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Identification of Quantitative 
Trait Loci and Candidate Genes for 
Maize Starch Granule Size through 
Association Mapping
Na Liu1,2, Zhanhui Zhang1, Yadong Xue1, Shujun Meng1, Yubi Huang3, Weihua Li1, 
Jihong Huang2 & Jihua Tang1,4

Starch is an important nutrient component of maize kernels, and starch granule size largely determines 
kernel waxiness, viscosity, and other physiochemical and processing properties. To explore the 
genetic basis of maize starch granule size, 266 tropical, subtropical, and temperate inbred lines were 
subjected to genome-wide association analyses with an array of 56,110 random single nucleotide 
polymorphisms (SNPs). In the present panel, the kernel starch granule size ranged from 7–15.8 µm long 
and 6.8–14.3 µm wide. Fourteen significant SNPs were identified as being associated with the length 
of starch granules and 9 with their width. One linkage disequilibrium block flanking both sides of a 
significant SNP was defined as a quantitative trait locus (QTL) interval, and seven QTLs were mapped 
for both granule length and width. A total of 79 and 88 candidate genes associated with starch length 
and width, respectively, were identified as being distributed on QTL genomic regions. Among these 
candidate genes, six with high scores were predicted to be associated with maize starch granule size. 
A candidate gene association analysis identified significant SNPs within genes GRMZM2G419655 
and GRMZM2G511067, which could be used as functional markers in screening starch granule size for 
different commercial uses.

Starch is a widely and naturally occurring biopolymer. It is composed of D-glucose units that form two types of 
polymers: amylose and amylopectin. Many cereals and tuber crops produce different types of starch. For instance, 
maize is an important crop worldwide1, and starch is the main component of maize kernels, comprising ~70% of 
the total weight2. Maize starch is not only an important food source but is also one of the most industrially used 
resources3. Its uses include the preparation of soups, sauces, baked goods, dairy, confectionery, snacks, pasta, 
coatings, and meat-containing products4,5, as well as adhesives, paper, and textiles6.

Starch formation in cereal grains involves the synthesis of ADP-glucose (Glc) by ADP-Glc pyrophosphoryl-
ase and the incorporation of ADP-Glc into starch by ADP-Glc starch synthase7. Developing seeds synthesise 
storage compounds from imported sucrose during their maturation phase8. The assimilation of sucrose, which 
is imported through the phloem, by the endosperm may involve sucrose synthase to form ADP-Glc or UDP-Glc 
and fructose or, alternatively, involve invertase to form free hexose. Many studies have focused on the physico-
chemical properties of maize starch and their influencing factors9–12. Starch type13 and amylose content14 have 
important effects on starch properties. Other influencing factors include granular structure (shape, size, and 
porosity), molecular structure (organisation of growth rings and degree of crystallinity), and the presence of 
non-starch materials15.

The size of the starch granules, which depends on the plant species, is an important factors affecting starch 
characteristics16 and ultimately determines the industrial application17. Small starch granules can be used to 
replace fat in food applications because of their fat mimetic properties18. In food production, granule size affects 
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the pasting properties of starch, with smaller granules showing lower peaks, troughs, and final viscosities than 
larger granules19. The starch granule size may also influence gelatinisation temperature20, viscosity19, and enzy-
matic susceptibility21–23. Additionally, it determines the grain milling yield in hard wheat24. In maize, the size of 
the starch granules varies according to chemical composition25,26.

Quantitative trait loci (QTLs) of starch granule sizes in Triticeae crops have been identified, including a major 
QTL related to the A:B ratio of wheat starch granules on chromosome 4S27 and a QTL on barley chromosome 
228. Recently, genome-wide association studies (GWASs) have been proven to be useful tools for the identifica-
tion of candidate loci associated with traits in animal and plant species29. For example, an analysis of maize oil 
biosynthesis identified 74 loci significantly associated with kernel oil concentration and fatty acid composition 
in a GWAS using 1 million single nucleotide polymorphisms (SNPs) characterised in 368 inbred maize lines30. 
Furthermore, a GWAS and QTL mapping were found to be complementary, overcoming each other’s limitations, 
in Arabidopsis31.

Compared with starches having a bimodal size distribution17,32–34, few studies have investigated the unimodal 
starches, particularly that of maize35. Although the sizes of maize starch granules are highly linked to the end-use 
quality of the products, many studies on maize starch have focused on its processing and nutritional properties35, 
with little attention paid to the study of granule size34. Here, we used a set of associated populations to identify 
significant SNP markers for starch granule size with the aim of predicting associated candidate genes.

Results
Phenotypic analysis of maize starch granule size.  A total of 266 maize lines were used for association 
mapping. Although the starch granules of these inbred maize lines varied largely in size, more than 75% of the 
granules were 10–13.5 µm long and 9.7–11.8 µm wide (Table S1). The inbred line CIMBL30 had the smallest gran-
ule size (7 µm long × 6.8 µm wide; Fig. 1a), while the inbred line CML470 had the largest granule size (15.8 µm 
long × 14.3 µm wide; Fig. 1b). The starch granules of most inbred lines had a smooth surface (Fig. 1a–c), although 
some were rough or porous/cracked (Fig. 1d). The shapes varied, including rounded, spherical (Fig. 1e), or irreg-
ular (Fig. 1f). Thus, the sizes and shapes of the starch granules varied among different inbred lines (Fig. 2, Table 1), 
which may affect starch processing characteristics and seed unit weight.

Evaluation of starch pasting viscosity characteristics.  The rapid visco analyser (Newport Scientific, 
Australia) profile revealed the paste viscosity characteristics of maize starch (Table S2). Seven parameters showed 
that large starch granules (such as in ‘CIMBL12’ and ‘Zheng58’) have smaller final viscosity levels than smaller 
starch granules.

Association analysis.  The average data from different replicates of each inbred line were used for associa-
tion analysis (Figs 3 and 4). For starch granule size, 14 significant SNPs were identified (p < 2.25 × 10−4; Fig. 4, 
Table 2), with 1, 2, and 11 SNPs distributed on chromosomes 6, 3, and 7, respectively. Seven QTLs, distributed 
over 79 candidate genes, were identified for starch granule length (Table 2).

Nine significant SNPs were identified to be associated with starch granule width, as well as seven QTLs and 
88 candidate genes (Fig. 5, Table 2). Seven SNPs were identified for both starch granule length and width: one 
(PZE-103182712) on chromosome 3, one (PZE-106103012) on chromosome 6, and five (PZE-107043911, PZE-
107044857, PZE-107044898, PZE-107044943, and PZE-107045024) on chromosome 7.

Gene ontology analysis.  The QTLs analysis led to the indentification of 108 candidated genes that were 
either associated with granele length or width. Among these, six genes with higher scores were located close to 
associated SNPs (Table 3). GRMZM2G180104 was located between 75,849,776–75,850,502 bp on chromosome 7 
and 3,503 bp upstream of significant SNP30343, while GRMZM2G419655 and GRMZM2G419660, also on chro-
mosome 7, were identified as being associated with starch granule size.

The Blast2Go program was used to predict the functions of these candidate genes (Tables 3 and S3, S4). The 
candidate gene on chromosome 6, GRMZM2G167673, was predicted to be involved in gibberellin synthesis and 
electron transport as a p450 cytochrome. GRMZM2G419655 and GRMZM2G419660 on chromosome 7 were 
predicted to encode phytosulfokine receptor precursors. GRMZM2G511067 and GRMZM6G663759 on chromo-
some 3 were predicted to encode a zinc finger CCCH domain-containing protein that binds metal ions and may 
repress the inhibitor of the phytosulfokine receptor protein kinase.

The results of the GWAS analysis revealed that maize kernel starch granule size is a typical quantitative trait 
determined by multiple genes.

Association between candidate genes and maize starch granule size.  An association anal-
ysis beween three candidate genes and maize starch granule size revealed that the SNP at 352 bp of the 
GRMZM2G419655 genomic sequence and the SNP at 58 bp of the GRMZM2G511067 genomic sequence were 
significantly associated with maize starch granule length and width (Fig. 6). No significant SNP was identified 
after an association analysis between GRMZM2G419660 and maize starch granule size. All of the sequences of the 
three candidate genes are shown in Supplementary file S5.

Expression levels of candidate genes in maize lines with different size starch granules.  To ver-
ify the predicted candidate genes, 10 of them were chosen to study the differences in their expression levels within 
different starch granule size groups using reverse transcription and fluorescence quantitative PCR. The result 
are shown in Table 4 and Fig. 7. Six in the 10 selected genes, including GRMZM2G134597, GRMZM2G167673, 
GRMZM2G419660, GRMZM2G511067, GRMZM2G352959 and GRMZM2G419655, showed significant differ-
ence at 20 d after pollination.



www.nature.com/scientificreports/

3SCIentIfIC Reports |  (2018) 8:14236  | DOI:10.1038/s41598-018-31863-y

Discussion
Analysis of the maize starch granule size.  Starch is the major storage carbohydrate in cereal seeds, and 
the size of the starch granules is strongly associated with its end use. However, it is difficult to accurately deter-
mine the size of starch granules. To date, two techniques have been developed to analyse granule sizes: laser light 
scattering (LDS)36 and digital image analysis (IA)37. LDS for particle size analysis is simple to perform; however, 
the starch granule’s oblate shape can cause the laser to diffract from the flat surface or narrow edge, or at obtuse 
angles to these surfaces, leading to system errors. Comparing LDS with IA, Wilson et al.38 reported that LDS 
underestimated A-type granule’ diameters by ~40% and B-type granule’ diameters by ~50% in wheat. Edwards 
et al.24 revealed that LDS measurements underestimated C-, B-, and A-type granules by maximum averages of 
0.83, 3, and 23 mm, respectively. Additionally, LDS requires a prior starch extraction, which may cause artefacts 
to develop during extraction or precipitation39. Therefore, LDS is more suitable for the analysis of totally spherical 
granules. Thus, LDS has often been used in the study of wheat starch but rarely in the study of maize starch.

Starch granule size has been measured by other direct methods, such as light microscopy and scanning elec-
tron microscopy (SEM). Chen et al.40 analysed the size of starch granules in Brachypodium distachyon by SEM, 
while Zhang et al.26 used a light microscope with the Zeiss software AxioVision to observe the starch granule size 
in potato. Compared with LDS, IA coupled with light microscopy or SEM is more direct and more readily distin-
guishes among individual granules, agglomerated granules, and non-starch particles. It can also simultaneously 

Figure 1.  Scanning electron micrographs of starch granules in kernels of inbred maize lines. (a) CIMBL30; (b) 
CML470; (c) GEMS52; (d) 7884-4Ht; (e) 526018; (f) GEMS65.
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record the surface features of individual particles. Considering the shape diversity of maize starch granules, IA 
with SEM was chosen as a more accurate method of obtaining direct data in this study.

In cereal, the size of the starch granules is an important property affecting the appropriate industrial use17. 
Variations in starch granule size mainly exist among inbred lines of maize, which allows for the selection of differ-
ent commercial hybrids having the required granule size, resulting in improved industrial use.

Figure 2.  Frequency map of starch granule sizes. (a) Frequency of granule lengths; (b) Frequency of granule 
widths.

Trait SS DF MF F P

Starch granule 
length

Between Groups 2211.491 266 8.314 122.387 0

Within Group 36.071 531 0.068

Total 2247.562 797

Starch granule 
width

Between Groups 1554.199 266 5.843 104.063 0

Within Group 29.814 531 0.056

Total 2247.562 797

Table 1.  ANOVA of starch granule length and width in inbred maize lines.

Figure 3.  Quantile–quantile plot of associations with starch granule size. The p-values are shown on a −a rapid 
visco analyser accordinglog10 scale, and the dashed line indicates a Bonferroni-corrected threshold of 0.1/N. (a) 
Starch granule length; (b) Starch granule width.



www.nature.com/scientificreports/

5SCIentIfIC Reports |  (2018) 8:14236  | DOI:10.1038/s41598-018-31863-y

Association analysis of maize starch granule size.  Association analyses are effective tools in finding 
candidate genes and putative functional markers for simple and complex plant traits41,42. In the current study, 14 
and 9 SNPs were significantly associated with maize starch granule length and width, respectively. Among them, 
seven significant SNPs and five QTLs were shared between starch granule length and width (Table 2).

In a candidate gene analysis for starch granule size, GRMZM2G167673 was predicted to encode cytochrome 
P450 (CYP) 714D (CYP714D). In plants, CYP is involved in several cellular processes. A homologous gene in 
rice encodes the CYP protein, which regulates the embryo to endosperm ratio and increases the proportion 
of kernel endosperm43. More recently, the insertion of a 247-bp transposable element into the 3′-untranslated 
region of ZmGIANT EMBRYO 2 (ZmGE2, encodes a CYP protein) was associated with an increased embryo to 
endosperm ratio44. In the present study, the gene ontology analysis revealed that GRMZM2G167673 has monoox-
ygenase activity. Subfamily members of CYP, including CYP78A in maize also have monooxygenase activities, 
with CYP78A5, CYP78A7, and CYP78A9 regulating organ size by generating mobile growth signals that stimu-
late cell proliferation45,46. Thus, GRMZM2G167673 may regulate endosperm growth, determining the size of the 
starch granules.

Another candidate gene associated with starch granule size, GRMZM2G419660, encodes a protein with ser-
ine/threonine kinase activity. Serine/threonine kinases are a subfamily of calcium-dependent protein kinases 
(CDPKs) in plants47; moreover, overexpressing and silencing the CDPK gene OsCPK31 indicated that it regulates 
grain filling and early maturation in the Taipei 309 rice cultivar. A SEM examination showed that the starch gran-
ules increased in size when OsCPK31 was overexpressed compared with in non-transformed controls48. Thus, 
GRMZM2G419660 in maize may also be an essential factor for the phosphorylation of sucrose synthase, which is 
a major enzyme involved in the starch biosynthetic pathway, similar to protein kinases in rice.

The size of the starch granules is an important factor influencing the industrial applications of starch. In the 
present study, inbred maize lines with different starch granules sizes were evaluated. Maize lines with different 
sized starch granules can be used in different industries. Moreover, SNPs or candidate genes identified in this 
study could be used as molecular markers to accelerate the breeding and production of plants with starch granules 
appropriate for different commercial purposes.

Methods
Plant materials.  The investigation was based on a set of 266 inbred maize lines, containing a wide range of 
temperate, subtropical, and tropical germplasm49,50. Because some tropical germplasm cannot mature in temper-
ate zones, affecting the starch content and granule size, all of the inbred lines were cultivated in Sanya (Hainan 
Province, PR China; E 18°37′, N 18°09′) during the winters of 2012 and 2013. The field experiment followed a 
randomised complete block design with two replications. Plots were 4 m × 0.67 m and comprised 16 plants at a 
density of 65,250 plants per hectare. During the growing seasons, plants were irrigated and underwent common 
field management practices to avoid any stress.

Evaluation of starch granule size and starch paste viscosity characteristics.  All of the inbred 
lines were self-pollinated by hand in the field, harvested when physiologically mature, and dried under natural 
conditions; those ears that showed abnormal development were subsequently discarded. Kernels in the middle 
part of each ear were then hand-threshed for starch granule size evaluation. Ten representative matured and dried 
kernels were selected (five kernels from each ear) and affixed to aluminium specimen stubs using double-sided 
adhesive tape. The samples were then sprayed with gold powder and screened using SEM (Hitachi S-3400, 
Tokyo, Japan) at the Centre of Biotechnology, Henan Agricultural University, Zhengzhou, China. The sizes of 20 

Figure 4.  Manhattan plot of starch granule size.
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randomly selected maize starch granules were evaluated for length and width. Data were analysed using the anal-
ysis of variance method with SPSS software (IBM Corp., Armonk, NY, USA). A frequency map was constructed 
by Origin 8.0 software (OriginLab Corporation, Northampton, MA, USA). Sample means were used as pheno-
typic data for an association mapping analysis.

Four maize lines were selected to extract starch, and the pasting properties of the starch were measured using 
a rapid visco analyser according to Hao et al.51.

Genotyping and association analysis.  All statistical analyses were performed using the R statistical envi-
ronment (www.r-project.org). Frequency plots were also constructed by the plot function in R. Averaged data for 
each inbred line were used in the association analysis.

Selected inbred lines were genotyped using two genotyping platforms (RNA-sequencing and SNP array) con-
taining 56,110 SNPs according to the method described by Yang et al.52. SNP data are available from http://www.
maizego.org/Resources.html. SNPs with more than 12% missing data and a minor allele frequency <5% were 
excluded, resulting in 47,237 SNPs for further analyses. The linkage disequilibrium (LD) between SNPs on each 
chromosome was estimated with r2 using TASSEL 5.053. A mixed linear model with the obtained SNPs, principal 
components, kinships, and the mean starch granule sizes was used for the GWAS. The relative distribution of 
−log10 p-values was observed for each SNP association and compared individually with the expected distribution 
using a quantile–quantile plot. The adjusted p-value threshold of significance in each trait was corrected. SNP loci 

QTL Position of QTL SNP
Position of 
SNP Candidate gene

qSGL7-1 75753279–75953279 SNP30343 75853279 GRMZM2G180104, GRMZM5G866141, GRMZM2G544148, 
GRMZM2G020156, GRMZM2G172345, GRMZM2G172307

qSGL7-2 80321800–80573170
SNP30418
SNP30419
SNP30423
SNP30425

80421800
80421839
80493311
80573170

GRMZM2G324991, AC206845.3_FG004

qSGL7-3 80645735–80882295
SNP43662
SNP30432
SNP30430

80745735
80782295
80748880

AC209906.3_FG001, GRMZM2G061010, GRMZM2G061014, 
GRMZM2G003165, GRMZM2G486223, GRMZM2G306371, 
GRMZM2G486201

qSGL7-4 80935113–81135283
SNP30436
SNP30438
SNP30437

81035068
81035283
81035113

GRMZM2G419655, GRMZM2G419660, AC196428.3_FG003, 
GRMZM2G177900, GRMZM2G542753

qSGL3-1 202581272–202781272 SNP1148 202681272

GRMZM2G511067, GRMZM2G048290, GRMZM2G347659, 
GRMZM2G347675, GRMZM2G054340, GRMZM2G054351, 
GRMZM2G054221, GRMZM5G858429, GRMZM2G054115, 
GRMZM5G857098, GRMZM2G591200, GRMZM2G181135, 
GRMZM2G702146, GRMZM2G017308, GRMZM2G017310

qSGL3-2 225599972–225799972 SNP17473 225699972

GRMZM2G12277, GRMZM2G033304, AC200626.3_FG008, 
GRMZM2G303999,GRMZM2G168049, GRMZM5G810209, 
GRMZM2G702310, GRMZM2G003254, GRMZM2G076245, 
GRMZM2G070775, GRMZM2G529436, GRMZM5G837511, 
GRMZM2G369956, AC209364.3_FG009, GRMZM2G369931, 
GRMZM2G070405, AC209364.3_FG007, GRMZM2G524240, 
GRMZM2G369839

qSGL6 154943436–155143436 SNP28873 155043436

GRMZM2G522194, GRMZM2G067073, GRMZM2G522185, 
GRMZM2G501825, GRMZM2G037343, GRMZM5G897015, 
GRMZM2G037286, GRMZM2G501821, GRMZM2G037111, 
GRMZM2G129031, GRMZM2G167673, GRMZM2G429714, 
GRMZM2G129064, GRMZM5G851528, GRMZM2G559994, 
GRMZM2G429720, GRMZM2G129166, AC206988.3_FG005, 
GRMZM2G129230, GRMZM5G834657, GRMZM2G310552, 
GRMZM5G896682, GRMZM2G010764, GRMZM2G010357, 
GRMZM2G488711

qSGW7-1 75753279–75953279 SNP30343 75853279 same as qSGL7-1

qSGW7-2 80321800–80673170
SNP30418
SNP30423
SNP30425

80421800
80493311
80573170

same as qSGL7-2

qSGW7-3 80935068–81135068 SNP30436 81035068 same as qSGL7-3

qSGW3 225599972–225799972 SNP17473 225699972 same as qSGL3-2

qSGW6 154943436–155143436 SNP28873 155043436 same as qSGL6

qSGW5-1 39834864–40034864 SNP22884 39934864

GRMZM2G012167, GRMZM5G861448, GRMZM2G012209, AC206260.3_
FG004, GRMZM2G012926, GRMZM2G012933, GRMZM2G012958, 
GRMZM2G013196, AC203800.3_FG005, GRMZM2G134623, 
GRMZM2G563606, GRMZM2G134629, GRMZM2G134597, 
GRMZM2G000005, AC203800.3_FG001, GRMZM2G524940, 
GRMZM2G435497, GRMZM2G000005, GRMZM2G492258, AC203800.3_
FG006, GRMZM2G552085, GRMZM2G000007, GRMZM2G482454, 
GRMZM2G000009, GRMZM2G482456, GRMZM2G482457

qSGW5-2 39979303–40179301 SNP22889 40079301 GRMZM2G320731, GRMZM2G494899, GRMZM2G014180

Table 2.  Quantitative trait loci, single nucleotide polymorphisms, and candidate genes for maize starch granule 
size. Note: SGL, starch granule length; SGW, starch granule width.

http://www.r-project.org
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in significant LD regions were identified by revealing significant contributions to the phenotypic variations of the 
agronomic traits with the highest r2 values (magnitude of marker–trait association) and lowest adjusted p-values 
(threshold p < 1 × 10−4).

The overall LD decay across the genome of this panel was 100 kb54, thus a 100-kb region flanking the left and 
right sides of a SNP was defined as a QTL. If several SNPs were located closely within one LD block, the middle 
coordinate was chosen.

Analysis of candidate genes.  The available maize genome sequence (B73) was used as the reference 
genome for candidate gene identification. SNP probe sequences of ~120 bp (Illumina Inc., San Diego, CA, USA) 
were used as queries in a BLAST algorithm-based search against the reference genome sequence in MaizeGDB 
(http://www.maizegdb.org/gbrowse). Based on the LD decay, a 200-kb window for the significant SNPs (100-kb 
upstream and downstream of the lead SNP) was selected to identify candidate genes. Genes within the region 
were identified according to the position of the closest flanking significant SNP (p < 1 × 10−4). The Blast2Go pro-
gram was used to predict the functions of corresponding genes (http://www.geneontology.org/).

Sequencing and candidate gene association analysis.  Three candidate genes, GRMZM2G419655, 
GRMZM2G419660, and GRMZM2G511067, were selected for sequencing based on the GWAS. DNA was 
extracted from seedlings of 26 maize lines with the largest starch granule sizes and 21 maize lines with the small-
est starch granule sizes55. PCR reaction mixes (20 µl) contained 1 µl of NEB (New England BioLabs Inc., Ipswich, 
MA, USA) Taq DNA Polymerase, 4 µl of 5× NEB PCR Buffer, 0.5 µl of dNTP mixture, 0.5 µl each of the two 
primers, and 1 µl of template DNA. The PCR reaction was carried out in a Bio-Rad Thermal cycler (Bio-Rad 
Laboratories, Inc., Hercules, CA, USA)with an initial denaturation at 94 °C for 3 min followed by 34 cycles of 
denaturation for 10 s at 94 °C, annealing for 1 min at 64 °C and extension for 1 min at 68 °C, with a final extension 
for 10 min at 68 °C. SNPs within the three candidate gene sequences were selected for the association analysis. 
Primers for amplification of the three genes are listed in Table 5.

Figure 5.  The chromosomal locations of the identified QTL for maize kernel starch granule.

Score Gene ID Chr. SNP pos(bp)
Distance to 
SNP (bp)

5.44 GRMZM2G180104 7 75853279 3503

5.07 GRMZM2G419655 7 81035068 3127

5.07 GRMZM2G419660 7 81035068 3097

4.52 GRMZM2G167673 6 155043436 8547

4.47 GRMZM6G663759 3 225699972 7418

4.06 GRMZM2G511067 3 202681272 2118

Table 3.  Candidate genes for maize starch granule size.
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Expression levels of candidate genes in maize lines having different starch granule sizes.  In 
total, 30 maize lines with different starch granule sizes (small starch granule group: CIMBL140, CIMBL157, 
IRF314, CIMBL153, GEMS41, GEMS15, By804, GEMS55, BS16, and By813; medium starch granule group: 
526018, Dong237, DH3732, GEMS23, TY5, CIMBL139, CIMBL102, Tie7922, GEMS17, and B113; large starch 
granule group: Dan360, CML325, GEMS54, CIMBL87, GEMS51, Zheng29, 835b, Ye8001, K22, and CIMBL10) 
were selected from the association panel to study the expression levels of candidate genes. Maize kernels (20 d 
after pollination) were used for RNA extraction according to the manufacturer’s user manual (Transgene Biotech, 

Figure 6.  Candidate gene association analysis for three candidate genes and maize granule size.

Gene ID Mean SSG Mean MSG Mean LSG

t-value 
SSG/MSG

t-value 
SSG/LSG

t-value MSG/
LSG

GRMZM2G134597 1.54 ± 0.02 1.47 ± 0.05 1.38 ± 0.05 1.36 5.54** −0.42

GRMZM2G167673 1.46 ± 0.04 1.42 ± 0.04 1.37 ± 0.04 1.55 5.26** 2.43*

GRMZM2G369956 1.20 ± 0.03 1.19 ± 0.02 1.18 ± 0.02 1.48 2.92* 1.31

GRMZM2G419660 1.37 ± 0.05 1.35 ± 0.08 1.29 ± 0.02 1.43 7.96** 2.30*

GRMZM2G511067 1.46 ± 0.05 1.37 ± 0.05 1.32 ± 0.05 3.92** 4.34** 1.71

GRMZM2G003165 1.48 ± 0.06 1.51 ± 0.05 1.51 ± 0.07 −0.69 −0.37 0.45

GRMZM2G014180 1.15 ± 0.02 1.14 ± 0.02 1.14 ± 0.02 1.20 0.79 −0.52

GRMZM2G352959 1.17 ± 0.07 1.11 ± 0.05 1.14 ± 0.04 2.89** 1.30 −2.74*

GRMZM2G419655 1.35 ± 0.05 1.40 ± 0.06 1.28 ± 0.03 −2.52* 6.75** 5.55**

GRMZM2G542753 1.23 ± 0.07 1.23 ± 0.05 1.21 ± 0.05 0.17 1.26 1.20

Table 4.  Expression levels of different candidate genes for maize starch granule size. Note: SSG, gene expression 
of the small starch granule inbred line group; MSG, gene expression of the medium starch granule inbred line 
group; LSG, gene expression of the large starch granule inbred line group; t-value SSG/MSG, t-value of the t-test 
between SSG and MSG; t-value SSG/LSG, t-value of the t-test between SSG and LSG; t-value MSG/LSG, t-value 
of t-test between MSG and LSG; *, 0.05 significance level; **, 0.01 significance level.
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Beijing, China). The primers for the selected 10 candidate genes are shown in Table S6. A reverse transcription 
and fluorescence quantitative PCR analysis was conducted according to the user manual for the qPCR Master Mix 
(Vazyme Biotech, Nanjing, China). The actin gene was used as a reference, and all samples were analysed three 
times. The mean value of every sample was used for analysis.

Data Availability
https://pan.baidu.com/s/1bpFjeLD#list/path=%2F.
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