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Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock 
and humans causing fasciolosis, a zoonotic disease of increasing importance due to its 
worldwide distribution and high economic losses. This parasite immunoregulates the host 
immune system by inducing a strong Th2 and regulatory T immune response by immu-
nomodulating dendritic cell (DC) maturation and alternative activation of macrophages. 
In this paper, we show that F. hepatica infection in mice induces the upregulation of 
heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that 
regulates the host inflammatory response. We show and characterize two different pop-
ulations of antigen presenting cells that express HO-1 during infection in the peritoneum 
of infected animals. Cells that expressed high levels of HO-1 expressed intermediate 
levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that 
they correspond to regulatory DCs. On the other hand, cells expressing intermediate 
levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating 
that they might correspond to alternatively activated macrophages. Furthermore, the 
pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted 
F. hepatica infection increasing the clinical signs associated with the disease. In contrast, 
treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating 
that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression 
during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and 
peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory 
cytokines during infection favoring parasite survival in the host. These results contribute 
to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the 
host and provide alternative checkpoints to control fasciolosis.
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inTrODUcTiOn

Fasciolosis, a helminth infection caused by Fasciola hepatica, is of paramount importance 
due to its wide spectrum of definitive hosts (1) and its worldwide distribution (2) affecting 
both livestock and human health. World Health Organization (WHO) estimates that at least 
2.4 million people are infected in more than 70 countries worldwide, with several million at 
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risk. Several studies have independently demonstrated that  
F. hepatica-derived molecules inhibit or decrease dendritic cell 
(DC) activation, which results in the induction of a tolerogenic 
phenotype (3–7). Furthermore, we have demonstrated that DCs 
from mice infected with F. hepatica have a semi-mature pheno-
type that is characterized by low MHC II and CD40 expression, 
high secretion of the immunoregulatory cytokine IL-10, and 
the ability to differentiate and expand IL-10-producing CD4 
T  cells (8). In addition, different groups have reported that  
F. hepatica-derived molecules also modulate macrophage acti-
vation, inducing the alternative activation of IL-10-producing 
macrophages (9, 10) and inhibiting the production of pro-
inflammatory cytokines, such as IL-1β (11), IL-10 (12), Arg-1, 
PDL-1 (13), and PDL-2 (14, 15). Thus, it has been hypothesized 
that F. hepatica may modulate both macrophages and DC func-
tion and fate as a mean to control its pathogenesis and survival 
in the infected hosts.

Heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the 
catabolism of free heme, is involved in many physiological and 
pathophysiological processes, by affording cytoprotection (16) 
and regulating the host inflammatory response. Indeed, HO-1 
is a stress-responsive enzyme important for defense against 
oxidant-induced injury during inflammatory processes and is 
highly inducible by a variety of stimuli, such as LPS, cytokines, 
heat shock, heavy metals, oxidants, and its substrate heme. 
Several works confirm that HO-1 plays a role in different infec-
tious diseases, and can have both beneficial and detrimental 
consequences for the host immunity against pathogens (17). For 
instance, HO-1 is able to promote Plasmodium liver infection 
(18), whereas it plays a favorable role in the host during cerebral 
malaria (19). On the other hand, HO-1 controls a variety of 
infections in mice, including Mycobacterium avium (20), Listeria 
monocytogenes (21), Plasmodium falciparum (22), Salmonella 
typhimurium (23), Toxoplasma gondii (24), and respiratory 
syncytial virus (25).

Expression of HO-1 in monocyte-derived DC inhibits LPS-
induced maturation and reactive oxygen species production 
(26). In addition, HO-1+  DCs express the anti-inflammatory 
cytokine IL-10 resulting in the inhibition of alloreactive T-cell 
proliferation (26). Also, IL-10-producing anti-inflammatory 
macrophages (M2) express HO-1 (27). Thus, HO-1 has been 
proposed to be key mediator of the anti-inflammatory effects of 
macrophages and DCs.

In the present study, we demonstrate that during infection 
with the trematode F. hepatica, HO-1 is upregulated by immune 
cells expressing F4/80 in the peritoneal cavity and liver. We also 
show that the pharmacological induction of HO-1 with the syn-
thetic metalloporphyrin CoPP promotes F. hepatica infection 
increasing the clinical signs associated with the disease, such 
as liver damage. Moreover, treatment with the HO-1 inhibitor 
SnPP protected from parasite infection. The increase of HO-1 
during F. hepatica infection was associated with the increase of 
TGFβ and IL-10 in liver and peritoneal exudate cells (PECs). 
Interestingly, we identified two different F4/80+ cell populations 
that expressed HO-1. HO-1hi F4/80int cells were characterized by 
the expression of CD11c, CD38, TGFβ, and IL-10 suggesting 

that they correspond to regulatory DCs. On the other hand, 
HO-1int F4/80hi cells expressed high levels of CD68, Ly6C, and 
FIZZ-1 indicating that they might be alternatively activated 
macrophages. Our results contribute to the elucidation of 
immunoregulatory mechanisms induced by F. hepatica in 
the host and could provide alternative checkpoints to control 
fasciolosis.

MaTerials anD MeThODs

ethics statement
Mouse experiments were carried out in accordance with strict 
guidelines from the National Committee on Animal Research 
(Comisión Nacional de Experimentación Animal, CNEA, 
National Law 18.611, Uruguay) according to the international 
statements on animal use in biomedical research from the Pan 
American Health Organization and WHO. The protocol was 
approved by the Uruguayan Committee on Animal Research. 
Cattle’s livers were collected during the routine work of a local 
abattoir (Frigorífico Carrasco) in Montevideo (Uruguay).

Mice
Six- to eight-week-old female BALB/c mice were obtained 
from DILAVE Laboratories (Uruguay). Animals were kept 
in the animal house (URBE, Facultad de Medicina, UdelaR, 
Uruguay) with water and food supplied ad  libitum. Mouse 
handling and experiments were carried out in accordance 
with strict guidelines from the National Committee on 
Animal Research (CNEA, Uruguay). All procedures involving 
animals were approved by the Universidad de la República’s 
Committee on Animal Research (CHEA Protocol Number: 
070153-000180-16).

infections and cell cultures
BALB/c mice were orally infected with 10 F. hepatica meta-
cercariae (Baldwin Aquatics, USA) per animal. After 1, 2, or 
3 weeks post-infection (wpi) mice were bled and PECs, spleens, 
and livers were removed. In order to evaluate the severity of 
the infection, a disease severity score was developed (Table 1), 
which was applied in blinded experiments by two independent 
experimenters. Alanine aminotransferase (ALT) activity in sera 
was determined by using a commercial kit (Spinreact, Spain) 
according to the manufacturers’ instructions. PECs from infected 
and non-infected mice were washed twice with PBS containing 
2% FBS and 0.1% sodium azide. The following antibodies were 
used in these experiments anti-CD11c (N418), -I-A/I-E (2G9), 
CD40 (HM40-3), -F4/80 (BM8), -CD11b (M1/70), -CD172a 
(P84), -Ly6C (HK1.4), and -Siglec-F (E50-2440). Cells were then 
washed twice with PBS containing 2% FBS and 0.1% sodium azide 
and fixed with 1% formaldehyde. Cell populations were analyzed 
using a BD FACSCalibur (BD-Biosciences) or Cyan (Beckman 
Coulter). Expression of HO-1 (ab13248) and CD68 (FA-11) were 
analyzed by intracellular staining. Antibodies were obtained from 
Affymetrix (CA, USA), from BD-Biosciences (CA, USA), from 
Biolegend (CA, USA) or from Abcam.
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Table 1 | Clinical score of Fasciola hepatica-infected mice.

ascites spleen number of lesions/hepatic lobe liver lobes

score Description score size score Description score Description

0 None (normal cell content) 0 Normal 0 None 0 Healthy
1 Mild (medium cell content) 1 Splenomegaly (<2×) 1 <3 lesions 1 1hepatic lobe affected
2 Moderate (high cell content) 2 Splenomegaly (>2×) 2 >3 lesions 2 >2 hepatic lobes affected
3 Severe (high cell and blood content) 3 Complete affection of lobes

Maximal score is 10.
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Pharmacological induction or inhibition  
of hO-1
In order to modulate HO-1 activity, mice infected with five 
metacercariae also received intraperitoneal injections of either 
vehicle (PBS, 100 µL), CoPP (20 mg/kg), SnPP (40 mg/kg), or 
CoPP plus SnPP. The doses of CoPP and SnPP were within a 
range of doses used in studies describing upregulation of HO-1 
by CoPP and inhibition of the enzyme’s activity by SnPP (28, 
29). Mice were injected 1  day before infection, 1  day after 
infection and every 5  days until the end of the experimental 
protocol.

Quantitative real-time rT-Pcr
Total RNA was isolated by use of TRI-reagent (Sigma-Aldrich) 
from spleen, liver, PEC and purified F4/80int and F4/80hi cells 
from PEC. Samples were analyzed in an Eco real-time PCR 
System (Illumina) using Fast SYBR® Green Master Mix (Applied 
Biosystems). The reactions were performed according to the fol-
lowing settings: 95°C for 5 min for initial activation, followed by 
40 thermal cycles of 10 s at 95°C and 30 s at 60°C. All reactions 
were performed with at least five biological replicates.

Microscopy analyses
Livers from infected mice after 3  wpi or non-infected mice 
(control) were harvested, embedded in OCT, and snap frozen in 
nitrogen. Sections were cut at a thickness of 6 µm, fixed with cold 
acetone for 10 min and blocked with 5% BSA in 3% rat serum for 
1 h at room temperature. Sections were then overnight incubated 
at 4°C with anti-HO-1 (ab13248) and -F4/80 (BM8), stained 
with DAPI and visualized in an epifluorencense microscope 
Olympus IX-81 and confocal microscope Leica TCS-SP5-II.  
The same procedure and the same antibody were used to evalu-
ate HO-1 expression in bovine livers from naturally infected and 
non-infected cattle. In this case, livers were first examined by the 
veterinary inspector at the abattoir and determined to be infected 
by the presence of multiple parasites found in the bile ducts. 
Livers from non-infected animals were identified by absence of 
liver damage and flukes.

statistical analysis
Results were analyzed using GraphPad Prism software (GraphPad 
Software, San Diego, CA, USA). Normality distribution was 
evaluated using the D’Agostino-Pearson omnibus normality 
test followed by one-way ANOVA with Bonferroni Multiple 

Comparison test or a student’s T test was used. Results were con-
sidered to be significantly different when p < 0.05 (*), 0.01 (**), 
or 0.001 (***).

resUlTs

hO-1 expression is induced in F. hepatica-
infected animals
We first evaluated whether HO-1 was expressed in F. hepatica-
infected animals. To this end, mice were infected with 10 meta-
cercariae and after 3 wpi, livers, spleens, and PECs were removed 
and HO-1 expression was analyzed by qRT-PCR, microscopy, 
and flow cytometry. Livers from infected mice expressed  
high levels of HO-1, both at the mRNA (Figure 1A) and protein 
levels (Figure  1B). Indeed, a 25-fold increase in the transcript 
levels was determined by qRT-PCR with respect to non-infected 
animals (Figure  1A). HO-1 expression was found both in the 
leukocyte infiltrates and the liver parenchyma (Figure 1B), while 
undetectable levels of HO-1 were found in control livers from 
naive mice (Figure 1B). HO-1 gene expression was also induced 
in PECs, revealing, similar to liver, a 25-fold increased in PECs 
from infected animals, comparing to control mice (Figure 1C). 
Moreover, HO-1+ cells were detected in the peritoneum both by 
flow cytometry and microscopy (Figures 1D–F). On the contrary, 
we failed to detect an increase in HO-1 transcript levels and pro-
tein expression by flow cytometry in spleens from infected- with 
respect to control animals (Figure S1 in Supplementary Material).

The gene expression of HO-1 was also investigated in bovine 
livers (Figure  2) revealing an increase of HO-1 mRNA levels 
in livers from infected bovine with respect to non-infected 
animals (Figure  2A). This increase in HO-1 gene expression 
was confirmed at the protein level by microscopy (Figure 2B). 
HO-1 was expressed both in the hepatocytes (larger cells) and 
the infiltrated leukocytes (smaller cells) in livers from infected 
mice (Figure  2B). Altogether, these results indicate that HO-1 
expression increases both in liver and PEC, but not in spleen, of 
F. hepatica-infected animals.

The Pharmacological inhibition or 
induction of hO-1 affects clinical signs 
associated to F. hepatica infection
The use of pharmacological agents and genetic probes to manipu-
late HO-1 has been widely used as a tool to explore the role of 
HO-1 in infections and other pathological systems, as well as its 
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FigUre 1 | Heme-oxygenase-1 (HO-1) is induced during Fasciola hepatica experimental infection in mice. (a) mRNA expression of HO-1 in the liver from control 
and F. hepatica-infected mice at 3 wpi. (b) HO-1 expression in the liver from control and infected mice at 3 wpi by confocal microscopy. (c) mRNA expression of 
HO-1 in peritoneal exudate cell (PECs) from control and infected mice at 3 wpi. (D) HO-1+ cells in PECs from control and infected mice at 3 wpi by flow cytometry. 
(e) Percentage of HO-1+ cells in PECs from control and infected mice at 3 wpi by flow cytometry. (F) HO-1 expression in PECs from control and infected mice at 
3 wpi by confocal microscopy. (F) mRNA expression of HO-1 in the spleen from control and F. hepatica-infected mice at 3 wpi. The figures represent the results of 
three independent experiments (±SEM, indicated by error bars). Mice were analyzed individually: control mice n = 12 and infected mice n = 17. Asterisks indicate 
statistically significant differences (***p < 0.001). The bar represents 100 µm.
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FigUre 2 | Upregulation of heme-oxygenase-1 (HO-1) expression in liver from Fasciola hepatica-infected bovines. (a) mRNA expression of HO-1 in the liver from 
F. hepatica-infected (n = 7) and control (n = 5) animals. (b) HO-1 expression in the liver from infected and control animals by confocal microscopy. Asterisks indicate 
statistically significant differences (*p < 0.05). The bar represents 100 µm.
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immune regulatory properties. Thus, we investigated whether the 
pharmacological induction or inhibition of HO-1, using cobalt 
(CoPP) and tin (SnPP) protoporphyrin IX, respectively, increased 
or ameliorated the clinical signs associated with by F. hepatica 
infection. The treatment consisted of five i.p. administrations of 
CoPP or SnPP at days −2, 2, 5, 12, and 17, with infection at day 0 
(Figure 3A). Importantly, CoPP administration lead to a signifi-
cant increase of HO-1 transcript levels, while SnPP administra-
tion did not change the HO-1 gene expression (Figures S2A,B in 
Supplementary Material) Clinical signs were determined by two 
different read outs: (i) hepatic damage followed by ALT activity 
in serum, a common marker to detect hepatic dysfunction (30), 
and (ii) general state of the animal by a defined clinical score 
(Figure 3). The clinical score was defined according the param-
eters described in Table 1. First, we evaluated the HO-1 transcript 
levels in livers and PECs from treated mice at 2 wpi, time were 
the highest differences in HO-1 expression were determined. 
Infected mice expressed high transcript levels of HO-1, both 
in liver (Figure 3B) and PEC (Figure 3C). Furthermore, when 
infected mice were treated with CoPP, they presented higher 
HO-1 transcript levels than infected mice in both biological 
samples, while SnPP-treatment dramatically reduced the gene 
expression of HO-1 in infected mice, both in liver (Figure 3B) 
and PEC (Figure 3C). Of note, when infected mice were treated 
with simultaneous administration of CoPP and SnPP, the HO-1 
transcript levels both in PEC and liver were similar to those found 
for infected control mice (Figures 3B,C).

Importantly, the expression of HO-1 correlated with the ALT 
activity levels found in sera. Indeed, CoPP-treated infected mice 
presented higher ALT activity levels in serum at 2 and 3  wpi 
(Figure 3D). On the contrary, SnPP-treated infected mice, had 
a remarkable decrease in ALT activity levels at 3 wpi with levels  
comparable to those of non-infected mice, although they were 
slightly increased (Figure 3D). The hepatic damage determined as 
ALT activity in serum found in CoPP-treated infected mice corre-
lated with other clinical signs, such as hemorrhage, splenomegaly 
and increase in ascites and cells in the peritoneum (Figure 3E).  
In contrast, SnPP-treated infected mice, presented a decreased 
clinical score as compared to controls. Importantly, control 

infected mice treated with a mix of SnPP and CoPP, presented the 
same clinical score as infected mice not treated with protoporfirins 
(Figure 3E). Importantly, non-infected mice treated with CoPP 
did not show either liver damage, changes in ALT activity in sera 
nor any clinical symptom related to the infection with respect 
to non-treated mice (Figure S2C,D in Supplementary Material). 
These results suggest that an increase of HO-1 expression aug-
ments the susceptibility of F. hepatica infection, while a decrease 
in this enzyme provides mice resistance to the infection.

It has been reported that HO-1 regulates the expression of 
multiple cytokines, and has essentially anti-inflammatory prop-
erties (26, 31–34). In order to further study the immune response 
induced in the group of mice treated with protoporphyrins, 
we evaluated the transcript levels of a panel of Th2/regulatory 
molecules that are highly expressed during F hepatica infection: 
FIZZ-1, IL-4, IL-10, and TGFβ. Indeed, at 2  wpi, livers from 
infected mice expressed high transcript levels of IL-10, TGFβ 
and FIZZ-1 (Figure 4A). Interestingly, IL-10 and TGFβ transcript 
levels were even higher in CoPP-treated infected mice, than con-
trol infected mice (Figure 4B). Moreover, SnPP-treated infected 
mice presented lower mRNA levels of IL-10 and FIZZ-1 than 
infected control mice (Figure 4B). Consistent with these results, 
simultaneous treatment with CoPP and SnPP did not induce any 
change in the mRNA levels of these molecules with respect to 
control infected mice (Figure 4B). Of note, IL-4 gene expression 
in liver was not modified either with F. hepatica infection nor the 
treatment with metal protoporphyrins.

Cells from the peritoneum of infected mice, on the other hand, 
expressed higher transcript levels of TGFβ, IL-4 and FIZZ-1 
(Figure 5A), but not IL-10 as shown in liver. Surprisingly, PEC 
from CoPP- or SnPP-treated mice did not present any change 
in the expression of either TGFβ, IL-4, FIZZ-1 or IL-10, except 
for FIZZ-1 which was slightly decreased in SnPP-treated infected 
mice (Figure  5B), consistent with lower hepatic damage and 
clinical score.

In summary, these results show that the induction of HO-1 
is associated with higher levels of the immunoregulatory mol-
ecules IL-10 and TGFβ and the reparatory molecule FIZZ-1 
in liver, while the inhibition of HO-1correlated with lower 
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FigUre 3 | Pharmacological induction and inhibition of heme-oxygenase-1 (HO-1) alters the clinical signs associated with Fasciola hepatica infection. (a) Treatment 
of infected mice with CoPP, SnPP, SnPP/CoPP, or PBS (control). (b) mRNA expression of HO-1 in liver from CoPP-, SnPP-, and SnPP/CoPP-treated F. hepatica-
infected mice at 3 wpi. (c) mRNA expression of HO-1 in peritoneal exudate cells (PECs) from CoPP-, SnPP-, and SnPP/CoPP-treated F. hepatica-infected mice at 
3 wpi. (D) Alanine aminotransferase (ALT) activity was measured in sera from CoPP- and SnPP-treated infected and control mice. (e) Clinical score of CoPP- and 
SnPP-treated F. hepatica-infected mice at 3 wpi, according to Table 1. The figures represent the results of three independent experiments (±SEM, indicated by error 
bars). Mice were analyzed individually: CoPP (n = 7), SnPP (n = 7), SnPP/CoPP (n = 7), or PBS (n = 7). Asterisks indicate statistically significant differences 
(*p < 0.05, **p < 0.01).
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FigUre 4 | Pharmacological induction of heme-oxygenase-1 expression correlates with IL-10, TGFβ, and FIZZ-1 transcript levels in liver of infected animals. 
(a) mRNA expression of IL-4, IL-10, TGFβ, and FIZZ-1 in the liver from control and F. hepatica-infected mice at 2 wpi. (b) mRNA expression of IL-4, IL-10, TGFβ, 
and FIZZ-1 in the liver from CoPP-, SnPP- and SnPP/CoPP-treated F. hepatica-infected mice at 2 wpi. The figures represent the results of three independent 
experiments (±SEM, indicated by error bars). Mice were analyzed individually: CoPP (n = 7), SnPP (n = 7), SnPP/CoPP (n = 7), or PBS (n = 7). Asterisks indicate 
statistically significant differences (*p < 0.05, **p < 0.01, ***p < 0.001).
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expression of TGFβ and FIZZ-1 in the liver of infected animals. 
However, although infected animals presented increased levels 
of TGFβ, IL-4 and FIZZ-1 on peritoneal cells, we could not find 
significant changes associated with the modulation of HO-1. 
Considering that the peritoneum is essential for F. hepatica 
juvenile maturation, we studied in further detail peritoneal cells 
and the expression of HO-1.

hO-1 is induced in Two Different 
Peritoneal F4/80+ cell Populations
Considering previous reports demonstrating that: (i) F. hepatica-
infected mice express high levels of IL-10 (8, 35), (ii) HO-1 
expression is related to IL-10 signaling and viceversa (36, 37), 

(iii) alternatively activated macrophages are associated with 
F. hepatica infection (9, 38, 39), and (iv) HO-1 is highly expressed 
by M2 macrophages (40), we sought to evaluate whether the 
HO-1+ cells identified in F. hepatica-infected mice expressed 
the molecule F4/80, traditionally used to identify macrophages.  
As seen in Figure 6A, HO-1+ cells from PECs from infected ani-
mals expressed this surface marker. However, two HO-1+ popula-
tions were identified according to the expression of HO-1 and 
F4/80: HO-1int F4/80hi and HO-1hi F4/80int, which significantly 
augmented upon infection (Figure 6A). Interestingly, although 
the F4/80hi cell population was also detected in PECs from control 
mice (Figure  6A), the expression of HO-1 was induced upon 
infection (Figure 6B). On the contrary, the HO-1hi F4/80int cell 
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FigUre 5 | IL-4, IL-10, TGFβ, and FIZZ-1 mRNA levels in peritoneal exudate cells (PECs) from CoPP-, SnPP-, and SnPP/CoPP-infected animals. (a) mRNA 
expression of IL-4, IL-10, TGFβ, and FIZZ-1 in PEC from control and Fasciola hepatica-infected mice at 2 wpi. (b) mRNA expression of IL-4, IL-10, TGFβ, and 
FIZZ-1 in PEC from CoPP-, SnPP- and SnPP/CoPP-treated F. hepatica-infected mice at 2 wpi. The figures represent the results of three independent experiments 
(±SEM, indicated by error bars). Mice were analyzed individually: CoPP (n = 7), SnPP (n = 7), SnPP/CoPP (n = 7), or PBS (n = 7). Asterisks indicate statistically 
significant differences (*p < 0.05, **p < 0.01).
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population was absent in control mice (Figure 6A) and expressed 
higher HO-1 levels than HO-1int F4/80hi cells from infected 
mice (Figure 6B). Of note, the F4/80low population identified in 
infected mice were Siglec-F+ (could correspond to eosinophils) 
and did not express HO-1 as determined by the corresponding 
isotype staining (Figure S3 in Supplementary Material).

The presence of F4/80+ cells in PECs expressing different 
levels of this surface marker was also confirmed by microscopy, 
revealing co-localization with HO-1 (Figure 7A). Furthermore, 
F4/80+ HO-1+ cells were also identified in the leukocyte infiltrate 
present in livers from infected mice (Figure 7B), while these cells 
were undetected in control livers (data not shown). HO-1 was 

also expressed by F4/80- hepatocytes (Figure 7B) as mentioned 
earlier (Figure 1B).

hO-1int F4/80hi and hO-1hi F4/80int cells 
from infected Mice have Different 
Phenotype
In order to further characterize HO-1+ cells, we evaluated 
both populations and HO-1 expression during the process 
of infection. To this end, PECs and livers were collected at 1, 
2, and 3  wpi. Interestingly HO-1 transcript levels augmented 
progressively with the course of infection (Figure  8A). PECs 
from infected and control mice were labeled and analyzed by 
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FigUre 6 | HO-1+ cells recruited in peritoneal exudate cell (PEC) during Fasciola hepatica infection are F4/80+. (a) HO-1+ and F4/80+ cells in PEC from control and 
infected mice at 3 wpi by flow cytometry. Percentage of HO-1hi F4/80int and HO-1low F4/80hi cells in the peritoneum from control and infected mice at 3 wpi.  
(b) heme-oxygenase-1 (HO-1) expression in different cell populations from PEC from control and infected mice at 3 wpi. MFI (Mean Fluorescence Intensity) of HO-1 
in HO-1hi F4/80int and HO-1low F4/80hi cells from PECs by flow cytometry. The figures represent the results from at least three independent experiments (±SEM, 
indicated by error bars). Mice were analyzed individually: CoPP (n = 7), SnPP (n = 7), SnPP/CoPP (n = 7), or PBS (n = 7). Asterisks indicate statistically significant 
differences (*p < 0.05).
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flow cytometry in order to identify both HO-1+ cell popula-
tions, HO-1hi F4/80int and HO-1int F4/80hi, and compare them 
with PECs from control mice. HO-1int F4/80hi cells were already 
present in control mice and its number doubled from the 
second week post infection (Figure  8B), time in which they 

presented increased levels of HO-1 expression (Figure 8B). On 
the other hand, HO-1hi F4/80int cells in PECs were detected as 
soon as 1 wpi, and remained constant up to 3 wpi (Figure 8C). 
The expression of HO-1 by these cells was induced from 2 wpi 
(Figure  8C). Both the cell number and the HO-1 expression 
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FigUre 8 | Identification of HO-1+ cells during Fasciola hepatica-infection. (a) mRNA expression of heme-oxygenase-1 (HO-1) in the liver from control (0 wpi) and 
infected mice (1, 2, and 3 wpi). (b) HO-1+ F4/80hi cells in peritoneal exudate cell (PEC) from control (0 wpi) and infected mice (1, 2, and 3 wpi) by flow cytometry.  
On the right the HO-1 expression as the MFI of HO-1+ F4/80hi cells is shown. (c) HO-1+ F4/80int cells in PEC from control (0 wpi) and infected mice (1, 2, and 3 wpi) 
by flow cytometry. On the right, the HO-1 expression as the MFI of HO-1+ F4/80int cells is shown. Mice were analyzed individually: control (n = 12), 1 wpi (n = 10), 
2 wpi (n = 10) or 3 wpi (n = 16). Asterisks indicate statistically significant differences (*p < 0.05, **p < 0.01, ***p < 0.001).

FigUre 7 | Identification of HO-1+ cells in peritoneal exudate cell (PEC) and liver by confocal microscopy. Heme-oxygenase-1 (HO-1) and F4/80 expression in PEC 
(a) and liver (b) from control (n = 5) and infected mice (n = 5) at 3 wpi by confocal microscopy. DAPI was used to stain cell nucleus. The bar represents 100 µm. 
The figures represent the results from at least three independent experiments.
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by HO-1int F4/80hi cells remained constant or increased after  
2 wpi (Figure 8C).

We then investigated the phenotype of HO-1+ cells by evaluat-
ing the expression of different molecules by flow cytometry and 
compared them to F4/80+ cells found in naïve mice (Figure 9; 
Figure S4 in Supplementary Material). HO-1int F4/80hi and 
HO-1hi F4/80int cells expressed CD11b, CD68 and CD172a 

(SIRPα, Figure  9), all molecules that are expressed by DCs or 
macrophages (41). However, HO-1int F4/80hi cells expressed 
higher levels of CD11b, CD68 and CD172a than HO-1hi F4/80int 
cells. Furthermore, HO-1hi F4/80int cells expressed CD11c while 
HO-1int F4/80hi expressed Ly6C (Figure 9). Finally, HO-1hi F4/80int 
cells expressed higher levels of MHC class II but lower expression 
of CD40 than HO-1int F4/80hi cells. Of note, both cells populations 
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expressed very low levels of Siglec-F (Figure  9). Interestingly, 
the phenotype described for HO-1int F4/80hi cells resembled to 
that of peritoneal macrophages from naïve mice (Figure S4 in 
Supplementary Material). Altogether, these results suggest that 
HO-1hi F4/80int cells could constitute DCs while HO-1int F4/80hi 
cells would correspond to monocytes or macrophages.

To further characterize these cells, we sorted them by flow 
cytometry and analyzed the gene expression of other molecules 
by qRT-PCR. In agreement with flow cytometry analyses, 
HO-1hi F4/80int cells expressed higher transcript levels of HO-1 
than HO-1int F4/80hi cells (Figure  10). Interestingly, both cells 
populations were very different in the set of expressed genes. 
Indeed, HO-1hi F4/80int cells expressed CD38 and Arg-1, while 
HO-1int F4/80hi cells did not. On the contrary, HO-1int F4/80hi 
cells expressed FIZZ-1 and IL-10. Finally, HO-1hi F4/80int cells 
expressed TGFβ and IL-10 (Figure 10). According to the expres-
sion of these markers, these results suggest that HO-1hi F4/80int 
cells correspond to regulatory or tolerogenic DCs, while HO-1int 
F4/80hi cells could constitute alternatively activated macrophages.

DiscUssiOn

In this work, we show that HO-1 is a key immunoregulatory 
molecule during F. hepatica infection and that promotes infection 
and liver damage. The role of HO-1 in infections by intracellular 
pathogens has been previously approached, demonstrating 
an upregulation of HO-1 mRNA and/or protein expression in 
response to viral (25), bacterial (23, 41–46), or protozoan parasitic 
(18, 19, 47) infections. Furthermore, overexpression or induction 
of HO-1 promotes persistence of other infectious agents, such 
as Leishmania chagasi and Plasmodium liver infection (18, 47). 
However, to our knowledge, this is the first report demonstrating 
the role of HO-1 in favoring a helminth infection.

The involvement of HO-1 in the anti-inflammatory immune 
response in F. hepatica-infected mice was confirmed using 
pharmacological approaches. We show that the pharmaco-
logical induction of HO-1 promoted clinical signs associated with  
F. hepatica infection, and it was correlated with an increase of 
IL-10 and TGFβ in liver, indicating that the induction of HO-1 
is associated with the upregulation of these two immunoregula-
tory cytokines. The fact that the use of the enzymatic inhibitor 
of HO-1 SnPP significantly decreased the levels of IL-10, TGFβ, 
and FIZZ-1 in liver, even to lower levels to control infected mice 
(for IL-10 and FIZZ-1) strongly suggests that HO-1 is involved 
in the upregulation of IL-10, promoting parasite survival, and 
hence liver damage that leads to the upregulation of FIZZ-1 indi-
cating liver fibrosis. Indeed, several studies have demonstrated 
that HO-1 mediates the anti-inflammatory effect of IL-10 (37, 
48) showing that the use of competitive inhibitors or the knock 
down expression of HO-1 abrogated the suppressive effect of 
IL-10. In our model, this hypothesis is in agreement with the 
results obtained with the simultaneous administration of CoPP 
and SnPP, obtaining similar clinical signs and IL-10, TGFβ, and 
FIZZ-1 levels as non-treated mice. Further studies are needed 
to define which of the heme degradation products following the 
action of HO-1 activity iron, biliverdin, or CO, are responsible for 
these actions, as has been previously reported for other pathogens 

(23). Alternatively, cytokine induction may be due to direct 
interaction of HO-1 with other host molecules. Interestingly, 
HO-1 gene expression is regulated at the transcriptional level, 
by several transcriptional factors including activator protein-1  
(49, 50), nuclear factor erythroid 2-related factor-2 (NRF2), 
nuclear factor-kappa B (50, 51), among others. Also, HO-1 expres-
sion is regulated by signaling cascades such as mitogen-activated 
protein kinase and phosphatidylinositol 3-kinase/Akt (49, 52).  
In our model, the identification of the molecular mechanisms 
that lead to HO-1 upregulation in F. hepatica-infected animals 
will eventually contribute to the development of molecular strate-
gies to control the infection.

Apart from its immunoregulatory properties, HO-1 also plays 
a significant role in inhibiting oxidant-induced injury during 
inflammatory processes (53). In fact, an appropriate balance of 
the inflammatory and redox states is essential to resolve most 
infections and finally the infectious process (17). In this context, 
another possibility is that F. hepatica induces HO-1 expres-
sion not only to evade the host immune response, but also to 
inhibit oxidant production by macrophages or other cells. One 
immunologically relevant place in the host for F. hepatica, is the 
peritoneal cavity, where the production of oxygen or nitrogen 
derived molecules could limit and restrain juvenile parasites. 
Indeed, lower levels of liver damage have been suggested to be 
the consequence of effective killing of the invading parasites 
within the peritoneum or shortly after reaching the liver (54).  
In this context, F. hepatica-mediated HO-1 induction might sup-
port parasite survival, for instance by favoring its passage through 
the peritoneum to the liver.

Our data indicate that in the peritoneal cavity two different 
populations of antigen presenting cells express HO-1. Judged by 
the high expression of CD11c, CD38, MHCII and the immu-
noregulatory cytokines IL-10 and TGFβ, HO-1hi F4/80int cells 
could constitute tolerogenic myeloid-derived DCs (55) or regula-
tory DCs that potentially participate in the induction of specific 
regulatory or anergic T cells (8, 56). Indeed, DCs conditioned with 
parasite-derived molecules can induce T cell anergy (8, 14, 56, 57). 
It remains to be determined whether HO-1-expressing DCs can 
induce specific anergic or regulatory T cells in a HO-1 dependent 
mechanism. In contrast, HO-1int F4/80hi cells were characterized 
by the high expression of CD68, CD172a, Ly6C, CD11b, and 
FIZZ-1, as well as low levels of MHCII expression, indicating 
that they may correspond to alternatively activated macrophages 
(58). In this line, the alternative activation of macrophages by F. 
hepatica or its derived molecules has been previously described 
(10, 39, 59, 60). Macrophages play a central role in innate immune 
responses toward both extracellular and intracellular pathogens, 
particularly through the formation of reactive oxygen/nitrogen 
species (RO/NS) (61, 62). Indeed, oxidative stress can kill F. 
hepatica flukes by a mechanism that may involve oxidation of 
proteins or lipids from parasite tegument since peroxyntrite or 
superoxide radicals significantly diminished parasite viability 
in vitro (54, 63). Moreover, RO/NS can effectively target extra-
cellular pathogens through the formation of extracellular traps 
(61). Taking into account that HO-1 in macrophages limits the 
production of reactive species (34) and induces IL-10 producing 
anti-inflammatory macrophages (64) and that F. hepatica favors 
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FigUre 9 | Immunophenotyping of HO-1hi F4/80int and HO-1int F4/80hi in the peritoneum of Fasciola hepatica-infected animals. HO-1hi F4/80int cells (blue), HO-1int 
F4/80hi cells (red) from peritoneal exudate cells of infected mice at 3 wpi were evaluated for the expression of different cell markers by flow cytometry. Cells from the 
peritoneal cavity from infected mice were stained with CD11b- CD11c-, MHCII, CD40, SIRPα-, CD68-, Ly6C-, or Siglec-F- specific antibodies and evaluated by flow 
cytometry. A representative figure of three independent experiments is shown. Mice were analyzed individually: control mice n = 5 and F. hepatica-infected mice 
n = 5. Asterisks indicate statistically significant differences (*p < 0.05).
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the alternative activation of macrophages (65, 66), it is likely that 
HO-1+ macrophages at early stages allow F. hepatica survival in 
the peritoneum through ineffective free radical production.

Finally, the role of HO-1 in favoring F. hepatica infection 
in the natural host (e.g., livestock, human) remains unknown. 
Although we show preliminary data demonstrating an increase in 
HO-1 expression in livers from naturally infected cattle, further 
studies are necessary to determine whether HO-1 expression 

correlates with a certain stage of the infection or if participates 
in the immunoregulatory or anti-oxidant mechanisms during 
the infection in these hosts.

In conclusion, HO-1 overexpression benefits F. hepatica infec-
tion increasing clinical signs and liver damage. Upregulation of 
HO-1 leads to an increase of IL-10 which could promote and 
benefit parasite transport from the peritoneum to the liver. On 
the other hand, an enzymatic inhibitor of HO-1 provided mice 
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FigUre 10 | Expression of immunoregulatory molecules in HO-1hi F4/80int 
and HO-1int F4/80hi in peritoneal exudate cells (PECs) from Fasciola 
hepatica-infected animals. HO-1hi F4/80int cells (blue), HO-1int F4/80hi cells 
(red) from PECs of infected mice at 3 wpi were first sorted. Then, the 
expression of heme-oxygenase-1 (HO-1), TGFβ, IL-10, FIZZ-1, Arg-1, and 
CD38 was evaluated by qRT-PCR. Gene expression relative to GAPDH 
transcript levels is shown. Mice were analyzed individually: control mice n = 5 
and F. hepatica-infected mice n = 5. Asterisks indicate statistically significant 
differences (*p < 0.05, **p < 0.01).
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with resistance to infection, decreasing IL-10 and FIZZ-1 tran-
script levels in liver. Although the mechanisms by which HO-1+ 
DCs or macrophages regulate the expression of IL-10 or oxidative 
responses during F. hepatica infection remain to be elucidated, 
targeting HO-1 to control fasciolosis could constitute an interest-
ing alternative strategy to drugs or vaccines against fasciolosis.
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