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Abstract The intermediate filament protein keratin 14 (K14) provides vital structural support in

basal keratinocytes of epidermis. Recent studies evidenced a role for K14-dependent disulfide

bonding in the organization and dynamics of keratin IFs in skin keratinocytes. Here we report that

knock-in mice harboring a cysteine-to-alanine substitution at Krt14’s codon 373 (C373A) exhibit

alterations in disulfide-bonded K14 species and a barrier defect secondary to enhanced

proliferation, faster transit time and altered differentiation in epidermis. A proteomics screen

identified 14-3-3 as K14 interacting proteins. Follow-up studies showed that YAP1, a transcriptional

effector of Hippo signaling regulated by 14-3-3sigma in skin keratinocytes, shows aberrant

subcellular partitioning and function in differentiating Krt14 C373A keratinocytes. Residue C373 in

K14, which is conserved in a subset of keratins, is revealed as a novel regulator of keratin

organization and YAP function in early differentiating keratinocytes, with an impact on cell

mechanics, homeostasis and barrier function in epidermis.

Introduction
The epidermis covering our skin and body maintains a vital and multidimensional barrier to water

and the outside environment while renewing itself with rapid kinetics, even under normal physiologi-

cal conditions (Kubo et al., 2012). The mechanisms through which new progenitor cells are pro-

duced at the base of this stratified epithelium, pace themselves through differentiation, and

maintain tissue architecture and function in spite of a high rate of cell loss at the skin surface are

only partially understood (Wells and Watt, 2018).

Keratin intermediate filaments are major protein constituents in epithelial cells and are encoded

by a large family of 54 conserved genes that are individually regulated in a tissue- and differentia-

tion-specific fashion (Schweizer et al., 2006). An outstanding question is the extent to which keratin,

and other types of intermediate filaments (IFs), participate in basic processes such as cell differentia-

tion and tissue homeostasis. The type I keratin 14 (K14) and type II K5 co-polymerize to form the

prominent IF apparatus that occurs in the progenitor basal layer of epidermis and related complex

epithelia (Nelson and Sun, 1983; Fuchs, 1995). Two main roles have so far been ascribed to K5-K14
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IFs. First, to provide structural support and mechanical resilience to keratinocytes in the basal layer

of epidermis and related epithelia (Coulombe et al., 1991a; Vassar et al., 1991; Fuchs and Cou-

lombe, 1992). Second, to regulate the distribution of melanin with an impact on skin pigmentation

and tone (Uttam et al., 1996; Betz et al., 2006; Gu and Coulombe, 2007). Dominantly-acting mis-

sense alleles in either KRT5 or KRT14 underlie the vast majority of cases of epidermolysis bullosa

simplex (EBS), a rare genetic skin disorder in which trivial trauma results in skin blistering secondary

to the lysis of fragile basal keratinocytes (Bonifas et al., 1991; Coulombe et al., 1991b; Fuchs and

Coulombe, 1992; Lane et al., 1992). Such mutant alleles may also affect skin pigmentation (Gu and

Coulombe, 2007), establishing the relevance of both roles of K5-K14 in both healthy and diseased

skin.

Structural insight gained from solving the crystal structure of the interacting 2B regions of corre-

sponding rod domain segments in human K5 and K14 highlighted the presence of a trans-dimer,

homotypic disulfide bond involving cysteine (C) residue 367 (C367) in K14 (Coulombe and Lee,

2012). Conspicuously, residue C367 in K14 occurs within a four-residue interruption, or stutter, in

the long-range heptad repeat of coil two in the central alpha-helical rod domain in virtually all IF pro-

teins (Lee et al., 2012). We showed that K14 C367-dependent disulfides form in human and mouse

skin keratinocytes (Lee et al., 2012), where they play a role in the assembly, organization and steady

state dynamics of keratin IFs in live skin keratinocytes (Feng and Coulombe, 2015a; Feng and Cou-

lombe, 2015b). We also showed that loss of the stutter cysteine alters K14’s ability to become part

of the dense meshwork of keratin filaments that occurs in the perinuclear space of early differentiat-

ing keratinocytes (Lee et al., 2012; Feng and Coulombe, 2015a; Feng and Coulombe, 2015b).

However, the physiological significance associated with the surprising properties conferred by a cys-

teine residue located in a mysterious conserved motif within the central rod domain of a keratin,

namely K14, remained unclear.

Here, we report on studies involving a new mouse model that provides evidence that the stutter

cysteine in K14 protein regulates entry into differentiation and thus the balance between prolifera-

tion and differentiation through regulated interactions with 14-3-3 adaptor proteins and YAP1, a ter-

minal effector of Hippo signaling (Pocaterra et al., 2020). We also discuss evidence that this role

likely applies to K10 and other type I keratins expressed in surface epithelia.

Results
The distribution of cysteine residues in mouse K14 protein is schematized in Figure 1A. Codon C367

in KRT14 (human) occurs at position 373 in Krt14 (mouse), and is conserved in the orthologous kera-

tin of several other species (Figure 1B). Moreover, this codon is also conserved in many other type I

keratin genes expressed in skin (Strnad et al., 2011; Lee et al., 2012; Figure 1B). To address the

physiological significance of the conserved stutter cysteine in K14, we generated Krt14 C373A

mutant mice using CRISPR-Cas9 technology (Figure 1C) and verified its presence through allele spe-

cific DNA-sequencing (Figure 1D). Krt14 C373A mice are born in the expected mendelian ratio, are

viable and fertile, and show a normal body weight when reaching adulthood (Figure 1E). Analysis of

total skin proteins from several body sites showed that steady state levels of K14 protein are unaf-

fected in Krt14 C373A relative to WT skin. By contrast, the pattern of K14-dependent, high molecu-

lar weight disulfide-bonded species is markedly altered, given fewer species that occur at lower

levels (Figure 1F,G). This is so especially in ear and tail skin (Figure 1F,G), prompting us to focus on

these two body sites in subsequent analyses. The residual K14-dependent disulfide bonding occur-

ring in Krt14 C373A mutant skin (Figure 1F,G) likely reflects the participation of cysteines located in

the N-terminal domain of K14 (see Figure 1A and Feng and Coulombe, 2015a). These findings indi-

cate that mice homozygous for Krt14 C373A allele are viable and appear macroscopically normal,

although biochemically they exhibit a strikingly altered pattern of K14-dependent disulfide bonding,

particularly in ear and tail skin.

The histology and barrier status of young adult Krt14 C373A mouse skin were analyzed next. By

histology, the epidermis of Krt14 C373A mice is modestly but significantly thickened relative to WT

in ear and tail skin (Figure 2A,B). Measurement of trans-epidermal water loss (TEWL) at the skin sur-

face revealed an increase in Krt14 C373A mice relative to WT control. This is so both at baseline

(7.02 ± 0.72 g/m2/h vs. 2.95 ± 0.49 g/m2/h) and after topical acetone application (19.20 ± 1.78 g/

m2/h vs. 7.02 ± 0.72 g/m2/h) (Figure 2C), a standard challenge that puts the skin barrier under a
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Figure 1. Decreased K14-dependent disulfide-bonded species and thickened epidermis in Krt14 C373A mouse skin. (A) Location of cysteine (C)

residues in mouse K14 protein (C4, C18, C36, C58, C373, C395), in which N-terminal head and C-terminal tail domains are flanking the central a-helical

rod domain (coils 1A, 1B and 2 (blue boxes) separated by linkers L1 and L12). (B) Alignment of the sequence context flanking residue C373 in mouse

K14 and other mouse type I keratins (top) as well as for K14 in other species (bottom). The heptad repeat is shown at the bottom. ‘xxxx’ marks the

location of the stutter sequence (green letters). (C) Schematic diagram of the strategy used to generate Krt14 C373A mice using the Crispr/Cas9

system. sgRNA, single guide RNA; PAM, protospacer adjacent motif. (D) Sanger sequencing showing the TGC to GCA transversion at codon 373

(cysteine to alanine) in the Krt14 gene. (E) Young adult Krt14 C373A WT littermate male mice show a similar body mass. N = 7 for each genotype. (F)

Immunoblotting analysis of total protein lysates from ear, paw, back skin, and tail skin from WT and Krt14 C373A young adult mice subjected to SDS-

PAGE electrophoresis under reducing (+TCEP) and non-reducing (-TCEP) conditions. (G) Quantification of relative amounts of K14-dependent disulfides

over monomers (see c). N = 3 replicates. Data represent mean ± SEM. Student’s t test: n.s., no statistical difference; *p<0.05; ***p<0.005.
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mild and reversible stress (Denda et al., 1996). Skin barrier defects often trigger elevated expres-

sion of Danger-Associated Molecular Patterns (Lessard et al., 2013) (DAMPs, also known as alar-

mins). At baseline, DAMPs such as S100a8, S100a9, Mmp9, and Ptgs2 are upregulated by 4-fold or

more at the mRNA level in Krt14 C373A skin compared to WT (Figure 2D). This aberrant state is

markedly enhanced after a topical acetone challenge to the barrier (Figure 2E). Next, we analyzed

cornified envelopes (CEs) isolated from epidermis, given that they are key contributors to skin barrier

function (Eckhart et al., 2013). CEs harvested from WT mice appear relatively uniform in size and

Figure 2. Alternations in morphology and barrier status in Krt14 C373A skin. (A) Toluidine blue-stained sections (1 mm thick from epoxy-embedded

skin of young adult WT and Krt14 C373A mice. (B) Quantification of whole epidermal thickness (living epidermal layers and stratum corneum layers) in

ear (left) and tail (right) skin of WT and Krt14 C373A mice. Five random fields were sampled for each of 3 mice per genotype. Scale bar, 20 mm. (C)

Trans-epidermal water loss measurements of WT and Krt14 C373A ear skin at baseline (untreated) and after acetone-induced barrier disruption. N = 6

per sample. D. Relative fold change in mRNA levels (qRT-PCR) for Danger-Associated Molecular Patters (DAMPs) in WT and Krt14 C373A skin at

baseline. N = 3 biological replicates. (E) Relative fold change in mRNA levels (qRT-PCR) for DAMPs after acetone treatment. N = 3 biological replicates.

(F) Representative phase contrast microscopy images of cornified envelopes isolated from WT and Krt14 C373A tail skin. (G) Quantitation of surface

area, circumference, and aspect ratio of cornified envelopes in d. Approximately 100 CEs were counted for each of four mice. Data represent

mean ± SEM. Student’s t test: *p<0.05; **p<0.01; ***p<0.005; n.s., no statistical difference. Scale bar, 100 mm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Analysis of purified cornified envelopes from ear skin.
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shape, are mostly oval-shaped, and feature clear and smooth outlines (Figure 2F,G). By contrast,

CEs isolated from Krt14 C373A mice are smaller (85% of the area and 87% of the circumference of

WT CEs), jagged, and less oval-shaped (aspect ratio of 1.3 compared to 1.1 in WT) (Figure 2F,G

and Figure 2—figure supplement 1A,B). Thus, the morphological and molecular anomalies occur-

ring in the epidermis are accompanied by significant defects in barrier function in Krt14 C373A skin.

We next assessed keratinocyte proliferation, transit time, and apoptosis in order to identify possi-

ble causes for the increased thickness and barrier defect in Krt14 C373A epidermis. At 2 hr after a

single pulse of the nucleotide analog Edu (Chehrehasa et al., 2009), a significantly greater fraction

of keratinocytes are labeled in the basal layer of Krt14 C373A epidermis compared to WT (by ~1.6

fold; p=0.024) (Figure 3A,B), indicating that keratinocyte proliferation is enhanced at baseline in

mutant mice. Following a 1 day chase after the Edu pulse, this difference is accentuated (>2 fold;

p=0.01) and Edu-labeled nuclei now occur in the suprabasal layers of epidermis in both genotypes,

reflecting keratinocyte exit from the basal layer (Figure 3A,B). Following a 3-day chase after the Edu

pulse, nuclear labeling remains high and stable in the basal layer of epidermis in both genotypes,

but a clear additional difference emerges as there are significantly more Edu-labeled nuclei in the

suprabasal layers of mutant epidermis. At the 7-day mark, the fraction of labeled cells in the basal

layer has subsided in both genotypes but, again, the suprabasal epidermis of Krt14 C373A skin

shows far more labeled nuclei (Figure 3A,B). This pulse-chase experiment shows that keratinocytes

in Krt14 C373A epidermis show enhanced proliferation confined to the basal layer at baseline, and

that keratinocytes exhibit a faster pace of movement across the suprabasal layers as they progress

through differentiation. A similar phenotype has been previously described for Krt10 null mice

(Reichelt and Magin, 2002). We also observed a greater frequency (~3 fold) of TUNEL-positive

nuclei in Krt14 C373A epidermis compared to WT, with apoptotic cell death confined to the supra-

basal compartment (Figure 3C,D). We also examined expression of p63, given its role as master reg-

ulator of epidermal stratification and differentiation (Soares and Zhou, 2018). A distinct

immunostaining pattern was observed in Krt14 C373A epidermis relative to WT (Figure 3E). Upon

quantitation, significant differences prevailed in terms of frequency of keratinocytes labeled and

their distance from the basal lamina (Figure 3F), with p63-positive staining showing a conspicuous

elongated shape and extending higher up in the mutant epidermis. When combined, these findings

suggest that the modest increase observed in epidermal thickness (Figure 1) masks a more pro-

nounced defect in epidermal homeostasis under baseline conditions in Krt14 C373A mice.

We next assessed markers relevant to keratinocyte proliferation to identify possible causes for

the defective barrier of Krt14 C373A skin relative to WT. We examined the distribution of K14 (basal

cell layer), K10 (early differentiation), filaggrin and loricrin (late differentiation) in tail skin sections

from young adult mice. The staining for filaggrin and loricrin were markedly decreased (~62% and

48% reductions, respectively) while the staining for K10 was modestly decreased (~37% reduction) in

Krt14 C373A epidermis relative to WT (Figure 3G,H). We also examined markers of adherens junc-

tion (E-cadherin), desmosomes (desmoplakin), tight junctions (claudin 3) since epidermal differentia-

tion entails a tightly coordinated rearrangement of intercellular junctions. Claudin 3 staining was

decreased by ~33% in Krt14 C373A epidermis, consistent with the barrier defect. The signals for

E-cadherin and desmoplakin appeared slightly increased (Figure 3I), an occurrence that may reflect

the modest epidermal thicknening (Figure 3J). In contrast to tail and ear epidermis, several markers

including K14, K10, loricrin and filaggrin appear normal in the thin epidermis of back skin (Figure 3—

figure supplement 1A–C), consistent with the markedly lower yield of K14-dependent disulfide

bonding in this body site (Figure 1). Together these observations link the anomalies observed in epi-

dermal homeostasis and skin barrier to defects in terminal keratinocyte differentiation in Krt14

C373A mouse skin.

We previously showed that replacing Cys with Ala at position 367 in human K14 does not abro-

gate 10 nm filament formation but leads to a reduction in the perinuclear clustering of keratin fila-

ments in cultured keratinocytes (Feng and Coulombe, 2015b). Transmission electron microscopy of

epoxy-embedded skin tissue sections was next used to assess whether similar changes occur in vivo.

In basal keratinocytes of WT epidermis, keratin IFs typically occur as bundles near the nucleus. In

Krt14 C373A basal keratinocytes, however, keratin IFs are absent from the perinuclear region and

appear redistributed towards the cell periphery (Figure 3—figure supplement 2A,B). Consistent

with the macroscopic appearance of skin tissue there is no ultrastructural evidence of cell fragility in

Krt14 C373A epidermis (Figure 3—figure supplement 2A,B and data not shown). We find that
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Figure 3. Altered tissue homeostasis and dysregulated keratinocyte differentiation in Krt14 C373A skin. (A) Indirect immunofluorescence for Edu in tail

skin section from WT and Krt14 C373A at 2 hr, 1 d, and 3 d after treatment with thymidine analog EdU. Nuclei as stained with DAPI (blue). (B)

Quantification of number of EdU-positive nuclei in basal and suprabasal layers per mm of epidermis. N = 3 replicates for each sample. (C) TUNEL

staining in tail epidermis of young adult WT and Krt14 C373A mice. D. Quantification of TUNEL-positive cells shown in frame c. N = 4 mice per sample.

Figure 3 continued on next page
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nuclei feature a more ellipsoid shape along with a greater frequency of cytoplasmic invaginations

(by ~1.4 fold in basal keratinocytes and by ~1.7 fold in suprabasal keratinocytes, respectively) com-

pared to WT controls; Figure 3—figure supplement 2C). The occurrence of ultrastructural anoma-

lies in the perinuclear keratin IF network in Krt14 C373A basal keratinocytes extend previous live

imaging observations (Feng and Coulombe, 2015b) and point to the possibility that the mechanical

properties of the nuclear envelope or nucleus are altered in these cells.

To identify potential pathways regulated by K14-dependent disulfides, we performed K14 co-

immunoprecipitation (co-IP) assays followed by mass spectrometry (MS) analysis in protein extracts

prepared from newborn WT keratinocytes in primary culture in the presence of 1 mM Ca2+, a condi-

tion that induces keratinocyte differentiation (Hennings et al., 1980). This screen identified 14-3-3s

and other 14-4-3 isoforms as major interacting partners for K14 in WT cell cultures (Figure 4A and

Supplementary file 1). There is a strong precedent for interactions between 14-3-3 proteins and

keratins, including K18 (Liao and Omary, 1996; Ku et al., 1998), K17 (Kim et al., 2006), which occur

in a phosphorylation-dependent fashion. Co-immunoprecipitation assays confirmed that transfected,

HA tagged-14-3-3s physically interact with endogenous WT K14 and Krt14373A mutant protein in

mouse keratinocytes in primary culture (Figure 4B and data not shown). Further inspection of the

top 100 MS-identified proteins in this targeted proteomics screen (Supplementary file 1) reveals, as

expected, the presence of desmosomal proteins, known keratin-interacting proteins (e.g., annexins;

(Chung et al., 2012), and several proteins with known roles in organelle transport and organization

(e.g., rab family members; Ohbayashi and Fukuda, 2012), which is consistent with K5-K14’s estab-

lished role in skin pigmentation (Gu and Coulombe, 2007).

14-3-3s was deemed of interest because it regulates the proliferation and differentiation of kera-

tinocytes in epidermis (Herron et al., 2005; Li et al., 2005). The latter is achieved in part by modu-

lating the cellular localization of YAP (Li et al., 2005; Sun et al., 2015), a terminal effector of Hippo

signaling (Schlegelmilch et al., 2011; Silvis et al., 2011; Sambandam et al., 2015). Hippo is an evo-

lutionary conserved pathway with a primary role in regulating growth and homeostasis in organs and

tissues (Pocaterra et al., 2020). We next assessed the distribution of 14-3-3s and YAP using indirect

immunofluorescence of tissue sections prepared from WT and Krt14 C373A tail skin. 14-3-3s occurs

mostly as aggregates in suprabasal keratinocytes of Krt14 C373A epidermis, which is in striking con-

trast to the diffuse distribution observed in WT controls (Figure 4C). Consistent with previous

reports (Schlegelmilch et al., 2011; Sambandam et al., 2015), a strong signal for YAP occurs in

both the nucleus and cytoplasm in basal keratinocytes, and otherwise YAP occurs as a weaker and

diffuse signal in the cytoplasm (but is not seen in the nucleus) of suprabasal keratinocytes in WT epi-

dermis (Figure 4D). In Krt14 C373A epidermis, strikingly, YAP localizes preferentially to nuclei in

both basal and suprabasal keratinocytes, in a consistent fashion (Figure 4D). The latter finding sug-

gests that YAP-dependent gene expression may be altered in mutant mouse skin. Follow-up RT-

qPCR assays show that the steady state levels for several known YAP target gene mRNAs, including

Cyr61, Zeb1, Ctgf and Snail2, are markedly elevated in Krt14 C373A relative to WT skin (Figure 4E).

By western immunoblotting, the levels of endogenous YAP1 and Ser127-phosphorylated YAP1 are

similar in WT and Krt14 C373A skin (Figure 4F,G). Together these findings point to a misregulation

of 14-3-3s and YAP as likely contributors to the epidermal phenotype exhibited in the ear and tail

skin of Krt14 C373A mice.

Figure 3 continued

E. Indirect immunofluorescence for p63 in tail skin section from WT and Krt14 C373A tail skin. Dashed lines depict the dermo-epidermal interface. (F)

Quantification of the number of p63-positive nuclei per mm of epidermis (left) and their distance from the basal lamina (right). N = 3 replicates for each

sample. (G) Indirect immunofluorescence for K14 (green), K10 (red), filaggrin, and loricrin from tail skin sections of WT and Krt14 C373A mice. (H)

Quantification of relative fluorescence intensity of data shown in frame g, normalized to WT. N = 3 mice per sample. (I) Indirect immunofluorescence for

claudin 3, E-cadherin and desmoplakin in tail skin sections from WT and Krt14 C373A mice. (J) Quantitation of relative fluorescence intensity in g. N = 3

mice per sample. In a, c, e, g, and I, nuclei are stained with DAPI (blue), and dashed lines depict the dermo-epidermal interface. Scale bars, 20 mm.

Data in b, d, f, h and g represent mean ± SEM. Student’s t test: *p<0.05; **p<0.01; ***p<0.005; n.s., no difference.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Analysis of terminal differentiation in mouse back skin tissue.

Figure supplement 2. Ultrastructural changes and abnormal nuclei in Krt14 C373A keratinocytes.
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Next we asked whether the misregulation of YAP subcellular partitioning also occurs in primary

culture. Keratinocytes were isolated from WT and Krt14 C373A newborn pups, cultured in the

absence or presence of calcium (Hennings et al., 1980), and analyzed using microscopy-based read-

outs. K14-dependent disulfide bonding is low in the absence of calcium and rises of the course of

days after adding calcium to primary cultures of WT mouse keratinocytes (Figure 4—figure supple-

ment 1A,B). In the absence of calcium, the staining for YAP is concentrated in the nucleus in both

WT and Krt14 C373A keratinocytes (Figure 5A,B). After addition of calcium (1 mM), which triggers

differentiation and mimics a suprabasal state (Hennings et al., 1980), 73% of WT keratinocytes lose

their nuclear YAP signal whereas 95% of Krt14 C373A keratinocytes exhibit predominantly nuclear

YAP (Figure 5A,B). Western immunoblotting confirmed that, as expected, both K10 and filaggrin

proteins occur at lower levels in calcium-treated primary cultures of Krt14 C373A relative to WT ker-

atinocytes (Figure 4—figure supplement 1C,D), suggesting a delay or a defect in terminal

Figure 4. 14-3-3s interacts with K14, and abnormal localization 14-3-3s and YAP in Krt14 C373A epidermis. (A) Top nine most abundant non-keratin

entries from a mass spectrometry screen for proteins interacting with K14 in WT newborn skin keratinocytes (primary culture,1 mM calcium, 4 days).

Spectral counts and known relevance to Hippo signaling are indicated. See Figure 4—figure supplement 1 for full listing. (B) Immunoprecipitation of

K14 from WT or Krt14 C373A skin keratinocytes in primary culture. Both K14 WT and, albeit to a lesser extent, the 373A mutant interact with HA-tagged

14-3-3s. KDa, kilodalton. (C) Indirect immunofluorescence for 14-3-3s in WT and Krt14 C373A tail skin sections. Dashed lines depict the dermo-

epidermal interface. (D) Indirect immunofluorescence for YAP in WT and Krt14 C373A tail skin sections. (E) Relative mRNA levels (qRT-PCR) for YAP

target genes Ccn1, Zeb1, Ccn2, and Snail2 in adult WT and Krt14 C373A tail skin. N = 3 biological replicates per genotype. (F) Immunoblotting analysis

for total YAP and YAPSer127 in WT and Krt14 C373A tail skin protein lysates. (G) Quantification of relative protein levels shown in frame d. Data are

mean ± SEM from three biological replicates. Student’s t test: *p<0.05; **p<0.01; ***p<0.005; n.s., no statistical difference. Scale bars, 20 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Additional analyses of newborn skin keratinocytes in primary culture.
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Figure 5. Localization and interaction of 14-3-3s and YAP activity in Krt14 C373A keratinocytes. (A) Indirect immunofluorescence microscopy for YAP

(red) and K14 (green) in WT and Krt14 C373A newborn skin keratinocytes in primary culture in the absence and presence of 1 mM calcium (for 4 d).

Arrowheads depict location of nuclei. (B) Quantification of cells with nuclear YAP in frame a. N = 3 biological replicates. Approx. 100 cells were counted

for each genotype for each condition. N = 3 biological replicates. Data represent mean ± SEM. Student’s t test: n.s., no statistical difference;

***p<0.005. Scale bars, 20 mm. (C) Luciferase assays in HeLa cells transfected with a Ccn1-Luciferase reporter construct (see Materials and methods).

Data were normalized with regard to transfection efficiency and signal obtained with pRL-TK vector control. Data represent mean ± SEM three

biological replicates consisting of 6 technical replicates each. Mann-Whitney tests were performed to compare each parameter using GraphPad Prism

8. **p<0.01, *p<0.05, n.s., non-significant.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Localization of YAP is specifically regulated by cysteine residue 367 in human K14.
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differentiation. Moreover, PLA assays yielded evidence for decreased interactions between 14-3-3s

and YAP in Krt14 C373A keratinocytes in primary culture, relative to WT controls (Figure 4—figure

supplement 1E,F), thereby extending the immunoprecipitation findings shown in Figure 4B. We

conclude that the abnormal retention of YAP to the nucleus and abnormal differentiation of Krt14

C373A keratinocytes are both preserved outside of the skin tissue setting, further suggesting that

these properties are linked and inherent to keratinocytes.

The five cysteine residues present in human K14 are conserved in the mouse ortholog (Lee et al.,

2012), and cysteines at positions 4, 40, and 367 in human K14 participate in disulfide bonding

(Feng and Coulombe, 2015a). We next asked whether the aberrant YAP localization in Krt14 C373A

mutant epidermis is Cys373-specific. To this end we devised a rescue assay using Krt14 null mouse

keratinocytes in primary culture, transfection of GFP-K14 or mutants thereof, and analysis of YAP

subcellular partitioning. Consistent with previous findings (Sambandam et al., 2015), only 19.5% of

GFP-K14WT-expressing keratinocytes exhibit nuclear YAP in the presence of calcium (Figure 5—fig-

ure supplement 1A,B). By contrast, cells expressing either a GFP-K14 cysteine free (CF) mutant, or

a GFP-C367A single mutant, feature an abnormally high nuclear retention of YAP (83.8% and 81.9%,

respectively) (Figure 5—figure supplement 1A,B). Restoring Cys367 in the K14-CF backbone (GFP-

K14CF-C367 construct) rescued the abnormal nuclear retention of YAP, given that only 27.3% of

transfected cells show YAP in the nucleus (Figure 5—figure supplement 1A,B). These findings

directly implicate the stutter cysteine (C367 in human K14) as a calcium-dependent regulator of the

subcellular partitioning of YAP in skin keratinocytes.

In an effort to directly relate K14 to the activity of YAP1 as a transcriptional regulator, we next

conducted luciferase reporter assays in a heterologous cell culture setting. HeLa cells were selected

because they are epithelia-derived, and grow and transfect well. HeLa cells normally show low levels

of K14 expression (Moll et al., 1982) but respond well to K5-K14 co-transfection (Figure 5—figure

supplement 1C). Transfection of a Ccn1 (Cyr61) gene promoter-driven Firefly luciferase plasmid,

previously shown to effectively report on YAP transcriptional activity (Ma et al., 2017), led to a

strong (~8 fold) induction of luciferase activity normalized to cells transfected with a reference Renilla

luciferase plasmid (Figure 5C). Consistent with K14’s ability to retain YAP in the cytoplasm, Ccn1

promoter activity was significantly attenuated by co-expression of WT K14 along with assembly part-

ner WT K5 (Figure 5C). In striking contrast, activity of the Ccn1 promoter construct was much less

affected when cysteine-free K14 (K14 CF) was co-expressed with WT K5 (Figure 5—figure supple-

ment 1C). Of note, the organization of filaments in HeLa cells co-expressing either K5 and K14WT

or K5 and K14CF is comparable (Figure 5—figure supplement 1C). The findings from this heterolo-

gous assay substantiate the notion that K14-containing filaments impact YAP activity as predicted,

and that this property depends on the presence of Cys residues in K14.

YAP is a key effector of mechanosensing and mechanotransduction (Dupont et al., 2011; Ben-

ham-Pyle et al., 2015; Panciera et al., 2017). Cells experiencing tension often respond by enhanc-

ing determinants such as F-actin stress fibers, acto-myosin contraction, the recruitment of a-catenin

and vinculin to adherens junctions (Leckband and de Rooij, 2014; Yap et al., 2018), expression of

lamin A/C in the nucleus (Swift et al., 2013), and frequency of binucleation (Cao et al., 2017). Moni-

toring the status of such elements provides a test for altered mechanosensing or mechanotransduc-

tion. In tail skin tissue sections, the immunostaining for a-catenin and for lamin A/C but not that for

desmoglein 1 are markedly increased in Krt14 C373A mice relative to WT controls (Figure 6A,B).

Use of the a-18 antibody that recognizes a mechanosensitive epitope on a-catenin

(Shimoyama et al., 1992) confirms that epidermal keratinocytes are under altered tensile stress in

Krt14 C373A epidermis (Figure 6C). In the setting of primary culture, we observed a greater inci-

dence of multi-nucleated keratinocytes in Ca2+-treated Krt14 C373A newborn skin keratinocytes

compared to WT control (14.3% versus 2.8%; Figure 6D). We also find that the immunofluorescence

signal for a-catenin, lamin A/C, F-actin stress fibers and phosphorylated myosin light chain II (pMLC

Ser19) are each increased in Krt14 C373A relative to WT (Figure 6E,F). Collectively these findings

strongly suggest that, consistent with YAP misregulation (see Figure 5), Krt14 C373A mutant kerati-

nocytes show alterations in mechanosensing and/or mechanotransduction relative to WT.
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Figure 6. Altered mechanics in Krt14 C373A epidermis and keratinocytes in culture. (A-C) Studies involving tail skin sections from young adult WT and

Krt14 C373A mice. A. Indirect immuno-fluorescence microscopy for a-catenin, desmoglein one and lamin A/C. Dashed lines depict the dermo-

epidermal interface. B. Quantification of relative fluorescence intensity, as shown in frame a, for WT and Krt14 C373A. N = 3 biological replicates. (C)

Indirect immunofluorescence microscopy for the a-18 mechanosensitive epitope in a-catenin in tail skin sections from WT and Krt14 C373A mice (see

Figure 6 continued on next page
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Discussion
Our study establishes that residue cysteine 373 in mouse K14 partakes in regulating the balance

between keratinocyte proliferation and differentiation in epidermis in vivo, and ultimately barrier

function, in skin. The loss of cysteine 373 results in profound alterations in the i) pattern of K14-

dependent disulfide bonding in epidermis; ii) regulation of 14-3-3sigma and YAP in early-stage dif-

ferentiating keratinocytes; and iii) several mechanosensitive readouts in the young adult epidermis in

situ and newborn skin keratinocytes in primary culture. Our findings support the conclusion that

K14-dependent disulfide bonding involving the conserved ‘stutter cysteine’ residue impacts cell

architecture, mechanosensing and Hippo signaling at an early stage of epithelial differentiation in

the epidermis.

A model that conveys the significance our findings is given in Figure 7A. Consistent with the liter-

ature, the model posits that Hippo signaling is inactive in most keratinocytes in the basal layer of epi-

dermis (Schlegelmilch et al., 2011; Beverdam et al., 2013; Sambandam et al., 2015; Totaro et al.,

2017), with YAP localizing to the nucleus given a specific level of cellular crowding and/or integrin-

mediated adhesion to the extracellular matrix (Panciera et al., 2017; Elbediwy and Thompson,

2018). In basal keratinocytes, K5-K14 filaments are organized in loose bundles that run alongside

the nucleus (Coulombe et al., 1989; Lee et al., 2012) while 14-3-3s occurs at low levels

(Dellambra et al., 2000; Reichelt and Magin, 2002; Kim et al., 2006). The first prediction of our

model is that reception of differentiation-promoting cues triggers K14-dependent disulfide bonding

and creates binding sites for 14-3-3 on K5-K14 filaments. The latter likely occurs via site-specific

phosphorylation, on K14 (e.g., Inaba et al., 2018). These events foster the known reorganization of

keratin filaments into a prominent perinuclear network (Lee et al., 2012), along with the binding and

sequestration of YAP1 to the cytoplasm, thus activating Hippo signaling as keratinocytes initiate ter-

minal differentiation (Figure 7A). Several reports converged in establishing a role for mitochondria-

derived reactive oxygen species as a key trigger towards the initiation of terminal differentiation in

keratinocytes of epidermis (Tamiji et al., 2005; Bause et al., 2013; Hamanaka et al., 2013;

Sun et al., 2015). Such species could non-enzymatically mediate K14-dependent disulfide bonding

in the perinuclear cytoplasm of keratinocytes (Suzuki et al., 2019).

Many type I keratins expressed in epidermis (e.g., K10, K16, K17) feature a cysteine residue at the

location corresponding to codon 373 in mouse K14 and codon 367 in human K14 (Lee et al., 2012).

Four lines of evidence support the contention that K10, in particular, is a strong candidate for K14-

like regulation of YAP1 subcellular partitioning and Hippo signaling in the epidermis. First, KRT10

(human) and Krt10 (mouse) expression is turned on at the earliest stage of terminal differentiation

(Woodcock-Mitchell et al., 1982; Schweizer et al., 1984), and the K10 protein features a structur-

ally and biochemically equivalent Cys residue at position 401 and is capable of interacting with 14-3-

3 (Wilker et al., 2007; Huang et al., 2010). Second, the crystal structure of the interacting 2B seg-

ments of K1-K10 (Bunick and Milstone, 2017) shows an overall fold identical to our original K5(2B)-

K14(2B) structure (Lee et al., 2012), including the presence of a trans-dimer, homotypic disulfide

bond mediated by the stutter cysteine (C401) in K10. Third, we previously showed that K10 partakes

in the formation of disulfide-dependent, dimer-sized species in skin keratinocytes (Lee et al., 2012).

Fourth the Krt10 null mouse, described >15 years ago (Reichelt and Magin, 2002; Reichelt et al.,

2004), exhibits a strong phenotype consisting of hyperproliferation, faster keratinocyte transit time,

and impaired differentiation in the epidermis which, molecularly, correlates with a marked upregula-

tion of 14-3-3sigma and c-Myc. MYC has since then been shown to be a bona fide YAP1 target gene

(Schütte et al., 2014; Kim et al., 2017; Cai et al., 2018). Accordingly, our model (Figure 7A) pre-

dicts that the newly-defined role for K14 in regulating the subcellular partitioning of YAP and onset

Figure 6 continued

A). D-F: Studies involving newborn skin keratinocytes in primary culture. (D) Percentage of cells with multinucleation in WT and Krt14 C373A

keratinocytes cultured as described for frames a,c. N = 3 biological replicates (total of 100 cells counted each time per genotype). (E) Indirect

immunofluorescence microscopy for lamin A/C (top and middle rows) and a-catenin (bottom row) in primary cultures of WT and Krt14 C373A newborn

keratinocytes. (F) same as E, except that F-actin (via phalloidin) and Ser19-phosphorylated myosin light chain pMLC (Ser19) are stained. Nuclei are

stained with DAPI in frames A, C, E and F. Scale bars, 20 mm. Data in B and F represent mean ± SEM. Student’s t test: *p<0.05; ***p<0.005; n.s., no

statistical difference.
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of keratinocyte differentiation in epidermis is picked up and maintained by K10 as differentiation

proceeds.

Our findings extend previous reports linking 14-3-3s to the regulation of YAP during terminal dif-

ferentiation in epidermis (Sambandam et al., 2015; Sun et al., 2015). They suggest that the network

of keratin filaments proximal to the nucleus acts as a key docking site for 14-3-3/YAP complexes dur-

ing keratinocyte delamination and differentiation, taking on a role that has been held to this point

by integrin-based adhesion sites (Elbediwy et al., 2016) and adherens junctions (via alpha-catenin;

(Schlegelmilch et al., 2011; Silvis et al., 2011). In addition, a disulfide bonding-rich perinuclear net-

work of keratin filaments could also afford protection to the nucleus and the genome during delami-

nation (Lee et al., 2012), thus extending the known role of K5-K14 IFs in providing mechanical

support in basal keratinocytes (Coulombe et al., 1991a; Ramms et al., 2013). Besides, keratinocyte

delamination and differentiation in epidermis together entail a profound reorganization of cell-cell

and cell-matrix adhesion, and of F-actin and microtubule organization (Sumigray and Lechler, 2015;

Muroyama and Lechler, 2017; Miroshnikova et al., 2018; Rübsam et al., 2018; Wickström and
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Figure 7. Model depicting the role of keratin-dependent disulfide bonding in integrating signaling and mechanical cues as keratinocytes initiate

terminal differentiation in epidermis. (A) Left to right: the stage of epidermal differentiation, keratin expression, epidermal morphology, and state of

keratin filament organization are related to 14-3-3 binding, YAP1 subcellular partitioning, and Hippo activity status. The model proposes that initiation

of terminal differentiation in late stage progenitor keratinocytes in the basal layer entails: (1) the formation of K14-dependent disulfides via the

conserved stutter cysteine in coil two domain; (2) a reorganization of keratin filaments around the nucleus; (3) recruitment of 14-3-3 onto keratin

filaments; and (4) effective sequestration of YAP1 in the cytoplasm, resulting in activation of Hippo signaling. The model proposes an identical role for

the conserved cysteine in coil 2 of keratin 10, which is expressed early during terminal differentiation, thereby maintaining YAP1’s sequestration to the

cytoplasm and active Hippo signaling. These changes are coupled to a redistribution of tension-related forces and cell-cell adhesion complexes as

basal keratinocytes delaminate and move from the basal to the suprabasal compartment of epidermis (Miroshnikova et al., 2018; Nekrasova et al.,

2018; Wickström and Niessen, 2018). (B) Illustration of a negative feedback loop whereby, once modified in a specific manner (phosphorylation and

disulfide bonding), K14 protein sequesters YAP1 and interrupts its activity towards promoting keratinocyte proliferation, thereby initiating terminal

differentiation (see Figure 7—figure supplement 1 and 2 for related data).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Genomic context, gene expression, chromatin organization, and presence of TEAD binding sites in gene loci of interest.
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Niessen, 2018). How all of these effectors and their inputs are integrated to result in a redistribution

of intracellular tension and/or compressive forces (Miroshnikova et al., 2018; Rübsam et al., 2018),

along with proper regulation of YAP function and Hippo signaling, awaits further investigation.

YAP’s role as a transcription factor requires its binding to TEAD protein, which is itself stably

bound to the promoter of its target genes in a sequence-specific fashion in the nucleus

(Vassilev et al., 2001). Data available through ENCODE for human foreskin keratinocytes in primary

culture in the absence or presence of calcium (see Materials and methods) provides insight into the

rationale for keratin protein involvement towards the regulation of YAP-driven transcription and

Hippo signaling. The combination of DNAse one hypersensitivity mapping, ATAC-seq mapping, and

presence of TEAD binding sites (in either orientation) on DNA (5’- CATTCC-3’; Heinz et al., 2010)

suggests that keratin genes expressed in dividing basal cells of epidermis, for example the type I

Krt14 and Krt15 and type II Krt5, are likely YAP target genes given the presence of consensus-match-

ing TEAD binding sites occurring in open chromatin regions in the absence of calcium (Figure 7—

figure supplement 1; Supplementary file 2). ENCODE data convey that the chromatin surrounding

these genes becomes non-accessible in the presence of calcium (Figure 7—figure supplement 1

and 2), which promotes differentiation (Hennings et al., 1980). Keratin genes expressed in differen-

tiating keratinocytes of epidermis, including the type I Krt10 and type Krt1 and Krt2, do not feature

proximal TEAD binding sites (Figure 7—figure supplement 1; Supplementary file 2) and thus are

not likely to be transcribed in a TEAD/YAP-dependent fashion in epidermis. The YAP1 and TEAD

genes (human) are themselves poised to be positively regulated by YAP in progenitor keratinocytes

(Figure 7—figure supplement 1; Supplementary file 2). SFN, ITGB1, CCN1 and TP63 (human) are

among the additional genes of interest that we included in this analysis (Supplementary file 2).

Accordingly, the YAP/TEAD axis may be set up to promote unabated cell proliferation in a fast-

renewing epithelium such as epidermis until two post-translational events converging on K14 pro-

tein, phosphorylation and disulfide bonding, would lead to YAP protein sequestration in the cyto-

plasm and inactivation of the YAP/TEAD axis as part of a regulated negative feedback loop, enacted

at the time of entry into differentiation in epidermis (Figure 7B).

Several mechanisms could account for the functional interplay between K14-dependent disulfide

bonding, 14-3-3s, and the regulation of YAP’s subcellular partitioning in keratinocytes. First, the

perinuclear enrichment of keratin IFs, which is promoted by K14-dependent disulfide bonding, is

poised to increase the local concentration of binding sites for 14-3-3s and YAP near the nucleus

(simple mass action law). Second, the occurrence of K14-dependent disulfides may create an optimal

binding interface for 14-3-3s and YAP in the cytoplasm residing proximal to the nucleus. Third, the

nucleus is known to function as a mechanosensor (Cao et al., 2017), and local forces impacted by

the perinuclear network of keratin filaments could alter the mechanical gating of YAP across nuclear

pores (Elosegui-Artola et al., 2017). These three mechanisms, and possibly others, could act in

combination. How K14 (and possibly K10), 14-3-3s, YAP, and other crucial effectors bind each other

as part of this newly defined signaling axis, its regulation, and its significance have now emerged as

open issues of high significance for future studies.

Materials and methods

Animals
All mouse studies were reviewed and approved by the Institutional Animal Use and Care Committee

(IACUC) at both Johns Hopkins University and the University of Michigan. WT and Krt14 C373A mice

(C57BL/6 strain background) were maintained under specific pathogen-free conditions and fed

rodent chow and water ad libitum. Male and female C57Bl/6 mice of 2–3 months of age (young

adults) were used for all studies unless indicated otherwise. Mice were genotyped using standard

PCR assays with oligonucleotides listed in Supplementary file 3.

Generation of Krt14 C373A mice using CRISPR-Cas9 technology
Krt14 C373A mice were generated using the RNA-guided CRISPR-Cas9 system as described

(Wang et al., 2013). A guide RNA (gRNA) was selected and designed according to a gRNA CRISPR

design tool (http://crispr.technology) (Jaskula-Ranga and Zack, 2016). Briefly, a Cas9 target site

(GGGCCAGCTGCATGCAGTAACGG; with the PAM motif underlined) was selected based on having
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a cut site proximal to codon C373 and low-predicted off-targets. Oligonucleotides were used to

clone the target into pT7gRNA, and the plasmid was amplified and linearized prior to T7 transcrip-

tion. The gRNA was transcribed in vitro and purified prior to injection. The homology directed repair

(HDR) template was purchased as a 183-nt single stranded Ultramer (IDT), and encoded a TGC (Cys)

to GCA (Ala) mutation at codon 373 of the mouse K14 coding sequence. The gRNA, Cas9 mRNA,

and HDR template were co-injected into C57Bl/6 zygotes by the JHU Transgenic Core Facility.

Potential transgenic founders were screened using restriction digestion of PCR product extending

beyond the repair template oligonucleotide and findings were confirmed by direct DNA sequencing

(data not shown). Several founders exhibited the desired recombination event, either as homozy-

gotes or heterozygotes. Two male homozygotes founders were selected and independently back-

crossed by mating to C57Bl/6 wildtype females for two generations to eliminate potential off-target

effects. The Krt14 C373A homozygotes used in this study were from Krt14 C373A het x het breed-

ings (for body weight measurements and epidermal thickness measurements) or hom x hom breed-

ings (other experiments). The two lines analyzed exhibited consistent and identical phenotypes.

Key reagents
A list of key reagents used in this study can be found in Supplementary file 4 (‘Key Resources Table

File’).

Topical acetone treatments of Krt14 C373A mice
The left ears of age-matched WT and Krt14 C373A mice (2–3 months old) were topically treated

with 40 ml acetone twice daily for 7 days (Denda et al., 1996). The volume of acetone applied was

split equally between the dorsal and ventral sides of the ear. The right ear (same mice) was left

untreated as control. Mice were anesthetized during acetone treatment as per IACUC standards.

Immediately after the last treatment, mice were euthanized and tissue harvested for analysis.

Transepidermal water loss (TEWL) measurements
Mice were anesthetized using isoflurane (delivered by inhalation) during TEWL measurements. Read-

ings were obtained using a TEWAMETER TM300 (Courage and Khazaka, Köln, Germany) from adult

WT and Krt14 C373A mice at baseline and after the last topical treatment with acetone. Measure-

ments were made from the dorsal side of ear skin. The TM300 probe was warmed for 2 min prior to

each measurement, and held on the area of interest for a minimum of 30 reads until the alpha level

was below 0.2, per the manufacturer’s instructions.

Measurement of cell proliferation through EdU labeling
EdU (A10044, Thermo Fisher Scientific) was prepared in PBS buffer at 10 mg/ml PBS and injected

intraperitoneally into mice at a dose of 50 mg/kg body weight. Tail skin was harvested from anesthe-

tized mice at 2 hr, 1 d, 3 d, and 7 d after injection and processed for immunofluorescence staining.

EdU staining was performed using the Click-iT Plus EdU Alexa Fluor 488 Imaging Kit (catalog no.

C10637, Thermo Fisher Scientific).

Immunofluorescence staining of skin tissue sections
For indirect immunofluorescence staining, ear or tail samples were surgically harvested and immedi-

ately submerged into optimal cutting temperature (O.C.T.) media (25608–930, VWR Scientific), flash

frozen on dry ice, and stored at –40˚C until sectioning. 5 mm cryosections were cut in a specific and

consistent tissue orientation in all experiments. Cryosections were allowed to thaw in PBS buffer at

room temperature and incubated with primary antibodies followed by Alexa Fluor–conjugated sec-

ondary antibodies (Thermo Fisher Scientific), counterstained in DAPI (1;5, 000 in PBS; D1306,

Thermo Fisher Scientific), and mounted in FluorSave Reagent mounting medium (345789, Calbio-

chem) for indirect immuno-fluorescence (Hobbs et al., 2015; Kerns et al., 2016). The primary anti-

bodies used are listed in Supplementary file 4 (‘Key Resources Table File’). TUNEL staining for

apoptotic cells was performed using the TUNEL enzyme (11767305001) and TUNEL label mix

(11767291910) as recommended by the manufacturer (Roche Applied Science). Imaging was per-

formed using either a Zeiss fluorescence microscope with an Apotome attachment or a Zeiss LSM

800 confocal microscope. All experimental and control preparations were imaged under identical
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exposure conditions, and quantified using the ImageJ software (NIH) and ZEN lite 2.6 (ZEISS). Exper-

imental data were collected from biological replicates (three or more) and technical replicates (typi-

cally two).

Isolation and analysis of cornified envelopes (CEs)
CEs were isolated from dorsal ear and tail tissue from age-matched male WT and Krt14 C373A

mice. To separate dorsal from ventral ear tissue, we followed the Murine Skin Tissue Transplant pro-

tocol (Garrod and D. Cahalan, 2008). Extraction and preparation of CEs were performed using a

protocol described by Kumar et al., 2015. Briefly, adult mouse ear skin or adult mouse tail skin (1

cm length) were boiled at 95˚ C (in place of hot water bath) for 20 min in 2 ml CE isolation buffer

containing 20 mM Tris-HCl (pH 7.5), 5 mM EDTA, 10 mM dithiothreitol (DTT), and 2% sodium

dodecyl sulfate (SDS). Half of the extracted sample (1 ml) was flash frozen and stored for future stud-

ies. CEs were extracted from the remaining (1 ml) portion of the CE isolate. Samples were centri-

fuged for 5 min at 5, 000 � g, rinsed in CE isolation buffer with 0.2% SDS, re-pelleted, resuspended

in 250 ml of washing buffer, and stored at 4˚C until seeded. For morphological evaluation, CE isolates

from dorsal ear and tail skin were seeded on glass slides at a concentration of 1.5 � 106 CEs and 6

� 106 CEs, respectively, covered with a thin cover glass, and then imaged. CEs were isolated from

four mice per genotype. Analysis of the area, circumstance, and aspect ratio (longest axis to the

shortest axis) of CEs was performed using ImageJ software.

Transmission electron microscopy
Ear tissue from 2 to 3 month old WT and Krt14 C373A littermates was surgically harvested, minced,

and fixed overnight at 4˚C in 2% formaldehyde/2% glutaraldehyde in 0.1 M cacodylate buffer at pH

7.4. Samples were post-fixed in osmium tetroxide, counter-stained with uranyl acetate, and embed-

ded in epoxy resin as previously described (Lessard et al., 2013). Thin sections were cut (50–70 nm

thick), counter-stained with uranyl acetate and lead citrate, and examined using a Hitachi HU-12A

transmission electron microscope. Toluidine blue- stained thick sections (1 mm thick) were used for

morphological analyses at the light microscope level.

RNA harvest, cDNA synthesis, and quantitative RT-PCR
RNA was harvested using TRIzol reagent (15596018, Thermo Fisher Scientific) and purified using the

Nucleospin RNA kit (740955.250, Machery Nagel) according to the manufacturers’ instructions. Con-

centration and purity for RNA samples were assessed by spectrophotometry. 1.0 mg RNA was

reverse-transcribed with the iScript cDNA Synthesis kit (1708891BUN, Bio-Rad Laboratories) using

the manufacturer’s protocol. qRT-PCR was performed using iTaq Universal SYBR master mix

(1725121, Bio-Rad Laboratories) on the CFX96 qRT-PCR apparatus (Bio-Rad Laboratories) as

described (Hobbs et al., 2015; Kerns et al., 2016). The following program was used for all qRT-

PCR reactions: denaturation step at 95˚C for 5 min, 40 cycles of PCR (denaturation at 95˚C for 10 s,

annealing and elongation at 55˚C for 30 s). No template or no reverse transcriptase controls, stan-

dard curves and a melt curve were included on every PCR plate. Normalized expression values from

qRT-PCR data were calculated using Microsoft Excel by first averaging the relative expression for

each target gene (2�(Cq target gene – Cq reference gene)) across all biological replicates and then dividing

the relative expression value for the experimental condition by that for the control condition (2�(DCq

experimental – DCq control)). Error bars were derived from the standard error of the mean (SEM) of the

normalized expression values across all biological replicates. Normalized expression values for each

target gene in all qRT-PCR experiments were derived from at least three biological replicates. Rela-

tive quantifications or fold changes of target mRNAs were calculated after normalization of cycle

thresholds with respect to the reference gene b-actin. A list of all oligonucleotide primers used for

target gene-specific custom qRT-PCR is provided in Supplementary file 3.

Primary culture of skin keratinocytes and indirect immunofluorescence
Keratinocytes from 1 or 2 day old C57Bl/6 newborn mouse skin were isolated as described

(Wang et al., 2016), and cultured in FAD medium (low calcium, 0.07 mM) for 1 day. Calcium switch

experiments (Wang et al., 2016) were performed by switching to FAD medium supplemented with

with 1 mM CaCl2. Keratinocytes were harvested for analysis at 4 days or at 36 hr after calcium switch
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as indicated in figure legends. For immunofluorescence, keratinocytes were fixed in 4% paraformal-

dehyde (PFA), blocked in 10% normal goat serum/0.1% Triton X-100/PBS for 1 hr at room tempera-

ture, incubated in primary antibody solution for 1 hr, washed in PBS, incubated in Alexa Fluor–

conjugated secondary antibodies (Thermo Fisher Scientific), counterstained in DAPI (D1306, Thermo

Fisher Scientific), and mounted in FluorSave Reagent mounting medium (345789, Calbiochem). Prox-

imity ligation assay was performed according to the manufacturer’s protocol (Duolink in Situ PLA,

Sigma-Aldrich). F-actin was stained using the Alexa Fluor 488 Phalloidin (A123791, Thermo Fisher

Scientific) according to the manufacturer’s protocol. Micrographs were acquired using the Zeiss LSM

800 confocal microscope (Carl Zeiss Microscopy). Representative images from at least three inde-

pendent experiments were shown. All images were and quantified by ImageJ software (NIH).

Nucleofection of newborn mouse skin keratinocytes in primary culture
Krt14-/- skin keratinocytes (Feng and Coulombe, 2015a; Feng and Coulombe, 2015b) were cul-

tured in FAD medium. pBK-CMV His-GFP-K14WT or cysteine variants (Feng and Coulombe, 2015a;

Feng and Coulombe, 2015b) were transfected into Krt14-/- skin keratinocytes using P1 Primary Cell

4D-Nucleofector X Kit (V4XP-1024, Lonza). After nucleofection, cells were plated on collagen-coated

coverglass and processed for analysis. For co-immunoprecipitation, HA-14-3-3s (11946, Addgene)

was transfected into skin keratinocytes in primary culture using the P1 Primary Cell 4D-Nucleofector

X Kit (V4XP-1024, Lonza).

Co-immunoprecipitation, protein gel electrophoresis, and mass
spectrometry analysis
WT and Krt14 C373A keratinocytes in primary culture were washed with PBS and lysed in cold Triton

lysis buffer supplemented with Empigen (1% Triton X-100; 2% Empigen; 40 mm Hepes, pH 7.5; 120

mm sodium chloride; 50m MN-ethylmaleimide; 1 mm EDTA; 1 mm phenylmethyl-sulfonyl fluoride; 10

mm sodium pyrophosphate; 1 mg/ml each of chymostatin, leupeptin, and pepstatin; 10 mg/ml each

of aprotinin and benzamidine; 2 mg/ml antipain; 1 mm sodium orthovanadate; and 50 mm sodium

fluoride). Protein concentration was determined using the Bio-Rad protein assay (Bio-Rad Laborato-

ries) with bovine serum albumin (Thermo Fisher Scientific) as a standard. For immunoprecipitation,

aliquots of cell lysate were incubated with a K14 antibody, and immune complexes were captured

using the Protein G Sepharose (17-0618-01, GE Healthcare). Samples for gel electrophoresis were

prepared in Laemmli Sample Buffer (LDS) sample buffer (1610747, Bio-Rad) in the presence of 20

mM tris(2-carboxyethyl)-phosphine (TCEP) (77720, Thermo Fisher Scientific) and incubated at room

temperature for 1 hr to reduce disulfide bonds. Non-reducing lysates were prepared directed in LDS

sample buffer. Equal amounts of IP samples were resolved by 4–15% precast polyacrylamide gels

(456–1084, Bio-Rad) and stained using a Silver Stain Kit (24612, Thermo Fisher Scientific). Bands of

interest, along with a control area, were excised and analyzed by routine tandem mass spectrometry

at the Johns Hopkins Mass Spectrometry Core. Mass spectrometry data were searched with Mascot

2.6.1 (Matrix Science) via Proteome Discoverer 2.2 (Thermo) against the RefSeq2017_83_mus_mus-

culus Proteins database. Proteins with a false discovery rate (FDR) lower than 1% and with at least

two identified peptides were reported as positive.

Preparation of cell lysates, protein gel electrophoresis, and
immunoblotting analysis
Cells or minced tissue were lysed in cold urea lysis buffer (pH 7.0, 6.5M urea, 50 mM Tris-HCl, 150

mM sodium chloride, 5 mM ethylenediaminetetraacetic acid (EDTA), 0.1% Triton X-100, 50 mM

N-ethylmaleimide, 1 mM phenylmethanesulfonyl fluoride (PMSF), 1 mg/mL each of cymostatin, leu-

peptin, and pepstatin, 10 mg/mL each of aprotinin and benzamidine, 2 mg/mL antipain, and 50 mM

sodium fluoride). Protein concentration of the lysates was determined using Bradford protein assay

(Bio-Rad) with bovine serum albumin as a standard. Samples for gel electrophoresis were prepared

in LDS sample buffer (1610747, Bio-Rad) in the presence of 20 mM TCEP and incubated at room

temperature for 1 hr to reduce disulfide bonds. Non-reduced lysates were prepared directed in LDS

sample buffer. Equal amounts of cell lysates were resolved by 4–15% precast polyacrylamide gels

(Bio-Rad) and transferred to nitrocellulose membrane (0.45 mm, Bio-Rad), and immunoblotted with

the indicated antibodies followed by HRP-conjugated goat anti–mouse IgG or anti–rabbit IgG or
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rabbit anti–chicken IgY (Sigma-Aldrich) and Super Signal West Pico Chemiluminescent Substrate

(PI34080, Thermo Fisher Scientific) or Amersham ECL Select Western Blotting Detection Reagent

(RPN2235, GE Healthcare). Signals were detected using the FluorChem Q imaging system (Protein

Simple). The ImageJ software (NIH) was used for western blot signal quantitation.

Luciferase assays
Luciferase assays were conducted in HeLa cells purchased from ATCC and authenticated using STR

profiling (Supplementary file 4). These cells were tested routinely using a commercial luminescence

assay (MycoAlert, Lonza) and found to be mycoplasma-free. Renilla luciferase control plasmid pRL-

TK (Promega, E2241), YAP activity responsive Firefly luciferase plasmid Cyr61(Ccn1)-Luc (Ma et al.,

2017), expression plasmid of human keratin 5 (K5), and expression plasmids of wildtype and cyste-

ine-free (CF) keratin 14 (K14) (Feng and Coulombe, 2015a) were transfected into HeLa (ATCC) cells

using SE Cell Line 4D X Nucleofector Kit S (V4XC-1032) with setting DS-138. After Nucleofection,

cells were plated across six wells of a black matrix 96-well plate for each parameter. HeLa cells were

transfected such that the cell density in each well was 30–40% the following morning. Firefly and

Renilla luciferase activities were measured using Promega Dual Luciferase Reporter Assay System

(Promega, PR-E1910). Firefly relative light unit (RLU) was normalized to internal Renilla RLU per well.

Three biological replicates of normalized Firefly RLUs were pooled, and the means of each parame-

ter were compared using a Mann-Whitney test. Data displayed were transformed by dividing individ-

ual RLUs of each parameter by the mean of pRL-TK alone and subjected to statistical analysis.

Computational prediction of protein motifs
The predicted mouse K14 protein sequence (UniProtKB Q61781) was analyzed using publicly acces-

sible algorithms written to predict 14-3-3 binding sites and phosphorylation events, including 14-3-

3-Pred (Madeira et al., 2015) and Scansite 4.0 (Obenauer et al., 2003).

ENCODE data
Data deposited in the ENCODE project were used to relate expression levels for genes of interest,

chromatin accessibility in their proximal promoter region, and presence of TEAD binding sites.

DNase-seq data from human newborn foreskin keratinocytes were produced by the Stamatoyanno-

poulos laboratory at University of Washington (Project: Roadmap, Award 01ES017156) and down-

loaded from the ENCODE portal (www.encodeproject.org) as a coverage file with the identifier

ENCFF380PKB. RNA and ATAC sequencing data from male newborn human foreskin keratinocytes

at 0, 3 and 6 days of calcium-induced differentiation were produced by the Greenleaf and Snyder

laboratories at Stanford University (Project: GRR, Award: U01HG007919) and downloaded from the

ENCODE portal. Coverage files of total RNA-seq data were downloaded with the following identi-

fiers: ENCFF050SKD, ENCFF711YSO, ENCFF968JPE, ENCFF497JAC, ENCFF064QZN,

ENCFF471GTD. Total RNA-seq data were loaded into the UCSC Genome Browser as bigwig files

for visualization. Alignment files of ATAC-seq data were downloaded with the following identifiers:

ENCFF111ULL, ENCFF654ZNI, ENCFF205KDV, ENCFF479UTZ, ENCFF374VWZ, ENCFF588PIS. For

ATAC-seq data, alignment files were loaded into the Galaxy web platform (Afgan et al., 2016) using

the public server at usegalaxy.org. Coverage files for visualizing ATAC-seq data were created using

deepTools bamCoverage (Ramı́rez et al., 2016) with the following parameters: bin size = 5, normali-

zation method = 1X (effective genome size GRCh38), smooth length = 10, exclude chrM for normali-

zation, no extension. Regions of enriched ATAC signal were called using MACS2 callpeak (Galaxy

Version 2.1.1.20160309.6; Zhang et al., 2008; Feng et al., 2012) on pooled replicates using the fol-

lowing parameters: –formatXpaired-end –gsizeX2.7e9 –nomodel –qvalue 0.05. Results from

calling peaks on pooled replicates were loaded into the UCSC genome browser as narrowPeak files.

To identify putative TEAD family binding sites, we loaded a file of genome-wide locations of pre-

dicted motifs from HOMER (Heinz et al., 2010) into the public Galaxy server and selected motifs

corresponding to TEAD family members. These motifs were loaded as a custom track into the UCSC

genome browser.
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Graphing and statistics
All graphs convey mean ± SEM values calculated using the Microsoft Excel software 2016 (Microsoft

Office) or Prism software version 7 (GraphPad Software, Inc). For comparisons between datasets, the

Student’s t test (tails = 2) or Mann-Whitney tests were used, and statistically significant p-values are

indicated in figures and figure legends.
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Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J,
Nekrutenko A, Goecks J. 2016. The galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Research 44:W3–W10. DOI: https://doi.org/10.1093/nar/gkw343,
PMID: 27137889

Bause AS, Matsui MS, Haigis MC. 2013. The protein deacetylase SIRT3 prevents oxidative stress-induced
keratinocyte differentiation. Journal of Biological Chemistry 288:36484–36491. DOI: https://doi.org/10.1074/
jbc.M113.472324, PMID: 24194516

Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015. Cell adhesion mechanical strain induces E-cadherin-dependent
Yap1 and b-catenin activation to drive cell cycle entry. Science 348:1024–1027. DOI: https://doi.org/10.1126/
science.aaa4559, PMID: 26023140

Betz RC, Planko L, Eigelshoven S, Hanneken S, Pasternack SM, Bussow H, Van Den Bogaert K, Wenzel J, Braun-
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