APPLIED PHYSICS

Electric dipole effect in $PdCoO_2/\beta$ -Ga₂O₃ Schottky diodes for high-temperature operation

T. Harada¹*, S. Ito¹, A. Tsukazaki^{1,2}

High-temperature operation of semiconductor devices is widely demanded for switching/sensing purposes in automobiles, plants, and aerospace applications. As alternatives to conventional Si-based Schottky diodes usable only at 200°C or less, Schottky interfaces based on wide-bandgap semiconductors have been extensively studied to realize a large Schottky barrier height that makes high-temperature operation possible. Here, we report a unique crystalline Schottky interface composed of a wide-gap semiconductor β -Ga₂O₃ and a layered metal PdCoO₂. At the thermally stable all-oxide interface, the polar layered structure of PdCoO₂ generates electric dipoles, realizing a large Schottky barrier height of ~1.8 eV, well beyond the 0.7 eV expected from the basal Schottky-Mott relation. Because of the naturally formed homogeneous electric dipoles, this junction achieved current rectification with a large on/off ratio approaching 10⁸ even at a high temperature of 350°C. The exceptional performance of the PdCoO₂/ β -Ga₂O₃ Schottky diodes makes power/sensing devices possible for extreme environments.

INTRODUCTION

Recent requirements for Schottky junctions are demanding, particularly for switching/sensing device applications under harsh operating conditions, including high current densities, frequencies, and temperatures (1, 2). However, conventional Si-based Schottky diodes suffer from serious current leakage at more than 200°C because of the small Schottky barrier height (~0.9 eV) limited by the narrow bandgap of Si (~1.1 eV) (1). To realize a higher-temperature operation, alternative Schottky interfaces with a large Schottky barrier height should be developed on the basis of wide-bandgap semiconductors. The energy barrier height ϕ_b is shown in an ideal band diagram for a metal-semiconductor Schottky interface (Fig. 1A) according to the Schottky-Mott relation: $\phi_b = \phi_m - \chi_s$, where ϕ_m is the work function of a metal and χ_s is the electron affinity of the semiconductor (3). The typical rectifying current-voltage characteristics of a Schottky junction, schematically shown in Fig. 1B, can be formulated by a simple thermionic emission model, as in Eq. 1.

$$J = A^{**}T^2 e^{-(\phi_{\rm b}/k_{\rm B}T)} \left[e^{(qV/nk_{\rm B}T)} - 1 \right]$$
(1)

where *J* is the current density, A^{**} is the effective Richardson constant, *T* is the absolute temperature, *q* is the elementary charge, $k_{\rm B}$ is the Boltzmann constant, *n* is the empirical ideality factor, and *V* is the applied bias voltage. The ideal reverse current density $J_{\rm s}$ (*J* is for V < 0) is defined as the saturation value $J_{\rm s} = A^{**}T^2e^{-(\Phi_{\rm b}/k_{\rm B}T)}$, as highlighted in Fig. 1B, providing the fundamental lower bound of the reverse current density achievable at a given temperature (1). The benchmark for high-temperature operation of Schottky diodes is exemplified by the temperature dependence of $J_{\rm s}$ at $\phi_{\rm b} = 1.0$, 1.4, and 1.8 eV (Fig. 1C). For high-temperature operation, the thermally excited $J_{\rm s}$ must be suppressed by a large barrier height to achieve a large on/off ratio together with high forward current. For example, a $\phi_{\rm b} > 1.4$ eV is required to maintain $J_{\rm s}$ below 10⁻⁶ A/cm² at 250°C, which is a typical temperature in automobile engines.

¹Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. ²Center for Spintronics Research Network (CSRN), Tohoku University, Sendai 980-8577, Japan.

*Corresponding author. Email: t.harada@imr.tohoku.ac.jp

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Semiconductors that are capable of realizing a high ϕ_b , beyond 1.4 eV, include wide-bandgap materials, such as SiC, GaN, and Ga₂O₃ (4). In particular, Ga₂O₃ devices have recently attracted considerable attention owing to their wide bandgap of approximately 5 eV, the high-temperature stability of the material, and commercial availability of large single crystals (5). Diode operation has been demonstrated in Schottky junctions, composed of polycrystalline Pt (6, 7) and Ni (6, 8–10) and oxidized metals (11–13) (see table S1 for polycrystalline metals and table S2 for oxidized metals). The finite range of available work functions in elemental metal electrodes, 4.0 to 5.6 eV (14), limits the achievable Schottky barrier height in the Schottky-Mott framework: $\phi_b = \phi_m - \chi_s$. For stable operation, choosing a thermally stable Schottky contact is crucial to avoid interfacial reactions and maintain the ϕ_b value at high temperature (15).

Rather than using the polycrystalline electrodes, we chose a crystalline interface, where a metal is rigidly integrated with a semiconductor. To achieve a large Schottky barrier height beyond the limitation of the Schottky-Mott rule, we used a polar interface of oxide heterostructures, combining Ga₂O₃ with a polar layered metal PdCoO₂ (Fig. 1D). The layered delafossite structure of PdCoO₂ with alternating Pd⁺ and $[CoO_2]^-$ sublattices has two remarkable features (16, 17): an out-of-plane polarity and high in-plane conductivity (18-20). The out-of-plane polarity, given by the alternating charged Pd⁺ and $[CoO_2]^-$ sublattices of PdCoO₂, has recently been revealed to modulate the surface physical properties of PdCoO₂ bulk single crystals (21, 22). This polar ionic stacking can effectively induce an electric dipole layer that enhances the Schottky barrier height at the interface. The high in-plane conductivity of $PdCoO_2$, comparable to that of Au, supports its applicability as a Schottky contact metal. The hexagonal lattice oxygen atoms on the surface of PdCoO₂ (0001) match those of β -Ga₂O₃ (-201), which makes it possible to form a functional interface that leverages the polar nature of PdCoO₂.

RESULTS

We fabricated heterostructures of 20-nm-thick $PdCoO_2/\beta$ -Ga₂O₃ (a commercial n-type substrate with a nominal donor density of 7.8 × 10^{17} cm⁻³) by pulsed-laser deposition. The *c* axis–oriented growth was observed in typical x-ray diffraction patterns (fig. S1A). The

Fig. 1. Schottky junctions based on a layered PdCoO₂ and \beta-Ga₂O₃ for high-temperature operation. (A) Energy band diagram of a metal-semiconductor interface with a Schottky barrier of ϕ_b , ϕ_m , work function of metal; χ_s , electron affinity of semiconductor; E_{vac} , vacuum level; E_F , Fermi energy; E_C , conduction band minimum; *V*, bias voltage. The electron is depicted as a red circle. (B) Typical current-voltage characteristic of Schottky junction showing the current rectification behavior under forward (on-state) or reverse (off-state) bias voltage. The saturation current density J_s is noted in red. (C) Temperature dependence of the saturation current density J_s with Schottky barrier heights of 1.0 eV (blue), 1.4 eV (green), and 1.8 eV (red) calculated by the thermionic emission model using the Richardson constant of β -Ga₂O₃, $A^{**} = 41.1 \text{ A/cm}^2$ (24). (D) Schematic image for the characterization of the PdCoO₂/ $-\beta$ -Ga₂O₃ Schottky junction. (E) HAADF-STEM image of the PdCoO₂/ β -Ga₂O₃ interface. The anisotropic Ψ_{d-s} orbital proposed for the conduction band of PdCoO₂ is schematically shown (20). Right: Corresponding crystal model. The alternating Pd⁺ and [CoO₂]⁻ charged layers are shown based on the nominal ionic charges in the bulk PdCoO₂. The actual charge state at the interface can be modified by electronic reconstruction with screening charges.

lattice arrangement at the interface was imaged with a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), as shown in Fig. 1 (E and F). The layered crystal structure of PdCoO₂ was seen, and no threading dislocations were apparent (Fig. 1E), indicating an epitaxial relationship of PdCoO₂ [0001]// β -Ga₂O₃ [–201], although the in-plane lattice mismatch was large at approximately 3%, as estimated from the O-O distances of 2.83 Å for PdCoO₂ and 2.93 Å for β -Ga₂O₃ (fig. S2). An enlarged HAADF-STEM image (Fig. 1F) shows that the [CoO₂]⁻ layer corresponds to the initial layer of PdCoO₂ on the β -Ga₂O₃. The wave function of the Pd⁺ conducting layer is depicted in the inset of Fig. 1F, producing a polar interface between PdCoO₂/ β -Ga₂O₃ and the highly anisotropic in-plane conductivity in PdCoO₂. The in-plane conductivity of the PdCoO₂/ β -Ga₂O₃ is approximately 6.3 × 10⁴ S/cm at room temperature (fig.

S1B), the value of which is high enough to achieve sufficient current spreading in the contact pad. Here, only the polarity originating from the PdCoO₂ layer is considered, because the β -Ga₂O₃ (-201) surface is likely to be reconstructed to a stable nonpolar structure before the PdCoO₂ deposition. The abrupt interface of PdCoO₂/ β -Ga₂O₃ provides a suitable platform for exploiting interfacial dipole effects with minimized extrinsic contributions, i.e., defects.

To investigate the Schottky characteristics of the $PdCoO_2/\beta$ -Ga₂O₃ junctions, we patterned the $PdCoO_2$ thin films into circle-shaped devices using a water-soluble templating process (23). Typical *J*-*V* characteristics (Fig. 2A) showed clear rectification with a resistance ratio >10⁹ and a reverse current density as low as the measurement limit of 10^{-8} A/cm² at 220°C (blue). Applying Eq. 1 to the forward-bias region made it possible to evaluate the Schottky barrier height ϕ_b (the symbol

Fig. 2. High-temperature operation of the PdCoO₂/β-Ga₂O₃ Schottky junctions with a large barrier height. (A) Current-voltage characteristics of the PdCoO₂/β-Ga₂O₃ Schottky junction with a diameter of 200 µm at 227°C (blue) and 356°C (red). The gray lines are the linear fitting for the forward-bias region. The temperature dependence of the Schottky barrier height is plotted in the inset. (B) Temperature-dependent reverse current density under the bias voltage of $-20 \text{ V} |J_{-20V}|$ plotted together with the reported values (*25–30*). The ideal *J*_s in Fig. 1C is also shown for $\phi_b = 1.0 \text{ eV}$ (blue), 1.4 eV (green), and 1.8 eV (red). (C) Comparison of the Schottky barrier height with the reported values for elemental metal Schottky junctions (see the Supplementary Materials for the data and references used). Perpendicularly spread line data correspond to the range of the reported Schottky barrier height. The different colors correspond to the different surface orientations of the β-Ga₂O₃ layers. The linear trend from the reported values is shown as a broken line. The large red square corresponds to the data obtained for PdCoO₂/β-Ga₂O₃.

 $\phi_{\rm b}^{\rm JV}$ is used to specify the measurement technique: *J*-*V* measurement) and the ideality factor *n*, which were approximately 1.85 eV and 1.04, respectively, at 220°C, using the $A^{**} = 41.1 \text{ A/cm}^2 \text{ of } \beta\text{-Ga}_2\text{O}_3$ (24). These values are close to the corresponding values of 1.78 eV and 1.06 characterized at room temperature. Such rectifying properties were maintained at 350°C (Fig. 2A, red) together with a large on/off ratio of approximately 10^8 and a reverse current density of 10^{-6} A/cm². Moreover, the weak temperature dependences of ϕ_b^{VV} (inset of Fig. 2A) and the ideality factor (fig. S3A) indicate the homogeneous Schottky barrier height at the interface (see Materials and Methods for a detailed discussion). The value of $\varphi_b^{~JV}$ is mainly dominated by the activation process across the lowest-energy barrier region. The reverse current density (V = -20 V) at high temperature (Fig. 2B) is compared with the ideal J_s lines (Fig. 1C) and data from previous studies (25–30). Owing to the large ϕ_b^{JV} , the value of $|J_{-20V}|$ at the PdCoO₂/ β -Ga₂O₃ junction (Fig. 2B, red squares) is suppressed at the measured high temperatures. We compare our ϕ_b^{IV} values with metal/ β -Ga₂O₃ junctions of previous studies (table S1), where ϕ_b^{JV} is plotted as a function of the metal work function ϕ_m (Fig. 2C). The large deviation of the reported ϕ_b^{JV} values for the specific metal/ β -Ga₂O₃ junctions probably arises because of the differences in interface quality, e.g., a partial Fermi-level pinning at the surface that can occur (31), even when the same metal contacts are used. As measured by ultraviolet photoelectron spectroscopy (fig. S4), the PdCoO₂ film is plotted at a work function of 4.7 eV in Fig. 2C. The ϕ_b^{V} value of 1.8 eV for PdCoO₂/ β -Ga₂O₃ is located above the empirical trend of the reported values in the elemental metal/ β -Ga₂O₃ junctions (gray dotted line), whose barrier height lies in the range of 1.0 to 1.5 eV (table S1). Although partial oxidation of metals is known to increase ϕ_b^{JV} (11–13), the work function and crystal structures/orientations are unknown for the oxidized states of the polycrystalline film. The plot shown in Fig. 2C, which is based on the experimentally determined values of $\phi_b{}^{JV}$ and ϕ_m indicates that $\phi_b{}^{JV}$ of

 $PdCoO_2/\beta$ -Ga₂O₃ is strongly influenced by the interfacial effects existing at the abrupt interface with well-defined crystal orientation, as shown in Fig. 1 (E and F).

In addition to the *J*-*V* characteristics, we performed capacitance (*C*) measurements $1/C^2 - V$ (Fig. 3A) to determine the Schottky barrier height at the interface. The gradients of linear fits to the data in Fig. 3A for two device sizes (diameter D = 100 and $200 \,\mu$ m) indicate that the built-in potential at the Ga₂O₃ qV_{bi} and the donor density N_D are 2.0 eV and 3×10^{17} cm⁻³, respectively. This N_D value is comparable to the nominal donor concentration of a commercial substrate. The junction capacitance measured with V = 0 V is independent of the AC frequency (*f*) over a broad range from 10^2 to 10^6 Hz, with a negligible deep trap-state capacitance $C_{\text{trap}}(f)$ (inset of Fig. 3B), which suggests the potential application of this junction in high-frequency switching elements.

The band diagram for the PdCoO₂/ β -Ga₂O₃ interface is depicted in Fig. 3C based on the experimental characteristics discussed above. First, the Schottky-Mott relation, $\phi_b = \phi_m - \chi_s$, was adopted to estimate ϕ_b to be approximately 0.7 eV, based on the work function ϕ_m for PdCoO₂ (4.7 eV; fig. S4) and the reported electron affinity χ_s of β -Ga₂O₃ (4.0 eV) (32). Although minor effects, such as energy lowering by an image force at the interface and the Fermi energy in Ga₂O₃, might make an additional contribution to the estimated value of ϕ_b (see Materials and Methods), it is difficult to explain the large mismatch between 0.7 eV and the experimentally evaluated result of 1.8 eV. As shown in Fig. 3C, the vacuum level shifted by $\Delta \approx 1.1$ eV, which contributed to the large ϕ_b^{JV} . This shift is attributed to the polar nature of PdCoO2, which is composed of Pd⁺ and [CoO2]⁻. The formation of a polar interface [CoO2]-/Ga2O3 (STEM image in Fig. 1F and bottom of Fig. 3C) caused ϕ_b to increase to 1.8 eV through electric dipole effects. The interface dipole caused by the PdCoO₂ polar layered structure agrees well with the calculated surface potential at O- and

SCIENCE ADVANCES | RESEARCH ARTICLE

Fig. 3. Energy band diagram of the PdCoO₂/β-Ga₂O₃ **interface.** (A) $1/C^2-V$ plots for the devices with D = 100 and 200 µm measured with an AC frequency of 1 kHz at room temperature. (B) Frequency dependence of the capacitance measured with 0.1-V excitation. (C) Top: Band diagram for the PdCoO₂/β-Ga₂O₃ Schottky junction based on experimentally observed values. The energy difference of the conduction band bottom and the Fermi energy in β-Ga₂O₃ (ξ) is calculated using $\xi = k_B T ln(N_C/N_D)$ and $N_C = 2(2\pi m^* k_B T/h^2)^{3/2}$, where *h* is the Planck constant and $m^* = 0.342m_0$ is the effective mass of the electron in β-Ga₂O₃ (24). Bottom: Schematics of the PdCoO₂/β-Ga₂O₃ interface. A conduction electron in the Pd⁺ layer is shown in red. The bulk-like charged layers of PdCoO₂ are schematically depicted, neglecting possible charge reconstructions.

Pd-terminated PdO (111), which predicts an energy shift of 1.2 eV (33). The contributions of this interfacial dipole model to ϕ_b^{JV} are analogous to the barrier height control achieved in SrRuO₃/Nb:SrTiO₃ Schottky junctions by the insertion of $[AlO_2]^-$ or $[LaO]^+$, which increase and decrease, respectively, the Schottky barrier height from its original level at ~1.3 eV to 1.8 and 0.7 eV (34). In the PdCoO₂/ β -Ga₂O₃ interfaces, the interface dipole is naturally activated owing to the unique polar layered structure and the $[CoO_2]^-$ initial layer favored by the crystal growth of PdCoO₂ electrodes (Fig. 1F).

We examined the uniformity and reproducibility of the junction properties by measuring arrays of PdCoO₂ circular devices on β -Ga₂O₃ with various junction areas (from 100 to 1000 µm), as shown in the sample picture (Fig. 4A). A large ϕ_b^{JV} of approximately 1.8 eV was obtained, irrespective of the diameter of the devices (Fig. 4B). This result contrasts with the expected inhomogeneous ϕ_b^{JV} in typical large Schottky junctions owing to the high probability of pinhole-generating regions. Moreover, 27 devices were characterized with $D = 100 \,\mu\text{m}$ to confirm the uniformity of operation. The *J*-V data were consistent, as shown in Fig. 4C. A histogram of ϕ_b^{JV} indicated a reproducible value of $\phi_b^{JV} = 1.76 \text{ eV}$ with a narrow distribution of approximately 0.045 eV. Unlike the broad distribution of ϕ_b^{JV} values for the polycrystalline metal/β-Ga₂O₃ junction, as summarized in Fig. 2C, the highly reproducible ϕ_b^{JV} could result from the layered structural features and the alloxide high-quality interface with the homogeneous [CoO₂]⁻/Ga₂O₃ polar stacks energetically favored during the thin-film growth (Fig. 1, E and F). Hexagonal interfaces of layered PdCoO₂ on other semiconductors, such as SiC and GaN, could also benefit from this interfacial electric dipole effect.

Fig. 4. Uniformity and reproducibility of the large barrier height in the PdCoO₂/β-Ga₂O₃ Schottky junctions. (A) Optical microscopy image of the PdCoO₂/β-Ga₂O₃ Schottky junction arrays. (B) Schottky barrier height obtained for the devices with different junction sizes. (C) Current-voltage characteristics of the 27 different devices. (D) Histogram of the Schottky barrier height for D = 100-μm devices. The Gaussian fitting (red curve) gives the central value $\phi_{\rm b}^{\mu} = 1.76$ eV and the width of distribution $2\sigma = 45$ meV, where σ is the SD.

DISCUSSION

Superior Schottky junction properties were demonstrated with large on/off ratios, high-temperature operation at 350°C, no dependence of *C-f* characteristics, and considerable uniformity and reproducibility. This performance is attributed to the large ϕ_b^{JV} induced by the naturally formed electric dipoles at the well-regulated polar oxide interface of PdCoO₂ and β -Ga₂O₃. For applications under harsh conditions, PdCoO₂ electrodes have considerable advantages owing to their exceptional stability to heat (~800°C), chemicals (acids/bases, pH 0 to 14), and mechanical stress (fig. S5), in addition to high optical transparency (*35*). The abrupt interface of the layered oxides PdCoO₂ and β -Ga₂O₃ can extend applications of semiconductor devices to hot operating environments, such as those in automobile and aerospace applications.

MATERIALS AND METHODS

Substrate preparation

For the devices with acid-cleaned β -Ga₂O₃, commercially available unintentionally doped β -Ga₂O₃ (-201) substrates with the nominal $N_{\rm D} = 7.8 \times 10^{17}$ cm⁻³ (Novel Crystal Technology Inc.) were immersed in an acidic solution (water: 30 to 35.5%; H₂O₂: 95%; H₂SO₄ = 1:1:4) for 5 min, followed by rinsing in water for 15 min.

PdCoO₂/β-Ga₂O₃ device fabrication

To pattern the PdCoO₂ layer by soft lithography, we used the LaAlO₃/ BaO_x template as a water-soluble sacrificial layer (23). First, an organic photoresist was patterned on the β-Ga₂O₃ substrates using a standard photolithography process. The LaAlO₃ (~40 nm)/BaO_x (~100 nm) templates were then deposited by pulsed-laser deposition at room temperature under the base pressure of $\sim 10^{-7}$ torr. Removing organic photoresist by hot acetone gave the patterned LaAlO₃/BaO_x template on the β -Ga₂O₃ substrates. Just before the deposition of PdCoO₂ thin films, the LaAlO₃/BaO_x/ β -Ga₂O₃ samples were put in O₂ plasma for 50 s to remove the residual photoresist. The $PdCoO_2$ thin films were grown by pulsed-laser deposition (35) at a growth temperature of 700°C and an oxygen partial pressure of 150 mtorr. A KrF excimer laser was used to alternately ablate the PdCoO₂ stoichiometric target and Pd-PdO mixed phase target. After the thin-film growth, the LaAlO₃/BaO_x templates were removed by sonication in water together with the unnecessary parts of the PdCoO₂ to obtain the circular PdCoO₂ electrodes with a diameter of 100 to 1000 μ m.

Electrical transport measurement

Current-voltage characteristics of the Schottky junctions were measured via two-wire configuration using a Keithley 2450 source meter. Al wires were bonded to the top surface of the β -Ga₂O₃ substrates to form ohmic contacts to the β -Ga₂O₃ substrates. A needle prober was used to contact the PdCoO₂ and Pt top electrodes for the room temperature measurement. The capacitance measurements were carried out using an Agilent E4980A precision LCR meter with an AC modulation voltage of 0.1 V. The resistivity of the PdCoO₂ thin films was measured using a four-probe configuration.

Effect of image force lowering

For the interface of a metal and an n-type semiconductor with the relative permittivity of ε_r , the image force lowering $\Delta \phi$ under zero bias can be formulated as

$$\Delta \phi = q \{ q/4\pi \varepsilon_{\rm r} \varepsilon_0 [2qV_{\rm bi}N_{\rm D}/\varepsilon_{\rm r} \varepsilon_0]^{1/2} \}^{1/2}$$

Here, ε_0 is the vacuum permittivity. Using the experimentally determined $qV_{\rm bi}$ and $N_{\rm D}$ for the PdCoO₂/ β -Ga₂O₃, $qV_{\rm bi} = 2.0$ eV and $N_{\rm D} = 3 \times 10^{17}$ cm⁻³, and the reported $\varepsilon_{\rm r} = 10$ (36), $\Delta\phi$ was estimated to be 0.08 eV.

Estimation of the spatial homogeneity of the Schottky barrier height

We analyzed the temperature-dependent Schottky barrier height and the ideality factor using the potential fluctuation model to estimate the homogeneity of the barrier height (*37*). We considered the spatial distribution of the Schottky barrier height (ϕ_b) and the built-in potential (V_{bi}) by introducing the Gaussian distribution $P(qV_{bi})$ and $P(\phi_b)$, with an SD σ_s around the mean values \bar{V}_{bi} and $\bar{\phi}_b$.

$$P(\phi_{\rm b}) = \frac{1}{\sigma_{\rm s}\sqrt{2\pi}} e^{-(\bar{\phi}_{\rm b} - \phi_{\rm b})^2/(2\sigma_{\rm s}^{\,2})} \tag{2}$$

$$P(qV_{\rm bi}) = \frac{1}{\sigma_{\rm s}\sqrt{2\pi}} e^{-(q\bar{V}_{\rm bi}-qV_{\rm bi})^2/(2\sigma_{\rm s}^2)}$$
(3)

As discussed by Werner and Güttler (37), the Schottky barrier height determined by the current-voltage characteristic, $\phi_b^{~JV}$, relates to the $\bar{\phi}_b$ and σ_s as

$$\phi_b^{\rm JV} = \bar{\phi}_b - \frac{\sigma_s^2}{2k_{\rm B}T} \tag{4}$$

Capacitance-voltage (*C*-*V*) measurement probes the spatial average of the built-in potential, $V_{\rm bi}^{\rm CV} = \bar{V}_{\rm bb}$ which relates to the Schottky barrier height $\phi_{\rm b}^{\rm CV}$ to be

$$\phi_{\rm b}^{\rm CV} = q\bar{V}_{\rm bi} + k_{\rm B}T\ln(N_{\rm C}/N_{\rm D}) = \bar{\phi}_{\rm b} \tag{5}$$

where $N_{\rm C}$ and $N_{\rm D}$ denote the effective density of states in the conduction band and the doping concentration, respectively. Here, we neglected a possible contribution from the image force in the calculation of $\phi_{\rm b}^{\rm CV}$, which did not change the estimation of $\sigma_{\rm s}$.

Comparing Eqs. 4 and 5, we found

$$\phi_b^{\rm CV} - \phi_b^{\rm IV} = \frac{\sigma_s^2}{2k_BT} \tag{6}$$

We fitted the experimental data by Eq. 6, as shown in fig. S3B, to obtain the SD $\sigma_s = 54$ meV, which is less than half of the reported value for Pt/ β -Ga₂O₃ ($\sigma_s = 130$ meV) (38). The ideality factor n(V,T) reflects the voltage-dependent mean barrier $\bar{\phi}_b(V)$ and the SD $\sigma_s^2(V)$ as

$$n^{-1}(V,T) - 1 = -\frac{\bar{\phi}_{\rm b}(V) - \bar{\phi}_{\rm b}(0)}{qV} + \frac{\sigma_{\rm s}^{\ 2}(V) - \sigma_{\rm s}(0)^{2}}{2k_{\rm B}TqV}$$

Assuming that $\bar{\phi}_{b}(V)$ and $\sigma_{s}^{2}(V)$ vary linearly with the bias voltage *V*, we can parameterize the voltage deformation of the barrier distribution

using the coefficients ρ_2 and ρ_3 .

$$\begin{split} \bar{\phi}_{b}(V) - \bar{\phi}_{b}(0) &= \rho_{2}qV \\ \sigma_{s}^{2}(V) - \sigma_{s}(0)^{2} &= \rho_{3}qV \\ n^{-1}(T) - 1 &= -\rho_{1}(T) = -\rho_{2} + \frac{\rho_{3}}{2k_{B}T} \end{split}$$
(7)

The experimental data for the PdCoO₂/ β -Ga₂O₃ Schottky junction are fitted by Eq. 7, as shown in fig. S3C, to obtain the temperatureindependent coefficients $\rho_2 = -0.073$ and $\rho_3 = -1.93$ meV.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/ content/full/5/10/eaax5733/DC1

Fig. S1. Basic characterization of PdCoO₂ thin films grown on β -Ga₂O₃ (-201).

Fig. S2. Relationship between work function and lattice constant for typical metal electrodes with a (pseudo-)hexagonal lattice constant close to the representative hexagonal wide-gap semiconductors.

Fig. S3. Temperature dependence of the Schottky barrier height and the ideality factor. Fig. S4. Determination of the work function for $PdCoO_2$ using the ultraviolet photoelectron spectroscopy.

Fig. S5. Stability of PdCoO₂ thin films in a harsh environment.

Table S1. Summary of the metal/ β -Ga₂O₃ junctions reported in literature. Table S2. Summary of the partially oxidized metal/ β -Ga₂O₃ junctions reported in literature.

REFERENCES AND NOTES

- 1. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, 2008).
- P. G. Neudeck, R. S. Okojie, L.-Y. Chen, High-temperature electronics—A role for wide bandgap semiconductors? *Proc. IEEE* 90, 1065–1076 (2002).
- 3. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).
- J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich,
 - R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, J. A. Simmons, Ultrawide-bandgap semiconductors: Research opportunities and challenges. *Adv. Electron. Mater.* **4**, 1600501 (2018).
- M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, S. Yamakoshi, Recent progress in Ga₂O₃ power devices. *Semicond. Sci. Technol.* **31**, 034001 (2016).
- E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, S. A. Ringel, Influence of metal choice on (010) β-Ga₂O₃ Schottky diode properties. *Appl. Phys. Lett.* **110**, 202102 (2017).
- K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Ga₂O₃ Schottky barrier diodes fabricated by using single-crystal β-Ga₂O₃ (010) substrates. *IEEE Electr. Device L.* 34, 493–495 (2013).
- T. Oishi, Y. Koga, K. Harada, M. Kasu, High-mobility β-Ga₂O₃ (-201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. *Appl. Phys. Express* 8, 031101 (2015).
- K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, Electrical properties of β-Ga₂O₃ single crystals grown by the Czochralski method. J. Appl. Phys. **110**, 063720 (2011).
- J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, J. Kim, A. Kuramata, High reverse breakdown voltage Schottky rectifiers without edge termination on Ga₂O₃. *Appl. Phys. Lett.* **110**, 192101 (2017).
- S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F. L. Schein, H. Frenzel, M. Grundmann, Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals. *Appl. Phys. Express* 8, 121102 (2015).
- S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, H. Frenzel, M. Grundmann, Method of choice for the fabrication of high-quality β-gallium oxide-based Schottky diodes. *Semicond. Sci. Technol.* **32**, 065013 (2017).
- C. Hou, R. M. Gazoni, R. J. Reeves, M. W. Allen, Direct comparison of plain and oxidized metal Schottky contacts on β-Ga₂O₃. *Appl. Phys. Lett.* **114**, 033502 (2019).
- W. M. Haynes, D. R. Lide, T. J. Bruno, CRC Handbook of Chemistry and Physics 97th Edition (CRC Press, 2017).
- S. J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga₂O₃ for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124, 220901 (2018).

- A. P. Mackenzie, The properties of ultrapure delafossite metals. *Rep. Prog. Phys.* 80, 032501 (2017).
- R. Daou, R. Frésard, V. Eyert, S. Hébert, A. Maignan, Unconventional aspects of electronic transport in delafossite oxides. *Sci. Technol. Adv. Mater.* 18, 919–938 (2017).
- H. Takatsu, S. Yonezawa, S. Mouri, S. Nakatsuji, K. Tanaka, Y. Maeno, Roles of high-frequency optical phonons in the physical properties of the conductive delafossite PdCoO₂. J. Phys. Soc. Japan **76**, 104701 (2007).
- P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, A. P. Mackenzie, Evidence for hydrodynamic electron flow in PdCoO₂. *Science* 351, 1061–1064 (2016).
- M. Tanaka, M. Hasegawa, T. Higuchi, T. Tsukamoto, Y. Tezuka, S. Shin, H. Takei, Origin of the metallic conductivity in PdCoO₂ with delafossite structure. *Physica B* 245, 157–163 (1998).
- V. Sunko, H. Rosner, P. Kushwaha, S. Khim, F. Mazzola, L. Bawden, O. J. Clark, J. M. Riley, D. Kasinathan, M. W. Haverkort, T. K. Kim, M. Hoesch, J. Fujii, I. Vobornik, A. P. Mackenzie, P. D. C. King, Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. *Nature* 549, 492–496 (2017).
- F. Mazzola, V. Sunko, S. Khim, H. Rosner, P. Kushwaha, O. J. Clark, L. Bawden, I. Marković, T. K. Kim, M. Hoesch, A. P. Mackenzie, P. D. C. King, Itinerant ferromagnetism of the Pd-terminated polar surface of PdCoO₂. *Proc. Natl. Acad. Sci. U.S.A.* **115**, 12956–12960 (2018).
- T. Harada, A. Tsukazaki, A versatile patterning process based on easily soluble sacrificial bilayers. AIP Adv. 7, 085011 (2017).
- H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, M. Rérat, First-principles study of the structural, electronic, and optical properties of Ga₂O₃ in its monoclinic and hexagonal phases. *Phys. Rev. B* 74, 195123 (2006).
- C. Fares, F. Ren, S. J. Pearton, Temperature-dependent electrical characteristics of β-Ga₂O₃ diodes with W Schottky contacts up to 500°C. ECS J. Solid State Sci. Technol. 8, Q3007–Q3012 (2019).
- M. J. Tadjer, V. D. Wheeler, D. I. Shahin, C. R. Eddy Jr., F. J. Kub, Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga₂O₃. ECS J. Solid State Sci. Technol. 6, 165–168 (2017).
- D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J. J. van Rensburg, W. E. Meyer, M. Grundmann, Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga₂O₃ thin films grown by pulsed laser deposition. *Phys. Status Solidi* **211**, 40–47 (2014).
- J. Yang, F. Ren, S. J. Pearton, A. Kuramata, Vertical geometry, 2-A forward current Ga₂O₃ Schottky rectifiers on bulk Ga₂O₃ substrates. *IEEE Trans. Electron Devices* 65, 2790–2796 (2018).
- M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S. Yamakoshi, Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga₂O₃ (001) Schottky barrier diodes fabricated on n⁻-Ga₂O₃ drift layers grown by halide vapor phase epitaxy. *Appl. Phys. Lett.* **108**, 133503 (2016).
- K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga₂O₃ field-plated Schottky barrier diodes. *Appl. Phys. Lett.* **110**, 103506 (2017).
- F. Ren, J. C. Yang, C. Fares, S. J. Pearton, Device processing and junction formation needs for ultra-high power Ga₂O₃ electronics. *MRS Commun.* 9, 77–87 (2019).
- M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Schottky barrier height of Au on the transparent semiconducting oxide β-Ga₂O₃. *Appl. Phys. Lett.* **101**, 132106 (2012).
- J. Rogal, K. Reuter, M. Scheffler, Thermodynamic stability of PdO surfaces. *Phys. Rev. B* 69, 075421 (2004).
- T. Yajima, Y. Hikita, M. Minohara, C. Bell, J. A. Mundy, L. F. Kourkoutis, D. A. Muller, H. Kumigashira, M. Oshima, H. Y. Hwang, Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. *Nat. Commun.* 6, 6759 (2015).
- T. Harada, K. Fujiwara, A. Tsukazaki, Highly conductive PdCoO₂ ultrathin films for transparent electrodes. *APL Mater.* 6, 046107 (2018).
- H. Hoeneisen, C. A. Mead, M.-A. Nicolet, Permittivity of β-Ga₂O₃ at low frequencies. Solid-State Electron. 14, 1057–1059 (1971).
- J. H. Werner, H. H. Güttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522–1533 (1991).
- G. Jian, Q. He, W. Mu, B. Fu, H. Dong, Y. Qin, Y. Zhang, H. Xue, S. Long, Z. Jia, H. Lv, Q. Liu, X. Tao, M. Liu, Characterization of the inhomogeneous barrier distribution in a Pt/(100) β-Ga₂O₃ Schottky diode via its temperature-dependent electrical properties. *AIP Adv.* 8, 015316 (2018).

Acknowledgments: This work is a cooperative program (proposal no. 16G0404) of the CRDAM-IMR, Tohoku University. We thank the NEOARK Corporation for lending a mask-less lithography system PALET. **Funding:** This work was supported, in part, by a Grant-in-Aid for Specially Promoted Research (no. 25000003), a Grant-in-Aid for Scientific Research (A) (no. 15H02022), and a Grant-in-Aid for Early-Career Scientists (no. 18K14121) from the Japan Society for the Promotion of Science (JSPS), JST CREST (JPMJCR18T2), the Mayekawa Houonkai

Foundation, and the Tanaka Foundation. **Author contributions:** T.H. and A.T. designed the experiments. T.H. prepared the samples, performed transport measurements, and analyzed the data. S.I. captured the HAADF-STEM image. T.H. and A.T. wrote the manuscript. **Competing interests:** The authors declare that they have no competing interests. **Data and materials availability:** All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 3 April 2019 Accepted 25 September 2019 Published 18 October 2019 10.1126/sciadv.aax5733

Citation: T. Harada, S. Ito, A. Tsukazaki, Electric dipole effect in $PdCoO_2/\beta$ -Ga₂O₃ Schottky diodes for high-temperature operation. *Sci. Adv.* **5**, eaax5733 (2019).