) and the running time (s) for each program.
(XLSX 96 kb)

Additional file 2: File describing the running setup of the programs
and the specifications of the computational resource used to run the
programs. (PDF 3690 kb)

Additional file 3: Figure showing the peak RAM consumption (kB) and
the running time (s) of the programs tested. Panel A) running time as
function of total number of reads for the 540 samples when programs
are run using 1 core with a 1 thread for bowtie2 for STRAIN and SRST2.
On the right, boxplots of the running time for each program; Panel B)
running time on 7 samples selected to have the maximum number of
reads among the samples of the same species when STRAIN is run
setting 7 cores and 7 threads for bowtie2 and SRST2 set with 48 threads
for bowtie2. On the right, boxplots of the running times per program in
the seven selected biggest samples; Panel C) peak RAM consumption as
function of the total number of reads of the 540 samples and boxtplots
for each program. (DOCX 21 kb)

Abbreviations
MLST: Multi Locus Sequence Type; ST: Sequence Type; WGS: Whole Genome
Sequencing
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