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Pharmacological activation of NQO1 increases NAD
levels and attenuates cisplatin-mediated acute
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Cisplatin is a widely used chemotherapeutic agent for the
treatment of various tumors. In addition to its antitumor
activity, cisplatin affects normal cells and may induce adverse
effects, such as ototoxicity, nephrotoxicity, and neuropathy.
Various mechanisms, such as DNA adduct formation,
mitochondrial dysfunction, oxidative stress, and inflammatory
responses, are critically involved in cisplatin-induced adverse
effects. As NAD ¥ is a cofactor for various enzymes associated
with cellular homeostasis, we studied the effects of increased
NAD* levels by means of NAD(P)H:quinone oxidoreductase 1
(NQO1) activation using a known pharmacological activator
(p-lapachone) in wild-type and NQO1 ~’~ mice on cisplatin-
induced renal dysfunction in vivo. The intracellular

NAD */NADH ratio in renal tissues was significantly increased
in wild-type mice co-treated with cisplatin and p-lapachone
compared with the ratio in mice treated with cisplatin alone.
Inflammatory cytokines and biochemical markers for renal
damage were significantly attenuated by p-lapachone
co-treatment compared with those in the cisplatin alone
group. Notably, the protective effects of f-lapachone in
wild-type mice were completely abrogated in NQO1 '~
mice. Moreover, -lapachone enhanced the tumoricidal
action of cisplatin in a xenograft tumor model. Thus,
intracellular regulation of NAD* levels through NQO1
activation might be a promising therapeutic target for the
protection of cisplatin-induced acute kidney injury.

Kidney International (2014) 85, 547-560; doi:10.1038/ki.2013.330;

published online 11 September 2013

KEYWORDS: cisplatin; NAD *; nephrotoxicity; NQO1; sirtuins

Correspondence: Hong-Seob So, Center for Metabolic Function Regulation,
Department of Microbiology, Wonkwang University School of Medicine,
344-2 Shinyong-dong, lksan, Jeonbuk 570-749, Republic of Korea.

E-mail: jeanso@wku.ac.kr

SThese authors contributed equally to this work as first authors.

Received 4 January 2013; revised 10 June 2013; accepted 13 June 2013;
published online 11 September 2013

Kidney International (2014) 85, 547-560

cis-Diamminedichloroplatinum II (CDDP, cisplatin) is a
widely used chemotherapeutic drug for the treatment of
various solid tumors in the head and neck, bladder, lung,
ovaries, testicles, and uterus.!"® However, the use of cisplatin
is limited owing to its various adverse effects, including
ototoxicity, nephrotoxicity, and peripheral neuropathy, during
the course of chemotherapy. Approximately one out of
three patients experience a significant reduction in renal
function following cisplatin treatment.”8 In addition to DNA
damage, a positive feedback loop between inflammatory
cytokines and oxidative stress causing tubular toxicity and
vascular injury has been reported as the major cause of
cisplatin-induced renal dysfunctions.®3 Post-translational
modification of nuclear factor (NF)-xB p65 and p53,
including phosphorylation and acetylation, may be an
important factor in cisplatin-mediated cytotoxicity, because
activation of these molecules has been linked to both
inflammatory responses and apoptosis.!*® Furthermore,
oxidative stress, particularly hydroxyl radical, has a major role
in cisplatin-induced p53 activation through DNA damage.®
In particular, activation of p53 by its acetylation was also
critically involved in cisplatin-induced renal injury.!”
NADH: quinone oxidoreductase 1 (NQO1) is a cytosolic
antioxidant flavoprotein that catalyzes the reduction of
quinones to hydroquinones by utilizing NADH as an electron
donor, which consequently increases intracellular NAD "
levels.!19 In addition, there is evidence that NQO1 has a role
in other biological activities, including anti-inflammatory
processes, the scavenging of superoxide anion radicals,
and the stabilization of p53 and other tumor-suppressor
proteins.?02¢ Several activators of the NQO1 enzyme have
been identified, of which p-lapachone (3,4-dihydro-2,2-
dimethyl-2H-naphto[1,2-b]pyran-5,6-dione; BL) is the best
known.?”?8 BL was first isolated from the bark of the lapacho
tree and reported to inhibit tumor growth.?? However, recent
reports indicate that the enzymatic activation of NQOL1 by BL
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has beneficial effects on several characteristics of metabolic
syndromes, for example, prevention of health decline in aged
mice, amelioration of obesity or hypertension, prevention of
arterial restenosis, and protection against salt-induced renal
injury.>*3> Consistent with these reports, cellular NAD * and
NADH levels have been shown to be important mediators of
energy metabolism and cellular homeostasis.**>° As NAD *
acts as a cofactor for various enzymes, including sirtuins
(Sirts), poly(ADP-ribose) transferases, and cyclic ADP-ribose
synthases,0*3 the regulation of NAD " may have therapeutic
benefits through its effect on NAD " -dependent enzymes.
In particular, several Sirt proteins are NAD " -dependent
protein deacetylases that have been reported to be anti-
aging molecules associated with calorie restriction.*»*> In
mammals, there are seven homologs of Sir2 (Sirtl-7) that
show differential subcellular localizations.3®4 Among these,
nuclear-localized Sirtl is activated under energy stress
conditions, such as fasting, exercise, or low glucose
availability.*® Sirtl has a key role in metabolism, develop-
ment, stress response, neurogenesis, hormone responses, and
apoptosis?’*® by deacetylation of substrates, such as NF-xB
p65, FOXO, p53, and histones.**>? In addition, recent studies
suggest that Sirtl regulates inflammatory responses through
NF-kB p65 deacetylation. In the absence of Sirtl in vivo
(knockout mice), there is deregulated inflammatory pathway
activation in conjunction with increased inflammatory gene
expression.>

Mitochondria-localized Sirt3 regulates adaptive thermo-
genesis, mitochondrial function, energy homeostasis, and
cellular survival upon genotoxic stress.’*° Sirt3 exerts anti-
oxidative effects through the deacetylation and activation
of mitochondrial isocitrate dehydrogenase 2 (IDH2) and the
enhancement of the glutathione antioxidant defense system.
Furthermore, Sirt3 antagonizes p53 function through direct
interaction and subsequent deacetylation of p53 in the
mitochondria.”’

Although a link between NAD " -dependent molecular
events and cellular metabolism is evident, it remains unclear
whether modulation of NAD ™ levels has an impact on
cisplatin-induced renal injury. In this study, we investigated
the protective effects of BL on cisplatin-induced acute kidney
injury in wild-type (WT) compared with NQO1 knockout
(NQO1~/7) mice. We found that BL protects against
cisplatin-induced renal dysfunction and that this effect is
mediated by Sirtl and Sirt3 through NQO1 activation.

RESULTS

BL activates NQO1 enzyme activity and increases the
intracellular ratio of NAD © to NADH in mice

Kidney homogenates from WT mice were isolated and treated
with BL to measure NQO1 activity. As shown in Supplementary
Figure S1A online, NQOI activity was significantly increa-
sed by PL treatment (26.3 2.1 vs. 11.3 + 1.2 nmol/min/mg
protein (control)), whereas it was attenuated to the control
level by the addition of the NQO1 inhibitor dicumarol
(14.5 + 1.5nmol/min/mg protein). By contrast, dicumarol
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itself completely abrogated NQO1 activity (1.5 1.0 nmol/
min/mg protein). Next, we asked whether NQO1 activation
correlates with intracellular NAD ™ and NADH levels in
kidney tissues. WT mice were orally administered BL or
vehicle for 4 days, and NAD T /NADH ratios were determined
from isolated kidney tissues. We found a significant increase
in the NAD "/NADH ratio in BL-treated mice compared
with the ratio in control mice (2.13%0.42 vs.1.2210.3)
(Supplementary Figure S1B online).

BL inhibits cisplatin-induced acute kidney injury in mice

C57BL/6 mice were treated with PL, cisplatin, or BL+
cisplatin, as indicated in Supplementary Figure S2 online,
and the levels of serum creatinine and blood urea nitrogen
(BUN) (biochemical markers for kidney dysfunction) were
measured at day 4. As shown in Figure la and b, cisplatin
increased the levels of serum creatinine and BUN (1.67 £0.12
and 126 £7.5mg/dl, respectively), compared with control
(0.31£0.11 and 36.0£7.4mg/dl, respectively). However,
BL + cisplatin significantly reduced the levels of both serum
creatinine (1.01 £ 0.15 mg/dl) and BUN (79.8 + 4.1 mg/dl), as
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Figure 1| Effect of f-lapachone (BL) on serum creatinine and
blood urea nitrogen (BUN) in cisplatin-induced acute kidney
injury. BL (40 mg/kg body weight) was administered orally once a
day for 4 consecutive days. Cisplatin (20 mg/kg body weight) was
injected once at 12 h after the first L administration. The mice
were killed at 72 h after the single cisplatin injection, and levels of
(@) serum creatinine and (b) BUN were analyzed using an assay kit
according to the manufacturer’s instructions (BioVision). To observe
the effect of BL on the cisplatin-induced toxicity with the
experimental time course, the mice were killed daily after cisplatin
injection, and serum was analyzed for (c) creatinine and (d) BUN.
*#P <0.05 by one-way analysis of variance compared with the control
(*) and cisplatin 4+ BL group (#) (n=5).
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compared with cisplatin alone. Levels in PL-treated and
control mice were similar. In addition, to determine the time-
dependent effect of BL on cisplatin-induced acute kidney
injury, we examined the kidney function for 3 consecutive
days after cisplatin or cisplatin+ BL administration. As
shown in Figure 1c and d, cisplatin-induced serum creatinine
and BUN were suppressed by PL treatment in a time-
dependent manner. These results suggest that BL may protect
against cisplatin-induced kidney dysfunction.

pL ameliorates cisplatin-induced renal tubular damage in
mice

The pathophysiology of cisplatin-induced renal injury can be
classified into four types: (i) tubular toxicity, (ii) vascular
damage, (iii) glomerular injury, and (iv) interstitial injury.
The multistep, complex processes that result in renal damage
are caused by the concentration of potential toxic elements
in the tubular fluid, which then diffuse into the highly
permeable tubular cells. Cisplatin, which has a low molecular
weight and is uncharged, is freely filtered at the glomeruli
and subsequently taken up by renal tubular cells, ultimately
reaching its highest concentrations in the proximal tubular
cells of the inner cortices and outer medullae.>® Thus, these
areas are the major sites for cisplatin-induced renal damage,
which, in turn, causes injury to other tubular areas, including
the distal tubule and collecting tubule.*>%

To examine the tubular damage by cisplatin and the
potential protective effect of PL, kidney specimens from
experimental groups were stained with hematoxylin and
eosin (H&E). As shown in Figure 2a, mice treated with
cisplatin showed various tubular injuries, such as tubular
dilation, vacuole formation, and necrosis, whereas mice
treated with PL 4 cisplatin showed significantly reduced
tubular injuries. Renal histology in BL alone was similar to
that in control. Consistent with H&E staining, cisplatin-
treated mice had deleterious structural changes, including
loss of the brush border membrane, deposition of periodic
acid-Schiff (PAS)-positive materials, and cast formation,
whereas coadministration of BL abrogated these deleterious
effects (Figure 2b). For quantitative comparison of tissue
injury among the samples, tubular injuries were scored based
on the percentage of cortical tubular necrosis described in the
Methods section. As shown in Figure 2c, cisplatin signifi-
cantly increased tubular injury (3.05 £ 0.605) compared with
control, whereas BL significantly attenuated the cisplatin-
induced tubular injury (1.1 £0.31). Levels in fL-treated and
control mice were similar. These results suggest that BL
protects against cisplatin-induced tubular injury.

BL inhibits potential mediators or processes for
cisplatin-induced renal damage in mice

Because inflammatory cytokines such as tumor necrosis
factor (TNF)-a, interleukin (IL)-1B, and IL-6 may relay
cisplatin-induced toxicity, we examined whether the upre-
gulation of these mediators by cisplatin is affected by BL
coadministration. First, we assessed TNF-o0 in serum and
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urine as a representative mediator of the pathogenesis of
cisplatin-induced acute kidney injury (Figure 3a and b).
Cisplatin administration produced a robust increase in serum
and urine TNF-o levels (310£40 and 139 +2.0 pg/ml,
respectively), whereas BL coadministration significantly
attenuated serum and urine TNF-o levels (165+22 and
73 + 4.5 pg/ml, respectively). Serum and urine TNF-a levels
in control mice (32 %24 and 13 + 5 pg/ml, respectively) and
BL-treated mice (77 £2.5 and 66 + 2.6 pg/ml, respectively)
were low. We also examined TNF-a level in kidney tissue by
immunohistochemistry (IHC) and quantitative enzyme-
linked immunosorbent assay (ELISA). TNF-o in cisplatin-
treated kidney tissue was strongly attenuated by PL
coadministration, as shown by IHC (Figure 3c). This
BL-mediated attenuation of TNF-a expression was further
confirmed by ELISA (Figure 3d). We also examined other
proinflammatory cytokines, IL-1B and IL-6, in kidney tissue.
As shown in Supplementary Figure S3 online, IL-1 and IL-6
levels were also increased by cisplatin treatment, whereas BL
coadministration attenuated cisplatin-induced elevation of
those cytokines.

Oxidative stress by reactive oxygen species (ROS) has also
been implicated in the pathogenesis of cisplatin-induced
renal injury, and membrane NAD(P)H oxidases (NOXs) are
one of the major sources for ROS generation. Therefore,
we analyzed the renal tissue expression of NOX1 and NOX4
in response to cisplatin, BL, or cisplatin + L by IHC and
western blotting from kidney sections and tissue lysates,
respectively. IHC from kidney sections showed that cisplatin
treatment increases the expression of NOX1 and NOX4,
especially in damaged areas, whereas BL coadministration
almost completely attenuated the expression of these proteins
(Figure 3e and f). BL alone was similar to control. Similarly,
western blot analysis showed that BL coadministration
potently attenuated cisplatin-induced NOX1 and NOX4
expression levels (Figure 3g and h). Consistent with NOX
expression levels, cisplatin-induced NOX enzyme activity was
abrogated by BL coadministration, as shown in Figure 3i.

As the infiltration of immune cells to the site of injury is
indirectly assessed by the expression level of chemokines, we
evaluated monocyte chemotactic protein-1 (MCP-1), one of
the well-known proinflammatory chemokines for neutrophil
infiltration, in a kidney section. As shown in Figure 3j and k,
BL coadministration potently inhibited MCP-1 expression
induced by cisplatin. We also quantified the number of
neutrophils infiltrated to the injured kidney. The number of
infiltrated neutrophils was markedly increased by cisplatin
administration, whereas it was completely blocked by BL
coadministration (Figure 31).

NF-kB activation acts as one of the major signals for
inflammatory responses and ROS formation. Therefore,
we examined NF-kB p65 expression by IHC and western
blotting. Increased expression of NF-xB p65 was clearly
observed by IHC in the renal tubular area of cisplatin-treated
mice, whereas PL co-treatment attenuated this expression
(Figure 3m). For the quantitative analysis of NF-kB

549



basic research

G-S Oh et al.: Protective effects of NQO1 activation in cisplatin-induced acute kidney injury

Tubular injury scores
IS

0

Cisplatin -
pL -

Figure 2 | Effect of PL on renal histology in cisplatin-induced acute kidney injury. Kidney specimens were stained with hematoxylin and
eosin (H&E) and periodic acid-Schiff (PAS) and the tubular injury was quantified. (a) H&E staining. Cont, PBS (phosphate-buffered saline)-treated
control group; cisplatin, 20 mg/kg cisplatin only group; cisplatin + BL, cisplatin and 40 mg/kg BL combined group; BL, BL only group.

(b) PAS staining. Damaged areas on tissue sections are marked with black arrows. (c) Tubular injury was scored using the quantitative
evaluation method as described in the Methods. **P<0.001 by one-way analysis of variance compared with the control (*) and cisplatin

+ BL group (#) (n=10).

activation, we examined p65 nuclear translocation by western
blotting using the nuclear fraction of kidney tissues. As
shown in Figure 3n and o, cisplatin-induced p65 nuclear
translocation was significantly reduced by BL coadministra-
tion. Taken together, these results strongly suggest that PL
prevents cisplatin-induced acute kidney injury by suppressing
critical mediators for inflammation and ROS.

NQO1 mediates pL-induced renal protection in
cisplatin-treated mice

We investigated whether PL-induced protective effects are
mediated through NQO1 activation. We performed a series of
experiments using NQO1 ~/~ mice, similar to those shown in
Figures 1-3 using WT mice. We analyzed the biochemical
markers and histology of renal injury in cisplatin-treated
NQO1 /™ mice (Figure 4a—¢). The levels of serum creatinine
and BUN (1.65%0.26 and 144 * 10.0 mg/dl, respectively) in
cisplatin-treated NQO1 ~/~ mice were similar to or a little
higher than those observed in cisplatin-treated WT mice.
As expected, BL coadministration did not reduce the levels
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of these markers (creatinine: 1.25%0.32; BUN: 1245+
13.2mg/dl) in NQO1 '~ mice. In the histological staining,
cisplatin treatment of NQO1 /'~ mice caused typical renal
damage (i.e., tubular necrosis, brush-border loss, dilation of
the tubular area, and cast formation). However, unlike the
WT results, BL coadministration did not protect against
cisplatin-induced tubular damage in NQO1 ™/~ mice
(Figure 4c-e). These results suggest that the PL-induced
protective effects are mediated through NQO1 activation. We
also investigated TNF-a production in serum and tissue of BL
and cisplatin co-treated NQO1 ~/~ mice. As predicted, serum
TNF-o levels were similarly increased in both cisplatin-
and cisplatin 4 BL-treated NQOI1 /7 mice (222440 vs.
202+ 70 pg/ml) (Figure 5a). Similarly, TNF-o expression in
renal tissue was also strongly induced in both cisplatin- and
cisplatin + BL-treated NQO1 /™ mice (Figure 5b and c).
Levels of other proinflammatory cytokines, IL-1f and IL-6,
were not also decreased by PL coadministration in NQO1 ~/ ~
mice (Supplementary Figure S4 online). In addition, MCP-1
expression remained elevated in NQO1 ~/~ mice regardless

Kidney International (2014) 85, 547-560
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Figure 3 | Effect of pL on cisplatin-induced renal damage mediators. Tumor necrosis factor (TNF)-o was analyzed in (a) serum and (b) urine.
**P <0.05 by one-way analysis of variance (ANOVA) compared with the control (*) and cisplatin + BL group (#) (n=5). (c) Kidney specimens
were stained with TNF-o antibody for immunohistochemistry. Cont, PBS (phosphate-buffered saline)-treated group; cisplatin, 20 mg/kg
cisplatin only treated group; cisplatin + BL, cisplatin and 40 mg/kg BL combined group; BL, BL only group. (d) TNF-o levels in kidney tissues
were analyzed by enzyme-linked immunosorbent assay. **P <0.005 by one-way ANOVA compared with the control (¥) and cisplatin + BL group
(#) (n=15). Kidney sections were IHC-stained with (e) NAD(P)H oxidase 1 (NOX1), (f) NOX4, (j) monocyte chemotactic protein-1 (MCP-1), and (m)
nuclear factor (NF)-xB p65 antibodies. For the quantitative analysis of protein expression level, kidney lysates were analyzed by western
blotting for NOX1, and (g) NOX4 and (h) signal intensities were quantified. **P<0.05 by one-way ANOVA compared with the control (¥)
and cisplatin + BL group (#) (n=3). (i) Total NOX enzyme activity was analyzed from kidney tissue. **P<0.05 by one-way ANOVA compared
with the control (*) and cisplatin + BL group (#) (n=6). (k) The level of MCP-1 expression shown in panel (j) was quantitatively evaluated
by using the method as described in the Methods. **P<0.001 by one-way ANOVA compared with the control (*) and cisplatin + PL group (#)
(n=10). (I) Infiltrated neutrophils were quantified from the periodic acid-Schiff (PAS)-stained specimens shown in panel (b). **P<0.001

by one-way ANOVA compared with the control (*¥) and cisplatin -+ L group (#) (n=10). (n) NF-kB p65 nuclear translocation was

examined by western blotting using the nuclear fraction of kidney tissues and (o) quantified. Histone H3 (H3) was used as a loading control.
*#p <0.01 by one-way ANOVA compared with the control (¥) and cisplatin + BL group (#) (n = 3). IHC, immunohistochemistry.

of BL coadministration (Figure 5d-e). Similarly, NOX1 and  PL regulates the ratio of NAD * to NADH via NQO1 in renal
NOX4 expression levels were not abrogated by PL coadminis-  tissue

tration in NQO1 '~ mice (Figure 5f4). These results Next, we examined the effect of BL on the cellular
strongly indicate that BL acts through NQO1 to block NAD*/NADH ratio in the kidneys of cisplatin-treated WT
cisplatin-induced acute kidney injury. or NQOI1 '~ mice. As shown in Figure 6a, the cellular
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mice. BL (40 mg/kg body weight) was administered orally once a day

for 4 days. Cisplatin (20 mg/kg body weight) was injected once, on the second day of BL administration. The mice were killed at 72 h after the
single cisplatin injection. (a) Serum creatinine and (b) blood urea nitrogen (BUN) were measured. *P<0.05 by one-way analysis of variance
(ANOVA) compared with the control group. Kidney sections were stained with (c) hematoxylin and eosin (H&E) and (d) periodic acid-Schiff
(PAS). Cont, PBS (phosphate-buffered saline)-treated group; cisplatin, 20 mg/kg cisplatin only group; cisplatin + BL, cisplatin and 40 mg/kg L
combined group; BL, BL only group. (e) Tubular injury was scored using the quantitative evaluation method as described in the Methods.
*P<0.05 by one-way ANOVA compared with the control group (n=5). NS, not significant.

NAD " /NADH ratio in WT mice was lowered after cisplatin
treatment compared with control (0.72£0.09 vs. 1.21 £0.3
(control)). BL coadministration restored the cellular NAD */
NADH ratio to control levels (1.16 + 0.15). Interestingly, BL
alone elevated the cellular NAD " /NADH ratios in the kidney
(2.12+£0.4) compared with control. In NQO1 '~ mice,
however, the cellular NAD */NADH ratio in the kidney was
not affected by either cisplatin or BL alone, although the
cellular NAD */NADH ratios in the control and BL alone
groups were markedly reduced (0.59+0.19 vs. 0.58 £0.11)
compared with levels in WT mice under similar conditions
(Figure 6b).

BL induces the deacetylation of NF-kB p65 and p53

It has been reported that acetylation of NF-kB p65 and p53
has significant roles in transcriptional activation of inflam-
mation-related genes and pathological conditions associated
with apoptosis. Sirtl and Sirt3, localized in the nucleus and
mitochondria, respectively, deacetylate NF-xB p65 and
p53.14716 Therefore, we investigated the NF-xB p65 and p53
acetylation levels following cisplatin or BL coadministra-
tion as a way to indirectly estimate Sirtl and Sirt3 activity
in cisplatin-treated WT or NQO1~/~ mice. As shown in
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Figure 7a and b, cisplatin-treated WT mice displayed
markedly increased NF-xB p65 and p53 acetylation levels
compared with control. BL coadministration significantly
reduced the expression of the acetylated forms compared
with cisplatin treatment alone. BL alone did not have
any effect. We further confirmed by western blot analysis
that the level of acetylated NF-kB p65 and p53 was strongly
increased in cisplatin-treated WT mice, whereas it was signifi-
cantly attenuated in cisplatin + BL co-treated WT mice
(Figure 7c—d). In contrast, the attenuation of cisplatin-
induced NF-xB p65 and p53 acetylation by BL treatment was
not observed in NQO1 ~/~ mice (Figure 7e-h). These results
suggest that NQOI is indispensible for deacetylation of
NF-«B p65 and p53.

BL increases the enzymatic activities of Sirt1 and Sirt3
through NQO1 activation

Next, we examined whether BL regulates the expression and
activity of Sirtl and Sirt3. As shown in Supplementary Figure
S5A-F online, IHC and western blot analyses showed that
Sirtl and Sirt3 protein expression increased in cisplatin-
treated kidney tissues from WT mice, whereas it was clearly
blocked by BL treatment. However, the increased expression

Kidney International (2014) 85, 547-560
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Figure 5| Effect of BL on cisplatin-induced renal damage mediators in NQO1 /~ mice. (a) Serum level of tumor necrosis factor (TNF)-o
was analyzed using the enzyme-linked immunosorbent assay kit. *P<0.05 by one-way analysis of variance (ANOVA) compared with the
control or cisplatin only group (n=>5). Kidney sections were stained with (b) TNF-a, (d) monocyte chemotactic protein-1 (MCP-1), (f) NAD(P)H
oxidase 1 (NOX1), and (g) NOX4 antibodies for immunohistochemistry (IHC). Cont, PBS (phosphate-buffered saline)-treated group; cisplatin,
20 mg/kg cisplatin only group; cisplatin + BL, cisplatin and 40 mg/kg BL combined group; BL, BL only group. IHC-processed kidney specimens
were quantified for the expression levels of (c) TNF-o, (e) MCP-1, (g) NOX1, and (i) NOX4 using the ImageJ program. *P<0.05 by one-way
ANOVA compared with the control group (n=10). NS, not significant.
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of Sirtl and Sirt3 induced by cisplatin was not blocked by BL
in NQO1 /™ mice (Supplementary Figure S5F- online).
Interestingly, despite a strong increase in Sirt expression in
cisplatin-treated WT mice, enzymatic activities of these
proteins were significantly low compared with those in
control (Figure 8).

DISCUSSION

Many chemotherapeutic agents, such as cisplatin, have reno-
toxic side effects. Cisplatin is widely used for the treatment
of various types of cancer,® but its use can be limited by
acquired resistance and severe adverse effects in normal
tissues.>> The former contributes to reduced uptake, increa-
sed efflux, or neutralization of cisplatin and to defective
apoptotic signaling in response to cisplatin-induced DNA
damage.>!!™'3 The latter includes ototoxicity, neurotoxicity,
nausea, vomiting, and nephrotoxicity. The cytotoxic mecha-
nisms of cisplatin include oxidative stress by ROS, mitochon-
drial dysfunction, and the formation of DNA adducts.
In addition, positive feedback loops between the secretion
of TNF-a from renal tubular cells, the activation of NF-«B,
and proinflammatory cytokines may also cause renal
damage after cisplatin treatment.®! Inflammatory cytokines
participate in innate and adaptive immunity in the host
defense system. They induce cell death through a receptor-
related extrinsic mechanism. This process, in turn, elevates
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Figure 6 | Effect of PL on intracellular NAD " /NADH ratio. Effect of
BL on intracellular NAD " /NADH ratio in cisplatin-treated (a) wild-
type and (b) NQO1 =/~ mice. NAD* and NADH were extracted from
kidney tissues as follows: control (Cont), cisplatin, cisplatin 4 BL, and
BL only. NAD* and NADH concentrations were measured by using
an assay kit according to the manufacturer’s instructions. **P<0.05
by one-way analysis of variance compared with the control (*) and
cisplatin + BL only group (#) (n=5). NS, not significant.

the production of ROS and other chemokines, which may
recruit immune cells to the sites of inflammation.6>%3

In this study, we demonstrated that PL treatment
attenuates cisplatin-induced renal dysfunction by assessing
the levels of serum creatinine and BUN and histology
(Figures 1 and 2). In addition, BL coadministration reduces
the expression of renal damage mediators, including
inflammatory cytokines, the chemoattractant protein
MCP-1, neutrophil infiltration, the ROS-generating proteins
NOX1 and NOX4, and NOX enzymatic activity (Figure 3 and
Supplementary Figure S3 online). We also demonstrated that
BL downregulates the expression of NF-xB p65 and
activation of NF-xB by blocking its nuclear translocation in
kidney tissues (Figure 3). In addition, PL increases cellular
NAD * levels in a NQO1-dependent manner (Supplementary
Figures S1 and S6 online). These results suggest that BL may
prevent cisplatin-induced acute kidney injury through NQO1
enzymatic activation and the subsequent NAD */NADH
ratio increase. Therefore, we examined the protective role of
BL coadministration in cisplatin-treated NQO1 ~/~ mice. In
the absence of NQO1, BL coadministration does not prevent
against cisplatin-induced renal damage (Figures 4 and 5, and
Supplementary Figure S4 online). Taken together, these
results strongly suggest that PL protects the kidney from
cisplatin-induced damage via NQOI.

NQOs are a group of flavoproteins that include NQO1
and NQO2 in mammals. Both NQO1 and NQO?2 readily
catalyze two electron reductions of various quinone com-
pounds and their derivatives, resulting in the detoxification
of these electrophilic compounds and the prevention of redox
cycling. In addition, NQOI1 possesses many other biological
activities, such as scavenging of superoxide anion radicals and
stabilization of the tumor-suppressor p53, which may serve
as the basis for its potential involvement in protecting against
disease processes.®* However, despite these various roles of
NQOI1, mice lacking NQO1 gene expression showed no
detectable phenotype and were indistinguishable from WT
mice, although NQO1 null mice exhibited increased toxicity
when administered menadione compared with WT mice.®® It
is plausible that in NQO1 null mice NQO2 may compensate
for the loss of NQO1% and thus may not worsen renal
dysfunction compared with WT even in cisplatin-induced
acute kidney injury. In our study, we also found that there is
no obvious difference in the extent of cisplatin-induced acute
kidney injury between WT and NQO1 '~ mice. We just
used these NQO1 null mice to investigate whether the
enzymatic activation of NQOI is indispensable for the effect

>

Figure 7 | Effect of L on cisplatin-mediated acetylation of nuclear factor (NF)-xB p65 and p53 in renal tissue from wild-type (WT)
and NQO1 '~ mice. Kidneys from mice treated with phosphate-buffered saline, cisplatin, L + isplatin, and L alone were removed and
embedded in paraffin, and 5-um sections were prepared. Immunohistochemistry (IHC) was performed by using antibodies against the

(@, ¢ e, g) acetylated forms of p65 and (b, d, f, h) p53 from WT (a, b) or NQO1 =/~ (e, f) mice sections. Western blot was performed, and signal
intensity was quantified for p65 (c) and p53 (d). **p 0,05 by one-way analysis of variance (ANOVA) compared with the control (*) and

cisplatin + BL only group (#) (n=3). IHC-processed kidney specimens of NQO1 ~/~

mice were quantified for acetyl p65 (g) and p53 (h) using

the ImageJ program. *P<0.05 by one-way ANOVA compared with the control group (n=>5). NS, not significant.
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of PL. Many studies have revealed that maintaining
intracellular NAD * is important for cell survival in various
diseases, including axonal degeneration, cerebral ischemia,
and cardiac hypertrophy. NAD biosynthesis is mainly
accomplished through either the de novo pathway from
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Figure 8| Effect of L on Sirt1 and Sirt3 deacetylase activity from
kidney tissues of wild-type mice. Kidney tissues were extracted
from mice treated as follows: control (Cont), cisplatin, cisplatin + BL,
and BL alone. Sirt1 and Sirt3 enzyme activities were analyzed using
an assay kit according to the manufacturer’s instructions. **P<0.05
by one-way analysis of variance compared with the control (*) and
cisplatin + BL (#) group (n=6).

tryptophan or the salvage pathway from nicotinamide and
nicotinic acid. In addition, NAD " can also be converted
from NADH by NQOI, which catalyzes two electron
reduction of natural substrate such as coenzyme Q-10 or
vitamin E, but this reaction rate is very slow. Therefore, it is
likely that NQO1 does not take a large part in the regulation
of cellular NAD ™ levels in normal state. In fact, we did not
find any significant difference in intracellular NAD * levels in
untreated kidney tissues between WT and NQO1 ~/~ mice
(data not shown).

Recently, numerous studies have reported that the
enzymatic activation of NQO1 by BL mediates the beneficial
effects on features of metabolic syndromes, including aging,
obesity, hypertension, arterial restenosis, and salt-induced
renal injury,®»31*%34 raising the possibility that intracellular
NAD * increase through NQOTI activation may be a potential
therapeutic target for treating various diseases. In this report,
we investigated whether NQO1 enzymatic activation by PL
ameliorates cisplatin-induced renal changes. Consistent with
previous reports, BL restores the cisplatin-induced reduction
of the cellular NAD */NADH ratio in renal tissue in WT mice
but not in NQO1 '~ mice (Figure 6). Interestingly, the
major reason for the cellular change in the NAD */NADH
ratio by BL in WT mice is not the reduction in NADH but the
increase in NAD " levels (data not shown). Modulation of
NAD* levels may have a strong impact on metabolic
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Figure 9 | Effect of BL on cisplatin’s tumoricidal activity using a tumor-bearing mouse model. (a) Schematic schedule for evaluating the
effect of BL on the tumoricidal activity of cisplatin in vivo. (b-d) To evaluate the chemotherapeutic effect of cisplatin with or without BL, tumor
volume was measured every 3 days until the time of killing. Tumor mass was removed at 4 weeks after the MBT-2 inoculation, photographed, and
weighed. **P <0.05 by one-way analysis of variance compared with control (*) and cisplatin + BL (#) group (n=10). IP, intraperitoneal.
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processes, such as [-oxidation, ATP production, cell signal-
ing, and cellular redox state,>*3% as NAD " acts as a cofactor
for various enzymes, including sirtuins and ADP-ribose
transferases.’? Of these, sirtuin proteins use NAD™" as a
substrate to deacetylate various targets, including histones
and NF-xB p65 (by Sirtl) in the nucleus,’> and IDH2 and
p53 (by Sirt3) in the mitochondria.’'»>7® In the case of NF-
kB, nuclear translocation itself may cause transcriptional
activation of target genes, but additional modification of the
p65 subunit by acetylation potentiates its transcriptional
activity.!#!> Furthermore, acetylation and translocation of
p53 induces cell death signals, which are normally stabilized
by MDM2 (mouse double-minute 2 homolog) in the
cytoplasm.'® We found hyperacetylation of p65 and p53 in
cisplatin-treated renal tissues. The hyperacetylation was
blocked by BL coadministration in WT mice but sustained
in NQO1~/~ mice (Figure 7). Surprisingly, Sirtl and Sirt3
protein expression increased in cisplatin-treated kidney
tissues from WT mice, whereas their expression was clearly
blocked by BL treatment. However, the increased expression
of Sirtl and Sirt3 induced by cisplatin was not blocked by BL
in NQO1 /'~ mice (Supplementary Figure S5 online). Our
results showed that increased intracellular NAD™ levels
through NQOI1 activation by BL treatment results in the
activation of Sirtl and Sirt3 and protects against cisplatin-
induced acute kidney injury. This effect may be similar to
that observed in other reports where Sirtl activation was
achieved by either kidney-specific Sirtl overexpression®” or
by treatment with resveratrol.!” However, Kim et al.!” showed
that cisplatin alone reduces Sirtl expression and enzyme
activity in contrast to our observation that cisplatin
treatment alone strongly increased Sirtl expression
confirmed by western blotting, IHC (Supplementary Figure
S5 online), and quantitative reverse transcriptase-PCR (data
not shown). Of interest, despite the strong increase in the
expression of Sirtl and Sirt3, enzymatic activities were
significantly decreased in the cisplatin group compared with
control (Figure 8), consistent with the decreased NAD "
levels in the cisplatin-treated group (Figure 6). The
hyperacetylation of p65 and p53 observed in cisplatin-treated
renal tissues from both WT and NQO1 ~/~ mice can be also
explained by the decreased deacetylase activity of Sirts in
cisplatin-treated tissues, because the amount of NAD " is
insufficient. Therefore, we speculate that the increased
expression of Sirt by cisplatin treatment in our experiment
may have resulted as an adaptive response but could not
protect against cisplatin-induced acute kidney injury due to
both inappropriate induction time/amount of Sirt and
decreased NAD ™ levels.

In this study, we demonstrated that BL effectively protects
against cisplatin-induced acute kidney injury, suggesting L
as a potential therapeutic agent. However, BL should not
interfere with the tumoricidal effect of cisplatin in order to be
a potential therapeutic agent against the adverse effects of
cisplatin. Therefore, we examined whether BL could affect
cisplatin-induced tumoricidal activity using a tumor-bearing

Kidney International (2014) 85, 547-560

mouse model. C3H/He mice were subcutaneously injected
with MBT-2 mouse bladder tumor cells and treated with
cisplatin and/or BL. As shown in Figure 9, BL did not
attenuate the tumoricidal effect of cisplatin, but rather
enhanced it.

In conclusion, our study demonstrates that NQOI1
enzymatic activation by BL suppresses cisplatin-induced acute
kidney injury by downregulating potential damage mediators.
Cisplatin causes renal injury through a sequence of events that
include tubular cell death and tissue damage by TNF-o
secretion and a positive feedback loop of NF-«xB activation,
oxidative stress, and inflammatory responses. Our data suggest
that BL elevates cellular NAD " levels through the activation of
NQOIL. This, in turn, activates the deacetylase enzymes Sirtl
and Sirt3, which deacetylate p65 and p53 in the nuclei and
mitochondria, respectively. Taken together, our results strongly
suggest pharmacological activation of NQO1 as a potential
strategy for preventing cisplatin-induced renal injury.

MATERIALS AND METHODS

Animals and drug treatments

C57BL/6 WT mice were purchased from Orient Bio (Seongnam,
Korea). NQO1 knockout mice on a C57BL/6 background were
kindly provided by Dr C. H. Lee (Animal Model Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon,
Korea). All mice were fed a standard commercial diet while housed
at an ambient temperature of 2022 °C with a relative humidity of
50 £ 5% under 12/12-h light-dark cycle in a specific pathogen-free
facility. The experimental mice were 8 weeks old and were divided
into four groups: control (n=5), cisplatin (20 mg/kg; Sigma
Chemical, St Louis, MO; n=5), BL+ cisplatin (n=5), and BL
alone (40 mg/kg; n=15). The dose and time of cisplatin treatment
for nephrotoxicity were chosen according to a published meth-
0d.%%%% BT was administered orally once a day for 4 days. Cisplatin
was injected once at 12 h after the first BL administration. The mice
were killed at 72h after the single cisplatin injection. The
experimental protocol was approved by the Animal Care and Use
Committee at Wonkwang University.

NQO1 enzymatic activity assay

NQO1 activity was measured using kidney cytosolic frac-
tions.>>70 Briefly, NQO1 activity was calculated by measuring the
conversion rate of NADH to NAD ™ using DCPIP (2,6-dichloro-
phenolindophenol; Sigma) as a substrate. The reduction of NADH
was measured at 600 nm over 2 min. NQO1 activity was measured
in a 1-ml reaction volume containing kidney cytosolic fractions,
200 pmol/l NADH (Sigma), 40 pmol/l DCPIP, and Tris-HCI buffer
(25 mmol/l Tris-HCI, pH 7.4 and 0.7 mg/ml bovine serum albumin).
Moreover, dicumarol (Sigma) was used to inhibit NQO1 activation.
The sample size for each group was five.

Assays for renal functional markers and proinflammatory
cytokines

For renal function analysis, serum was isolated and stored at
— 80 °C until use. Serum creatinine and BUN levels were measured
using an assay kit according to the manufacturer’s instructions
(BioVision, Milpitas, CA). In addition, the proinflammatory cytokines
TNF-a, IL-1B, and IL-6 from serum or homogenates from kidney
tissue were quantified by ELISA (Quantikine Kit; R&D Systems,
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Minneapolis, MN) according to the manufacturer’s instructions. For
measuring cytokines, kidney tissue was homogenized in phosphate-
buffered saline containing 0.05% Tween-20. Aliquots containing
300 pug of total protein were used. A metabolic cage was used for
collecting urine to analyze the level of urinary cytokines. The sample
size for each group was five.

Histological analysis and neutrophil counting

Mouse kidneys were fixed in 4% formaldehyde and embedded in
paraffin wax. The 5-pum-thick sections were deparaffinized in xylene
and rehydrated through graded concentrations of ethanol. H&E and
PAS staining were performed using standard protocols. Images were
collected and analyzed using a light microscope (IX71, Olympus,
Tokyo, Japan) with DP analyzer software (DP70-BSW, Tokyo,
Japan). Tubular damage in PAS-stained kidney sections was exami-
ned under a light microscope and scored based on the percentage of
cortical tubular necrosis: 0 = normal, 1 =1-10, 2 = 1125, 3 = 2645,
4=46-75, and 5=76-100%. Slides were scored in a blinded
manner, and results are meansts.d. of 10 representative fields/
group. Criterion for tubular necrosis displaying the loss of the
proximal tubular brush border and cast formation was defined by
the methods described previously.®* The sample size for each group
was 10. Neutrophil infiltration was quantitatively assessed on PAS-
stained tissue by a renal pathologist by counting the number of
neutrophils per high-power field (x400). At least 10 fields were
counted in the outer stripe of the outer medulla for each slide.

Immunohistochemical analysis

To determine the expression levels of various target molecules,
IHC was performed. In brief, 5-um-thick kidney sections were
deparaffinized and rehydrated through graded concentrations of
ethanol. Antigen was retrieved in Tris-EDTA buffer (10 mmol/l
Tris base, 1 mmol/l EDTA solution, 0.05% Tween-20, pH 9.0) by
using a microwave oven. Endogenous peroxidase activity was
quenched by incubation for 5min in 0.3% H,O, solution.
Nonspecific antibody binding was blocked with 1.5% goat or rabbit
serum for 30 min, and then sections were incubated with target
antibodies to TNF-a, IL-1B, IL-6, Sirtl, Sirt3, p65, NOX1, NOX4
(Santa Cruz Biotechnology, Santa Cruz, CA), Ac-p65 (Abcam,
Cambridge, MA), Ac-p53, and p53 (Cell Signaling Technology,
Danvers, MA). Sections were washed with phosphate-buffered saline
and processed with biotin linkage and a streptavidin kit according to
the manufacturer’s instructions (LSAB-+ System-HRP; Dako,
Carpinteria, CA). Target areas were visualized using a DAB+
chromogen substrate solution and counterstained with hematoxylin
solution. For semiquantitative analyses on the IHC-processed
kidney specimens, images were collected and analyzed using open-
source software ImageJ v. 1.46 (Bethesda, MD).

Western blot analysis

To determine the expression levels of target proteins, western
blotting was performed. Briefly, kidney tissues were homogenized
with lysis buffer (10 mmol/l Tris-HCI pH 7.6, 150 mmol/l NaCl, 1%
Triton X-100, 1% sodium deoxycholate,1 mmol/l EDTA, 50 mmol/l
B-glycerophosphate, 1mmol/l dithiothreitol, 1mmol/l NaF,
1 mmol/l NazVOy,, 1 mmol/l phenylmethanesulfonylfluoride, and 1X
protease inhibitor cocktail). After centrifugation, the collected
lysates were subjected to electrophoresis on 10% SDS-PAGE
(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and
then transferred onto a nitrocellulose membrane. The proteins were
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visualized by a chemiluminescent solution according to the
manufacturer’s instructions (Supersignal Pico Substrate; Thermo
Scientific, Rockford, IL). For measuring NF-kB p65 nuclear
translocation, nuclear fraction was prepared using a kit (Sigma-
Aldrich, St Louis, MO) according to the manufacturer’s instruction
and analyzed using p65 antibody (Cell Signaling Technology) and
Histone H3 (H3, Cell Signaling Technology) as a loading control.
Signaling intensities were quantified by using the Image] program.
The sample size for each group was three.

Measurement of NAD " and NADH concentrations

NAD™ and NADH (umol/l/ug protein) were measured in kidney
tissues by using a kit (BioAssay Systems, Hayward, CA). Briefly,
kidney tissues were homogenized in either acidic extraction buffer
(NAD " extraction) or alkaline extraction buffer (NADH extrac-
tion). Homogenates were heated at 60°C for 5min and then
neutralized by the addition of the opposite extraction buffer. The
optical density was measured at 595 nm after a 15-min incubation at
room temperature. Experiments were carried out according to the
manufacturer’s procedures. The sample size for each group was five.

NADPH oxidase activity

The activity of NADPH oxidase was determined as previously
described.”! Briefly, 50 ug protein of kidney homogenates was
incubated with an assay buffer (1 mmol/l ethylene glycol tetraacetic
acid and 5pmol/l lucigenin in phosphate buffer, pH 7.0). The
reaction was initiated by the addition of 50 umol/l NADPH to the
incubation mixture. The activity was counted immediately using a
tabletop luminometer (Berthold Detection Systems FB Luminometer;
Oak Ridge, TN) with sampling time every 6 s. Samples were counted
over a period of 5 min, and the fluorescence values were recorded for
over 2min of stable readings and averaged for that sample. The
number of sample tissues for each group was six.

Measurement of Sirt1 and Sirt3 activity

The effects of cisplatin and BL on Sirtl and Sirt3 activity were
determined using a fluorescent Sirtl and Sirt3 assay kit (Enzo Life
Sciences International, Plymouth Meeting, PA). Briefly, the Sirtl
activity assays were performed with kidney homogenates (20 pug of
protein) and Fluor de Lys-Sirtl as the substrate in Sirtl assay buffer
(25 mmol/l Tris-Cl, pH 8.0, 137mmol/l NaCl, 2.7mmol/l KCl,
1 mmol/l MgCl,, and 1 mg/ml bovine serum albumin), and the Sirt3
activity assays were performed using Fluor de Lys-Sirt3 as the
substrate in Sirt3 assay buffer (50 mmol/l Tris-Cl, pH 8.0, 137 mmol/
1 NaCl, 2.7 mmol/l KCl, 1 mmol/l MgCl,, and 1 mg/ml bovine serum
albumin) in a 96-well plate. Reactions were initiated by adding each
substrate solution. After incubation at 37 °C for 1h, the plate was
further incubated with developing solution for 5 min. Fluorescence
readings were obtained using the CytoFluor series 4000 fluorometer
(Perseptive Biosystems, Framingham, MA) with the excitation
wavelength set to 360 nm and the emission to 460 nm. The sample
size for each group was six.

Statistical analysis

Experiment sample sizes are individually indicated in the Method
sections and the corresponding figure legends. All values are
represented as mean *s.d. One-way analysis of variance was used
to calculate the statistical significance of the results, and P-values
<0.05 are considered statistically significant.
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