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Abstract

The intrinsic connectivity of the salience network (SN) plays an important role in

social behavior, however the directional influence that individual nodes have on each

other has not yet been fully determined. In this study, we used spectral dynamic

causal modeling to characterize the effective connectivity patterns in the SN for

44 healthy older adults and for 44 patients with behavioral variant frontotemporal

dementia (bvFTD) who have focal SN dysfunction. We examined the relationship of

SN effective connections with individuals' socioemotional sensitivity, using the

revised self-monitoring scale, an informant-facing questionnaire that assesses sensi-

tivity to expressive behavior. Overall, average SN effective connectivity for bvFTD

patients differs from healthy older adults in cortical, hypothalamic, and thalamic

nodes. For the majority of healthy individuals, strong periaqueductal gray (PAG) out-

put to right cortical (p < .01) and thalamic nodes (p < .05), but not PAG output to

other central pattern generators contributed to sensitivity to socioemotional cues.

This effect did not exist for the majority of bvFTD patients; PAG output toward other

SN nodes was weak, and this lack of output negatively influenced socioemotional

sensitivity. Instead, input to the left vAI from other SN nodes supported patients'

sensitivity to others' socioemotional behavior (p < .05), though less effectively. The

key role of PAG output to cortical and thalamic nodes for socioemotional sensitivity

suggests that its core functions, that is, generating autonomic changes in the body,

and moreover representing the internal state of the body, is necessary for optimal

social responsiveness, and its breakdown is central to bvFTD patients' social behavior

deficits.
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1 | INTRODUCTION

The function of a brain region is characterized in part by the dynamic

patterns of connectivity that it has with other regions within and out-

side its neural network (Uddin, 2015). Studies investigating functional

connectivity of the salience network (SN) demonstrate that the SN

plays an important role in social behavior (Seeley, Menon, et al., 2007;

Toller et al., 2018). However, functional connectivity analysis does

not inform on causality or directionality of communication, even

though information asymmetry plays a key role in brain network

dynamics (Park & Friston, 2013). Dynamic causal modeling (DCM)

yields better information on directional, or effective, connectivity

within these networks. While earlier approaches of DCM applied only

to task-based imaging, recent advances using spectral DCM have

enabled investigators to use task-free functional imaging data as well,

which can be used to model information flow among nodes of resting-

state networks (Sharaev, Zavyalova, Ushakov, Kartashov, &

Velichkovsky, 2016; van de Steen, Almgren, Razi, Friston, &

Marinazzo, 2019). Since then, multiple studies have yielded novel

insights in linking effective connectivity with behavior (Battistella &

Simonyan, 2019; Cui et al., 2015; Li et al., 2020; Nicholson

et al., 2017; Sokolov et al., 2018, 2020; Wei, Wu, Bi, & Baeken, 2020).

Therefore, modeling causal and directional information flow in the SN

and comparing patterns among neurotypical individuals and patients

with social behavior deficits may be important to better understand

how network dynamics are involved in social functioning, and how

they change in disease.

The SN is predominantly comprised of regions in the limbic and

paralimbic system, and plays an important role in integrating the

homeostatic status of the body with information from other cognitive

and affective systems. This facilitates interoceptive awareness and

enables selection of appropriate behavioral responses based on the

internal state of the body and external demands (Seeley, 2019; Seeley,

Menon, et al., 2007). The SN has a particularly important role in man-

aging socioemotional processes, which is evident from behavior defi-

cits in behavioral variant frontotemporal dementia (bvFTD) patients,

who develop striking impairments in socioemotional behavior (Seeley,

Allman, et al., 2007; Zhou et al., 2010), and have focal neu-

rodegeneration affecting the SN, including the dorsal ACC, anterior

insula, periaqueductal gray (PAG), dorsomedial thalamus, and hypo-

thalamus, with right stronger than left in early disease and extending

throughout the frontal lobe as disease progresses (Rosen et al., 2002;

Seeley, Menon, et al., 2007). SN functional connectivity also seems to

play a role in healthy individuals' socioemotional sensitivity, as

described by Toller et al. (2018). From anatomical and functional con-

nectivity studies, Seeley et al. (2012b) assembled a working model of

how SN nodes are expected to dynamically influence each other

directionally, and how this system is expected to break down in

bvFTD. However, network dynamics among all SN nodes have not

been investigated; directional connectivity has been modeled for cor-

tical SN nodes only (Bajaj & Killgore, 2021; Ham, Leff, de Boissezon,

Joffe, & Sharp, 2013; Lamichhane & Dhamala, 2015). Additionally, the

relation between SN network dynamics and behavior has thus far

been investigated for the construct of “emotional intelligence,” but

not for more specific social behavior constructs. One aspect of social

function, sensitivity to others' subtle socioemotional cues, relies

heavily on the formation of visceral responses to social signals. Previ-

ous work suggests that SN, and specifically the PAG, plays an impor-

tant role in this (Toller et al., 2018). To regulate autonomic functions

of the peripheral nervous system, the PAG and other “central pattern
generators” (CPGs) (Sturm et al., 2018) generate stereotypical “fight,”
“flight,” or “freeze” behavior (Grillner, 2006; Saper, 2002), and con-

tribute to emotional responses more broadly. This function of the

PAG could be especially important in social contexts by initiating

social responses to subtle stimuli and providing a foundation for more

complex social behaviors (Damasio & Carvalho, 2013; Motta, Car-

obrez, & Canteras, 2017).

In this study, we hypothesized that among healthy older adults,

different patterns of effective PAG connectivity to other parts of the

SN would influence the ability to detect subtle socioemotional cues,

and that bvFTD patients with focal SN dysfunction would show dif-

ferent effective connectivity patterns than healthy individuals. Since

bvFTD is associated with gray matter volume reduction and white

matter disruptions (Whitwell, Avula, & Vemuri, 2010), we anticipate

that structural lesions likely contribute to functional changes. How-

ever, the relationships among structure and function are highly com-

plex in neurodegenerative disease (Bonakdarpour, Rogalski, Wang,

Sridhar, & Hurley, 2017; Harrington et al., 2015) and in brain function-

ing in general (Damoiseaux & Greicius, 2009), and multimodal imaging

would be required to disentangle the underlying cause of functional

connectivity changes, which is beyond the scope of the current study.

The goal of this study is to evaluate the impact of circuit disruption,

independently of the structural changes that might contribute to this

in neurodegenerative disease. To test these hypotheses, we used

spectral DCM to identify the causal and asymmetric resting-state net-

work dynamics of the SN, in combination with an observer-based

measure of socioemotional sensitivity. We first modeled the average

SN effective connectivity strength from resting-state data in older

normal controls (ONC) and bvFTD patients, and investigated the dif-

ferences between these groups. Next, we analyzed the relationship

between each individual's connectivity estimates and their scores for

social sensitivity. We examined whether PAG output toward other SN

nodes or PAG input from other SN nodes predicted socioemotional

sensitivity. Lastly, we used a clustering method to examine individual

variation in patterns of SN effective connectivity among healthy older

adults, and investigated how bvFTD patients mapped onto these com-

monly occurring patterns.

2 | METHODS

2.1 | Participants

Fifty-three patients with bvFTD were initially selected for this study

and matched based on age and sex with 50 ONCs. For the ROI sphere

size that was selected in this study, nine bvFTD patients' and six
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ONCs' time series did not meet the model-based uncorrected p < .05

signal threshold (Zeidman, Jafarian, Corbin, et al., 2019), which indi-

cated insufficient signal. They were therefore excluded from the

selected sample. This resulted in inclusion of a final sample of

44 bvFTD patients and 44 ONCs. The bvFTD patients were diagnosed

by a multidisciplinary team of neurologists, neuropsychologists and

nurses after thorough assessment of neurological, neuropsychological

and neuroimaging results using the FTDC criteria (Rascovsky

et al., 2011). ONCs were only included when an unremarkable neuro-

logical exam was established, together with normal structural brain

imaging results, and cognitive functioning within the normal range. All

behavioral measures and informant ratings were obtained within an

average number of 13 ± 23 days of the participants' fMRI scans. All

participants were enrolled in research at the Memory and Aging Cen-

ter (MAC) of the University of California San Francisco (UCSF). The

Committee on Human Research at UCSF approved the study, and

prior to testing all participants gave voluntary written informed con-

sent, giving permission to use the collected data for analysis.

2.2 | Revised self-monitoring scale

The revised self-monitoring scale (RSMS) is a 13-item questionnaire

that measures sensitivity to subtle socioemotional expressions of

others and the tendency to modify behavior based on these social

cues (Lennox & Wolfe, 1984). RSMS items are categorized into two

subscales, of which one assesses the sensitivity to expressive behavior

of others (EX), and includes statements such as “The subject can usu-

ally tell when he/she said something inappropriate by reading it in the lis-

tener's eyes.” We expected that a focus on the internal representation

of social cues would best elucidate the contribution of the SN to

social sensitivity, thus the RSMS EX was used as the primary outcome

measure for the study. Informants (family members or friends who

had known the participant for > 5 years) were asked to complete the

measure, describing the study participant by rating items from “cer-
tainly, always true” to “certainly, always false” using a 6-point Likert

scale.

The psychometric properties of the RSMS have been extensively

investigated, and showed good internal reliability of all RSMS items

combined, as well as for each subscale separately (Day, Schleicher,

Unckless, & Hiller, 2002; Lennox & Wolfe, 1984; O'Cass, 2000). The

instrument also reflects adequate test–retest reliability

(Anderson, 1991), and correlates positively with scales that measure

traits considered to benefit from strong self-monitoring, such as self-

esteem (Miller, Omens, & Delvadia, 1991; Wolfe, Lennox, &

Cutler, 1986), leadership skills (Ellis, 1988) and job performance (Day

et al., 2002), and correlates negatively with traits such as shyness and

social anxiety (Wolfe et al., 1986).

A number of studies that examine behavioral impairments in neu-

rodegenerative disease showed that informant ratings on the RSMS

are notably sensitive to social deficits associated specifically with

bvFTD (Franklin et al., 2021; Shdo et al., 2016; Toller et al., 2018,

2020). In comparison to healthy individuals and other dementia

syndromes, bvFTD patients are evaluated to be particularly insensitive

to social cues (Shdo et al., 2016; Toller et al., 2018). This insensitivity

seems to accurately delineate disease severity as well, which reflects

the RSMS' strong potential to contribute to differential diagnostics in

clinical setting (Franklin et al., 2021; Toller et al., 2020). More impor-

tant for the current study, multiple studies using different neuroimag-

ing models have shown that RSMS scores are strongly correlated with

the SN ICN in neurodegenerative disease. Shdo et al. (2016) showed a

linear relationship between the RSMS and gray matter volume in

structures part of the SN, Toller et al. (2021) showed evidence that

higher RSMS scores predict white matter integrity between SN struc-

tures, and Toller et al. (2018) also found that functional connectivity

strength in the SN is directly linked to higher RSMS. In summary,

these studies reflect that the RSMS is a robust scale to differentiate

bvFTD from other dementias, to assess disease severity for this syn-

drome, and to assess brain lesions caused by the disease, which is rel-

evant to the goal of the current study.

2.3 | Image acquisition and preprocessing

Structural and functional scans were acquired using a 3 T Siemens

Trio scanner at UCSF. A T1-weighted 3D magnetization prepared

rapid gradient echo (MPRAGE) sequence was used to obtain the

structural images, with parameters as follows: 160 sagittal slices,

1-mm thick, skip = 0 mm; repetition time = 2,300 ms; echo

time = 2.98 ms; flip angle = 9�; field of view = 240 � 256 mm2; voxel

size = 1 mm3; matrix size = 256 � 256. Two-hundred and forty task-

free functional MRI volumes were obtained over 8 min, during which

participants were instructed to relax with their eyes closed, using a

T2*-weighted gradient echo-planar imaging sequence (repetition

time = 2,000 ms; echo time = 27 ms; flip angle = 80�; field of

view = 230 � 230 mm2; inplane voxel size = 2.5 mm2; matrix

size = 92 � 92). Functional imaging data were analyzed using Statisti-

cal Parametric Mapping (SPM)12 (The Wellcome Centre for Human

Neuroimaging, n.d.) and the FMRIB Software Library (FSL) (Analysis

Group FMRIB, n.d.) After discarding the first five volumes to allow for

magnetic field stabilization, functional images were slice-time

corrected, spatially realigned, co-registered to each participant's struc-

tural T1-weighted image, normalized to the Montreal Neurological

Institute T1 (MNI) template using SPM segment, re-sampled at a voxel

size of 2 mm3, and smoothed with a 6 mm full-width at half-maximum

Gaussian kernel. Co-registered scans were visually inspected to iden-

tify scans with poor co-registration. Participants' scans that failed

visual inspection through group consensus were excluded from the

sample. An additional quality control step included inspection of

motion during scanning. Since head motion can cause systematic but

spurious correlations (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012), only participants with a maximum translational

movement of ≤3 mm, maximum rotational movement of ≤3�, and

maximum displacement of ≤3 mm between functional volumes were

included into the study. Mean root-mean-square of volume-to-volume

changes in translational (in mm) and rotational (mean Euler angle)
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movement were calculated since these metrics can be associated with

functional network connectivity strength (Table 1). A CSF mask in the

central portion of the lateral ventricles, and a white matter

(WM) mask based on the highest probability in the FMRIB Software

Library (FSL) tissue probability mask were used to extract mean CSF

and WM time series.

2.4 | Spectral DCM with PEB

2.4.1 | Time series extraction

The preprocessed functional images were analyzed with a linear

model containing a discrete cosine basis set with 58 functions with

frequency characteristics of resting-state brain dynamics (0.0078–

0.1 Hz) (Fransson, 2005; Kahan et al., 2014) including six head

motion parameters as well as WM and CSF signals as covariates of

no interest. We specified an F-contrast across the discrete cosine

transforms (DCT), producing an SPM that identified regions

exhibiting blood-oxygen-level-dependent (BOLD) fluctuations

within the frequency band.

2.4.2 | ROI identification

To choose the most optimal ROI size, we calculated for each partici-

pant if the time series data of ROIs ranging from 2 to 8 mm in radius

would pass the required signal threshold of p < .05 uncorrected within

the model. This analysis of the data showed that over 25% of the sam-

ple had to be excluded when selecting ROI sizes smaller than 8 mm,

whereas an ROI size of 8 mm had less detrimental effects of <15%

exclusion. Thus, ROIs of 8 mm in radius were created using the MAR-

SBAR toolbox for SPM (Brett, Anton, Valabregue, & Poline, 2002).

This size selection was supported by careful examination of work by a

number of research groups (Li et al., 2017; Sharaev et al., 2016;

Sokolov et al., 2018, 2020, 2019), including spectral DCM validation

studies (Razi, Kahan, Rees, & Friston, 2015; Razi, Seghier, Zhou,

Mccolgan, & Zeidman, 2018), and DCM studies that included subcor-

tical structures such as the PAG (Roy et al., 2014; Sevel, Craggs, Price,

Staud, & Robinson, 2015) which all yielded meaningful results when

applying an ROI of 8 mm. Additionally, a study that investigated the

direct influence of 4, 8, 12, or 16 mm ROI radius sizes in the default

mode network (Almgren et al., 2018) found that results between ROI

sizes were very similar. This suggests that ROI size selection does not

have large influence on final results.

The 8 mm ROIs were centered around a previously published

gray matter atrophy peak in the right ventral anterior insula

(AI) (42, 17, �10) in early bvFTD (Seeley, 2010; Seeley et al., 2008),

and a corresponding ROI was defined for the ventral AI in the left

hemisphere (�42, 17, �10). In addition, using coordinates from two

recent neuroimaging meta-analyses (Beissner, Meissner, Bar, &

Napadow, 2013; Linnman, Moulton, Barmettler, Becerra, &

Borsook, 2012), ROIs were defined in the bilateral dorsomedial thala-

mus (±4, �16, 8), bilateral hypothalamus (±4, �6, �10), and the bilat-

eral amygdala (±20, �8, �12), and ROI coordinates for the midline

structures, that is, the ACC (2, 10, 40) and the PAG (2, �32, �5) were

placed in the right hemisphere to limit CSF inclusion. Thus, 10 ROIs

were selected in total (see Figure S3 for an illustration). For each

region, the principal eigenvariate was computed from the radius

sphere centered on each regions' peak F-value and was adjusted for

the motion confounds. Participants that had insufficient time-series

signal at a threshold of p < .05 uncorrected in one or more ROIs were

excluded from the data, which were 15 participants in total.

2.4.3 | First level model specification and inversion

To examine the causal and directional influence that SN nodes have

on each other, we performed spectral DCM with resting-state data,

in combination with the Parametric Empirical Bayes (PEB) frame-

work in MATLAB (ver. R2019a) (Friston et al., 2016; Zeidman,

Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier,

TABLE 1 Demographics and clinical characteristics of participants (N = 88)

M (SD) ONC bvFTD p value R2

N 44 44

Age 65.2 (5.1) 61 (8) .004 .09

Sex (M/F) 26/18 26/18 — —

MMSE total score 29.3 (0.9) 23.9 (5.2) <.001 .32

CDR global score 0 (0) 1.1 (0.6) <.001 .62

CDR sum of boxes 0 (0) 6.1 (2.9) <.001 .65

RSMS EX (max = 30) 20.5 (3.5) 9.5 (6.7) <.001 .52

Average max translational movement (in mm) 0.8 (0.4) 0.9 (0.5) .38 .009

Average max rotational movement (mean Euler angle) 0.6 (0.5) 1 (0.7) .01 .07

Note: Statistical difference between bvFTD patients and ONCs was calculated using post hoc Dunnett–Hsu test.

Abbreviations: bvFTD, behavioral variant frontotemporal dementia; CDR, clinical dementia rating; EX, sensitivity to socioemotional expressiveness score;

MMSE, Mini Mental State Examination; ONC, older normal controls; RSMS, revised self-monitoring scale.
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et al., 2019). Spectral DCM is distinct from stochastic DCM, in that

it uses second order statistics (cross-spectra) rather than the origi-

nal time-series data. This has the consequence that the time-

dependent random fluctuations that are important in resting-state

data are not treated as stochastic noise. Rather, spectral DCM relies

on a static assumption (deterministic), making it more suitable for

analysis with resting-state data (Friston, Kahan, Biswal, &

Razi, 2014; Razi et al., 2015). Since bvFTD patients have structural

and functional network changes in the SN resulting from neurode-

generative disease, we expected the DCM models for bvFTD

patients to differentiate from the ONC models. We therefore esti-

mated the DCMs for ONC and bvFTD patients separately in all

levels of our DCM analysis, that is, first, second, and third level.

DCM starts with model specification, which is often based on

results from existing literature. Previous studies focused on the corti-

cal nodes of the SN (e.g., bilateral vAI and ACC), but did not include

subcortical nodes, and focused on healthy controls rather than

patients with neurodegenerative disease (Bajaj & Killgore, 2021; Ham

et al., 2013; Lamichhane & Dhamala, 2015). Since we had no prior

knowledge of effective connectivity patterns in all SN nodes

(i.e., cortical and subcortical), we specified a hypothesis-free fully con-

nected model. In other words, our model estimated 100 possible con-

nectivity parameters, including 10 recurrent self-connections from

each node. This step was done for all bvFTD patients and ONCs

based on their individual hemodynamic connectivity patterns within

and between SN nodes (Zeidman, Jafarian, Corbin, et al., 2019). To

find the optimal model fit in terms of tradeoff between accuracy and

complexity, individual DCM models were estimated using Bayesian

model inversion, which updates the model after every iteration, gen-

erating first-level DCM estimates for each individual for each effective

node pair connection. To test the accuracy of the DCM model estima-

tion, the percentage of variance explained by each model for each

individual was calculated (Zeidman, Jafarian, Corbin, et al., 2019). The

completed first-level PEB files can be accessed in Dryad public reposi-

tory (Rijpma et al., 2021).

2.4.4 | Second level PEB analysis and Bayesian
model averaging

We used the second level PEB framework to specify linear models

representing each group's average effective connectivity and

implemented Bayesian model averaging over this framework to

account for model uncertainty. Effective connectivity matrices were

generated with R Studio (ver. 1.2.5001) and display each group's

node-to-node and self-connection (Figure 1). Positive values for the

node-to-node connection represent activation, and negative values

represent inhibition. For the self-connections this is reversed; positive

values represent self-inhibition, and negative values represent self-

activation (Zeidman, Jafarian, Seghier, et al., 2019). For the statistical

assessment of significance of these probabilistic models, we used a

posterior probability of Pp = .99, indicating very strong evidence

(Kass and Raftery, 1995).

2.4.5 | Third level PEB analysis

Since structural and functional brain changes in bvFTD patients cau-

sed by neurodegenerative disease can have unwanted influence on

model estimation, we modeled the second level PEB parameters of

each individual at a third level, that is, a PEB of PEBs (Park, Friston,

Pae, Park, & Razi, 2018; Zeidman, Jafarian, Seghier, et al., 2019) by

generating (Bayesian) linear regression models that represent the dif-

ference for bvFTD compared with ONC. For the third level PEB,

which requires greater statistical power to detect significant results

than is required by the second level PEB analysis, we set a lower

threshold of evidence at a posterior probability of Pp = .74, which is

considered significant and reflects positive evidence (Kass and

Raftery, 1995). Matrix figures were generated with R Studio (ver.

1.2.5001) and scripts for analysis and visualization are accessible in

GitHub (Rijpma, 2021a, 2021b).

2.5 | Effective connectivity of the PAG in relation
to the RSMS EX score

2.5.1 | PAG summary and single effective
connection estimates predicting RSMS EX score

As a data reduction step, we calculated summary variables using SAS

software (ver. 9.4) from each individuals' DCM connectivity parameter

estimates by adding all effective node connections from the PAG to

other SN nodes together (PAG output estimate) and adding all the

effective connections from other SN nodes to the PAG (PAG input

estimate). We derived separate cortical and subcortical input and out-

put estimates, where the cortical estimates consisted of connections

from the PAG to the ACC and bilateral vAI, and the subcortical esti-

mates consisted of connections from the PAG to the thalamus, hypo-

thalamus, and amygdala. The summary estimates were controlled for

outliers. All subjects with a z-score of the summary estimates larger

than 3 SDs from the mean were excluded. This resulted in exclusion

of one bvFTD patient and one ONC. Using SAS software version 9.4,

we first analyzed whether the PAG input and output summary esti-

mates of the whole sample significantly predicted the RSMS EX score

by running linear models controlling for age, rotational movement and

diagnostic group, and repeated this step using the cortical and subcor-

tical summary estimates. We also calculated the correlation between

these subcortical and cortical summary estimates using Pearson's cor-

relation coefficients for each diagnostic group separately. To further

examine PAG effective connections with bilateral single SN nodes, we

added effective connectivity estimates of same structures together

(e.g., left and right amygdala nodes with the PAG) separately for input

from and output to the PAG.

As a final exploratory analysis to confirm that we had not missed

important predictors of RSMS occurring beyond the PAG connections,

we also analyzed contribution across all single effective node connec-

tions to the RSMS EX score. Self-connections were excluded in this

analysis, resulting in 90 comparisons in total. Due to the exploratory
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nature of this analysis and the large number of pairwise comparisons

involved, the Benjamini–Yekutieli (B–Y) method was used as an FDR

controlling procedure for multiple comparisons, with a threshold of

p < .00942 for 90 comparisons (Narum, 2006).

2.5.2 | Cluster analysis with PAG summary
estimates

To identify systematic variation (i.e., subgroups) among healthy

older adults with respect to their patterns of effective connectivity,

we performed in MATLAB (ver. 2019a) a k-means clustering analy-

sis with the ONCs' cortical and subcortical summary variables.

Selecting these summary variables (i.e., cortical and subcortical)

enabled us to include all SN effective connections in an efficient

way. The appropriate number of clusters were identified based on

the best average silhouette values per number of cluster groups

and a visual check of the cluster silhouette plots. To identify how

bvFTD patients' estimates for the cortical and subcortical summary

variables differed from the ONC estimates, we then used the

smallest pairwise Euclidean distance between centroids of the ONC

clusters and the bvFTD estimates to establish cluster membership

of the bvFTD group based on the ONC clusters. Next, we identified

linear models using SAS software (ver. 9.4) for the ONC group and

for the full sample to test whether cluster membership could pre-

dict performance on the RSMS EX score in health and in disease.

Finally, we established whether a significant difference existed

between ONC cluster membership and bvFTD cluster membership

using a χ2 analysis using SAS software (ver. 9.4) as well. Scripts for

these analyses are available in GitHub (Rijpma, 2021c).

F IGURE 1 Matrices of mean effective connectivity of the ONC and bvFTD group and bvFTD compared with ONC, accompanied with
schematic overviews of the effective connectivity results (thickness of lines equal the effective connectivity strength between node pairs). (a) At a
Pp = 0.99, the ONC effective connectivity model shows reciprocal connections among the cortical vAI and ACC nodes. All subcortical bilateral
counterparts are reciprocally connected as well. Self-connections are all self-inhibiting, except for the PAG. (b) At a Pp = 0.99, the bvFTD
effective connectivity model shows reciprocal connections between the cortical SN nodes as well, as well as between the bilateral thalamic
nodes. Self-connections are self-inhibiting in the bilateral hypothalamic nodes, the left thalamic node, the right vAI, and in the ACC, but are not
significantly different in bilateral amygdala, right thalamus, and PAG. (c) The effective connectivity model of the bvFTD group compared with the
effective connectivity model of the ONC group showed that at a Pp = .74 there was significantly weaker activation for the bvFTD group among
(right) cortical nodes and subcortically between the bilateral thalamic nodes. Effective connectivity from the right to the left hypothalamus was
significantly lower as well, and self-connections were less self-inhibiting in the right vAI, left hypothalamus and bilateral thalamic nodes. ACC,

anterior cingulate cortex; amy, amygdala; bvFTD, behavioral variant frontotemporal dementia; hypo, hypothalamus; L, left; ONC, older normal controls;
PAG, periaqueductal gray; Pp, posterior probability; R, right; thal, thalamus; vAI, ventral anterior insula
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3 | RESULTS

3.1 | Demographics and clinical characteristics

The ONC group (65.2 ± 5.1) was statistically significantly older than

the bvFTD group (61.0 ± 8.0; p = .004), however the average differ-

ence between groups was small (≈4 years) and therefore unlikely to

have meaningful influences on the results. There were no significant

sex differences between groups; in both groups 26 males and

18 females were included. Scores on the MMSE and CDR were signif-

icantly different between the bvFTD and ONC group, which was in

line with the expected functional impairment for bvFTD patients. On

the CDR global score, bvFTD patients scored 1.1 ± 0.6, and on the

CDR sum of boxes 6.1 ± 2.9. For both CDR measures, the ONCs had

a score of 0. On the MMSE, bvFTD patients scored 23.9 ± 5.2,

whereas ONC scored 29.3 ± 0.9 (Table 1).

3.2 | Group average effective connectivity
strength of each SN node connection

3.2.1 | Effective connections in the ONC group

At a posterior probability of 99%, within-group effective connections

for ONCs were all excitatory except for the right thalamus to right vAI

connection, and a total of 27 effective connections were identified. This

demonstrates that SN nodes generally have an activating influence on

each other (Figure 1a). Similarly to the results in the DCM studies by

Ham et al. (2013) and Lamichhane and Dhamala (2015), SN nodes were

reciprocally connected among the cortical nodes. Additionally, the sub-

cortical contralateral ROI (e.g., left with right amygdala) were all recipro-

cally connected as well. All self-connections showed statistically

significant self-inhibition, except for the PAG node. Nodes with higher

levels of self-connection are understood be comparatively less respon-

sive to inputs from other nodes (Zeidman, Jafarian, Corbin, et al., 2019),

thus this result suggests that the PAG may be more responsive than

other SN nodes. The percentage of explained variance reflected high

accuracy of the DCM model for the ONC group; the average percent-

age of variance explained when fitting the DCM model-estimates to the

cross-spectra was 68.50% (SD = 22.30%), with a minimum of 41.21%

and a maximum of 90.24%.

3.2.2 | Effective connections in the bvFTD group

At a Pp of 99%, there were 28 significant within-group effective con-

nections for bvFTD patients, which were all excitatory (Figure 1b).

The cortical nodes were all reciprocally connected, as well as the bilat-

eral nodes of the hypothalamus. Self-connections were self-inhibiting

in cortical, hypothalamic, and the left thalamus nodes, which indicates

that these nodes are not very receptive for input from other nodes.

The remaining nodes (i.e., amygdala, PAG, and right thalamus) were

not significantly self-inhibiting or self-activating, suggesting that these

nodes are more receptive for input than the other SN nodes. Further-

more, the percentage of explained variance reflected that the esti-

mated DCM model for the bvFTD group is highly accurate; the

average explained variance when fitting the DCM model-estimates to

the cross-spectra was 66.44% (SD = 13.82%), with a minimum of

34.25% variance explained and a maximum of 94.85%.

3.2.3 | Differences in effective connectivity for
bvFTD patients compared with ONCs

At a Pp of 74%, the bilateral effective connections between the insu-

lar nodes, and bilateral connections between the thalamic nodes were

significantly lower for bvFTD patients compared with ONCs, as well

as the reciprocal connection between the ACC and the right vAI, and

effective connection from the right to the left hypothalamus

(Figure 1c). Furthermore, self-connectivity in the right vAI, left hypo-

thalamus, and bilateral thalamic nodes were significantly less self-

inhibiting for bvFTD patients (compared with ONCs), which reflects

that these nodes are more receptive for input from other SN nodes in

bvFTD compared with ONC.

3.3 | Role of effective PAG connections in
socioemotional sensitivity

3.3.1 | PAG summary estimates in relation to the
RSMS EX score

Summary variables were calculated based on the entire sample

(bvFTD and ONC) from individuals' DCM connectivity estimates. The

summary variable of the entire sample representing PAG output

toward other SN nodes significantly predicted higher RSMS EX score

[R2 = .56, F(2,83) = 6.64, p = .012], while the PAG input summary

variable of the entire sample did not. The summary variables of the

whole sample group were also divided into cortical and subcortical

nodes. Output to cortical nodes significantly predicted higher RSMS

EX score [R2 = .57, F(2,83) = 7.34, p = .0082], but input to cortical

nodes did not. Both PAG output and PAG input to subcortical nodes

did not significantly predict the RSMS EX score, and when further

evaluating this by using summary variables of single bilateral SN nodes

(to and from the PAG), only the summary variable representing PAG

output to the thalamic nodes predicted higher RSMS EX score

[R2 = .16, F(2.83) = 5.50, p = .024], and in ONCs only. All analyses

were controlled for age, movement during scanning (mean Euler

angle), and diagnostic group membership. See Figure S1 for all results.

3.3.2 | Single PAG effective connections in relation
to the RSMS EX score

Next, we examined the contribution of each effective node-to-node

connection that includes the PAG, separately for the ONC and the
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bvFTD group. For the ONC group, PAG output to the ACC (R2 = .18,

F = 6.76, p = .013) and right vAI (R2 = .18, F = 6.24, p = .017) signifi-

cantly predicted higher RSMS EX score, as well as PAG output toward

the left (R2 = .15, F = 4.69, p = .037) and right thalamic nodes

(R2 = .18, F = 6.24, p = .017). Input from the right hypothalamus to

the PAG (R2 = .21, F = 8.02, p = .0073) predicted lower RSMS EX

score. For the bvFTD group, PAG output toward the left vAI predicted

higher RSMS EX scores (R2 = .23, F = 7.89, p = .0074). These effects

were controlled for age and movement during scanning (mean Euler

angle).

3.3.3 | All node pair effective SN connections as a
predictor of RSMS EX score

We also conducted an exploratory analysis to identify whether sepa-

rately for the ONC and bvFTD group effective node connections

other than the connections with the PAG significantly contribute to

the RSMS score. We included all 10 nodes for the ONC and bvFTD

group in these analyses but excluded effective connectivity within

each node (self-connections), resulting in 90 comparisons in total.

Figure 2a,b display these 90 comparisons at a level of p < .05 and

p < .01. Next, a B–Y multiple comparison correction of p < .00942

was applied as a minimum threshold to gauge the statistical signifi-

cance of results. Of these connections in ONCs, PAG output to the

ACC (R2 = .16, F = 8.15, p = .0067.) and right vAI (R2 = .16, F = 7.82,

p = .0078) remained statistically significant for higher RSMS EX

scores, and input from the right hypothalamus to the PAG (R2 = .20,

F = 9.97, p = .003) remained significant for lower RSMS EX score. For

the bvFTD group, no node pair significantly predicted RSMS EX

scores after multiple comparison correction. See Figure S2 for the

confidence limits of all analyses.

3.3.4 | Cluster groups based on PAG output to
cortical and subcortical SN nodes

By performing a k-means clustering analysis of the summary variables

representing PAG output in the ONCs, we found that individuals

could be split into three cluster groups based on differences in their

patterns of connectivity. PAG input summary variables did not reflect

any meaningful clusters. Compared with separation in two or four

clusters (average silhouette values of .58 and .57, respectively), sepa-

ration in three clusters yielded the highest average silhouette value

F IGURE 2 Schematic illustration of effective node connections that with a significance level of p < .05 or p < .01 predicted higher or lower
RSMS EX scores, calculated separately for ONC and bvFTD patients (see Figure S2 for all effective node connections' confidence intervals in
relation with the RSMS EX score). For the ONC group, PAG output to cortical and thalamic nodes positively predicted RSMS EX score, whereas
input from the ACC, amygdala, and PAG to the left vAI positively predicted RSMS EX score for the bvFTD group. Mainly hypothalamic output
had negative influence on the RSMS EX score for ONC, and bilateral thalamic connections for bvFTD patients. EX, expressive behavior; RSMS,
revised self-monitoring scale
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(.60). A visual check of the three-cluster analysis' silhouette plot

showed that all data points in cluster group 3 have silhouette values

above 0.8, and many data points in cluster groups 1 and 2 have

silhouette values around 0.7, which indicates that separation into

three clusters is acceptable (see Figure 3d). Cluster group 1 (blue)

exhibited low PAG output toward cortical and subcortical SN nodes.

F IGURE 3 Individual differences in strength of PAG output predict RSMS EX score. (a) Comparing the summary estimates for PAG output to
cortical nodes with PAG output to subcortical nodes yielded three different cluster groups in ONCs, of which group 1 (blue) showed weakest
PAG output strength toward cortical and subcortical SN nodes, group 2 (red) showed medium output strength, and group 3 (green) showed most
output strength toward cortical and subcortical SN nodes. (b1) When comparing RSMS EX scores of ONCs that belong to cluster group 3 (high

PAG output) to cluster group 2 (medium PAG output), cluster group 3 performed significantly better on the RSMS EX scale than group 2. (b2)
When comparing RSMS EX scores of the whole sample (i.e., ONCs and bvFTD patients combined), members of cluster group 3 performed
significantly higher on the RSMS EX scale than members of cluster group 1. This suggests that stronger PAG output (toward cortical and
subcortical SN nodes) increased socioemotional sensitivity, both in disease and in normal brain function. (c) By taking the χ2 of cluster group
membership per diagnostic group, bvFTD patients belonged significantly more to cluster group 1, and ONCs belonged significantly more to
cluster group 3. This shows that compared with ONC, bvFTD patients belonged significantly more to the cluster group with weak PAG output
and corresponding low RSMS EX scores. (d) Middle to high values on the silhouette plot shows that data can be safely divided into three clusters
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Cluster group 2 (red) exhibited medium PAG output toward cortical

and subcortical SN nodes, and cluster group 3 (green) exhibited high

PAG output (Figure 3a). ONCs that belonged to cluster group 3 had

significantly higher scores on the RSMS EX subscale than members of

cluster group 2, p < .01 (Figure 3b1). There were no significant differ-

ences in RSMS EX score between cluster group 3 and 1, which is likely

due to the small group size for group 1 (blue). When analyzing the

whole sample (i.e., ONC and bvFTD), members of cluster group

3 scored significantly higher on the RSMS EX than members of cluster

group 1, p < .01 (Figure 3b2) and there was a trend toward a signifi-

cant difference between cluster group 3 and cluster group 2 (p = .06).

Finally, bvFTD patients were significantly more likely to belong to

cluster group 1, and ONCs were significantly more likely to belong to

cluster group 3 (χ2 = .02), Figure 3c.

4 | DISCUSSION

This study clarifies for the first time the direction of information flow

among subcortical and cortical nodes of the SN in neurotypicals, how

that varies among individuals, how information flow in the SN is dif-

ferent for bvFTD patients compared with neurotypicals, and how this

variation is linked to socioemotional sensitivity. Our results show that

most healthy individuals show strong PAG output to other SN nodes,

and that the strength of this directional information flow is a predictor

of their ability to pick up on socioemotional cues. Specifically, PAG

output to right cortical and thalamic nodes, but not PAG output to

other central pattern generators, contributes to higher levels of socio-

emotional sensitivity in healthy individuals. Our results also show that

on average bvFTD patients do not show the same SN effective con-

nectivity patterns as older normal controls; directional activation is

significantly decreased among cortical nodes, within hypothalamic

nodes, and within thalamic nodes. Furthermore, we showed that for

the majority of the bvFTD patients in our sample, PAG output toward

other SN nodes was weak, and this breakdown in SN directional con-

nectivity was a predictor of the diminished socioemotional sensitivity

seen in these patients.

4.1 | Stronger PAG output to other SN nodes
drives greater socioemotional sensitivity

Our study indicates that for older adults with healthy brain function-

ing, individuals with stronger PAG output to the cortical ACC, right

vAI, and bilateral thalamic nodes were significantly more likely to be

rated as socioemotionally sensitive by a close informant. Additionally,

no other effective node connections seemed to contribute signifi-

cantly to social sensitivity. This emphasizes the important role the

PAG plays in picking up subtle socioemotional cues, and highlights a

neural mechanism underlying individual variation in observable social

behavior.

Animal models show that the PAG is situated at the interface of

descending and ascending pathways between the peripheral nervous

system and higher order brain regions. The PAG is involved in many

regulatory functions, but putatively its main role revolves around

maintaining homeostatic balance for survival. For example, in conjunc-

tion with other CPGs such as the hypothalamus and amygdala, the

PAG regulates autonomic responses such as “fight,” “flight,” and

“freeze” behavior. The PAG can be functionally subdivided into differ-

ent columns (Carrive, 1993; Linnman et al., 2012); the dorsolateral

and lateral portion of the PAG evokes active coping strategies (“fight”
and “flight”) through the sympathetic nervous system, whereas the

ventrolateral portion generates opposite strategies of passive coping

(“freeze”) through the parasympathetic system (Bandler, Keay,

Floyd, & Price, 2006). The lateral and ventrolateral portion of the PAG

receive afferent (ascending) connection that originate mainly from the

spinal cord and the nucleus of the solitary tract (Bandler et al., 2006).

Conversely, the dorsolateral column does not receive significant

ascending input (Bandler et al., 2006). From the PAG, all columns pro-

ject to the thalamus, although the ventrolateral column provides most

input (Krout & Loewy, 2000). From there, the thalamus serves as a

gateway for further projection to the insula and ACC

(Benarroch, 2012; Cameron et al., 1995). Efferent (descending) con-

nections of most subregions in the PAG are strongest with the supe-

rior colliculus, nucleus cuneiformis and the locus coeruleus of the

midbrain, which in turn project to autonomic nuclei of the brainstem

and spinal cord (Mantyh, 1983). Evidence from functional and struc-

tural imaging suggests that this system, originally delineated in animal

models, seems to work similarly in humans (Linnman et al., 2012).

These efferent and afferent loops allow us to both produce and sense

changes in our internal milieu. Since the results in our study indicate

that PAG influence on the thalamus, ACC, and vAI are the SN connec-

tions that most significantly contribute to socioemotional sensitivity,

representation of internal states through the afferent pathway

appears to be particularly important for picking up nuanced social

behavior of others. However, our results do not rule out that the

efferent pathway might play an additional role in social behavior by

generating appropriate autonomic patterns in response to salient

social cues.

In our study, ascending PAG output to bilateral thalamic nodes

was a significant predictor of the level of socioemotional sensitivity as

rated by observers. The role of the thalamus is to relay all incoming

information from the periphery in a dynamic fashion, modulating the

activation of other higher-order brain regions, depending on the con-

textual relevance (Basso, Uhlrich, & Bickford, 2005). This structure

plays an important role in controlling the inflow of information to the

vAI, and by extension downstream cortical regions (Craig, 1996). In

the case of social cognition, this modulating function of the thalamus

is likely performed via differential activation of neural pathways rele-

vant to the consolidation of social information, and our results suggest

that this mechanism might be important for sensing another person's

subtle socioemotional cues. Ascending pathways play an important

role in the parasympathetic nervous system, which relays internal

cues from the periphery to the brain via afferent pathways

(Craig, 1996), and the ascending connections from the PAG to the

thalamus are part of this pathway (Krout & Loewy, 2000). Our ROI
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was too large to definitively delineate the roles of the different PAG

columns in socioemotional sensitivity in our analysis; however, our

results do support the idea that socioemotional sensitivity may rely on

parasympathetic systems, which relay internal cues from the periph-

ery to the brain via afferent pathways. Our data do not rule out that

sympathetic systems, which trigger physiological and behavioral

responses via efferent pathways (Saper, 2002), may also contribute to

sensitivity, thus these relationships require further clarification.

Our results also showed that PAG output toward the right vAI

and ACC is beneficial to socioemotional sensitivity. The vAI is a major

afferent hub for receiving and integrating autonomic signals from the

body, and is the structure primarily responsible for bringing these

bodily sensations to awareness (Craig, 2009; Damasio &

Carvalho, 2013; Uddin, 2015). However, the vAI may play a dual role

in which this sensitivity to one's own internal feeling state may con-

vey greater awareness of the emotions of others in a social interac-

tion. The significant role that the vAI plays in recognizing another's

socioemotional state has previously been identified by Toller

et al. (2018), who found that strong right vAI functional connectivity

with other cortical and subcortical SN nodes supports more accurate

social cue reading. The significant effect that dorsolateral PAG output

toward the (right) vAI was found to have on socioemotional sensitivity

in our study suggests that the afferent pathway that represents inter-

nal experiences contribute to social sensitivity. This communication

from the PAG to the right vAI is most likely modulated by the thala-

mus, since no direct connections between the PAG and the vAI have

been described (Vianna & Brand~ao, 2003). Furthermore, our finding

that effective connectivity with only the right vAI was a predictor of

socioemotional sensitivity corresponds with the autonomic imbalance

known to exist between the left and right hemisphere, where the left

hemisphere generates parasympathetic activation and the right hemi-

sphere sympathetic activation (Craig, 2005; Sturm et al., 2018). This

might indicate that social sensitivity is also supported by the efferent

capacity to generate a sympathetic response that sequentially contrib-

utes to the afferent pathway.

Both the vAI and ACC structures possess neuroanatomically

unique Von Economo and fork neurons (Allman et al., 2010; Seeley

et al., 2012). Due to their longer axons, these neurons are thought to

enable much more rapid signaling between the vAI/ACC and auto-

nomic control structures compared with the more common pyramidal

cells (Allman et al., 2010; Nimchinsky et al., 1999). This proposed ana-

tomical advantage could aid rapid detection and synthesis of bodily

signals by the vAI, and cognitive control regulation by the ACC,

resulting in greater speed and precision of emotion-related behavioral

responses (Craig, 2009; Evrard, 2018; Menon & Uddin, 2010; Stevens,

Hurley, & Taber, 2011). Our study found that PAG output to the ACC

contributes to socioemotional sensitivity. This suggests that the ACC

may facilitate a more holistic representation of autonomic signals by

modulating the transformation of the PAG's generated patterns into

an emotional reaction, refining the intensity or quality of the behav-

ioral response and thus lending greater subtlety to the awareness of

the other's socioemotional cues.

PAG output toward the remaining CPGs, that is, the hypothala-

mus and the amygdala, did not contribute to socioemotional sensitiv-

ity in our study, nor did the output from these remaining CPGs to the

SN. The main role of the CPGs is to generate autonomic signals and

correct homeostasis, though the contribution of each CPG differs

(Saper, 2002). While the PAG is mainly responsible for generating ste-

reotypical autonomic patterns, the hypothalamus integrates a range of

sensory information to maintain homeostasis of the body, and the

amygdala alerts to the salience of environmental stimuli depending on

one's motivational state (Benarroch, 2012; Cunningham &

Brosch, 2012; Saper & Lowell, 2014). The extensive efferent connec-

tions that the CPGs have with nodes in the autonomic nervous sys-

tem, and their lack of involvement in socioemotional sensitivity,

suggests that social sensitivity might be more driven by afferent pat-

tern recognition than by efferent pattern generation.

4.2 | bvFTD patients show altered PAG effective
connectivity patterns predicting sensitivity

The relationship seen in ONC's was also present in bvFTDs, specifi-

cally that weaker PAG output in bvFTD patients predicted lower

socioemotional sensitivity, and a disproportionate number of

bvFTD patients fell in the group with the weakest PAG output. This

finding extends the brain–behavior relationships we found in the

neurotypical participants, supporting the idea that stronger direc-

tional PAG output contributes to greater social awareness. How-

ever, the specific effective connectivity patterns predicting

behavior were altered in the bvFTD group. While in neurotypicals,

having stronger PAG output toward bilateral thalamic and right cor-

tical nodes was a predictor of socioemotional sensitivity, this effect

did not exist for the bvFTD patient group. Also, while overall

bvFTD patients were significantly less sensitive to socioemotional

cues than the ONC group, a statistical trend was still seen in

bvFTDs in which effective connections from the PAG, right amyg-

dala, and ACC toward the left vAI predicted higher sensitivity to

socioemotional cues. Disruption of normal PAG connections to tha-

lamic and cortical nodes likely drove reduced sensitivity to socio-

emotional cues in these bvFTD patients. However, the enhanced

left vAI contribution to socioemotional sensitivity might be a com-

pensatory effect resulting from bvFTD-related disruption of other

right-sided circuits that normally support this function

(Seeley, 2008; Seeley et al., 2005). Disruption of right sided net-

work connections could necessitate overfunctioning in the intact

left vAI to bolster socioemotional sensitivity, though perhaps less

effectively. Furthermore, the left vAI contributes to awareness of

interoceptive processes, specifically for parasympathetic function-

ing (Guo et al., 2016). Therefore, its recruitment by bvFTD patients

who retain some ability to correctly interpret another's socio-

emotional cues strengthens and extends our finding in the neu-

rotypicals that socioemotional sensitivity seems to be supported

mainly by the afferent pathway.
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4.3 | Effective SN connections are different in
bvFTD patients compared with ONCs

The overall strength of effective connections between SN nodes were

on average lower in bvFTD patients than in ONCs. Effective connec-

tions between the contralateral vAI nodes and between the contralat-

eral thalamic nodes, between the right vAI and ACC, and from the

right to the left hypothalamus were significantly weaker. These find-

ings are in line with earlier reports of SN disruption in bvFTD patients.

For example, a study by Zhou et al. (2010) showed that compared

with matched controls, bvFTD patients with mild disease progression

(comparable to our sample) showed reduced SN connectivity strength

in nodes corresponding with the vAI, ACC, hypothalamic, thalamic,

and PAG nodes.

We also found that compared with ONCs, bvFTD patients

showed significantly less self-inhibitory connections in the ACC, left

vAI, bilateral thalamic nodes, and left hypothalamus. From a biological

standpoint, effective self-connections can be interpreted as the

excitatory-inhibitory balance within the region; high self-inhibition is

thought to reflect low excitability (i.e., reactivity to input from other

structures) whereas low self-inhibition reflects high excitability

(Zeidman, Jafarian, Corbin, et al., 2019). This decreased self-inhibition

in some SN nodes (i.e., higher excitability) in bvFTD patients may have

emerged from mechanisms in the brain that compensate for disease-

related network disruption, where a decrease in signal input could

potentially lead to compensatory increased excitability in disrupted

regions (Park & Reuter-Lorenz, 2009). The finding that only the right

vAI shows significant changes in self-connection excitability supports

this idea, since in the early stage right frontotemporal regions are

more affected than the left in bvFTD (Seeley, 2008; Seeley

et al., 2005).

4.4 | Limitations and conclusions

The objective of this study was to examine dynamic network con-

nectivity in the SN and its relevance to social sensitivity. Because

of the prominent role of the SN in social functioning, we selected

only SN nodes for our DCM analyses, and along with healthy con-

trols also included bvFTD patients, who have significant disease-

related dysfunction in this network. This sample group enabled

between-group comparisons, and the inclusion of lesion patients

with clear abnormalities provided opportunity for more robust

interpretation of the directionality of our connectivity results. This

a priori selection of SN nodes, however, has the consequence that

the role of effective connectivity patterns between other non-SN

brain regions on socioemotional sensitivity remain unidentified in

this study, and would be an appropriate next step for future

research. Similarly to our selection of solely SN nodes, we set the

prior hypothesis that socioemotional sensitivity would rely on

dynamic connectivity to and from the PAG node specifically, limit-

ing our investigation of the contribution of other SN nodes. We

addressed this issue by running regression analyses for each

individual effective node connection, excluding the self-

connections (i.e., 90 comparisons in total) to explore for any other

meaningfully large contributions of SN node pairs to socio-

emotional sensitivity, though none emerged.

Another important consideration when interpreting this study is

that structural connections between SN nodes are not directly repre-

sented in our results, since the effective connectivity modeled by the

DCM approach is based only on functional activity. It is possible that

influence of one node on the other is mediated by structural connec-

tions with a third node that was not included in the model. DCM

methods that can incorporate structural connectivity information,

such as regression DCM, could assess this in more detail (Frässle

et al., 2021), and might be appropriate for a follow-up study. Addition-

ally, our approach to characterize effective connectivity patterns

among SN nodes yielded compelling results of how connectivity pat-

terns in bvFTD are different from “typical” SN neural circuitry, but it

provides no explanation of the cause of these changes. This question

can only be addressed with an analytical approach that includes both

structural and functional imaging data in a model, which was beyond

the scope of this study, but is a relevant direction for future research.

Finally, connections to and from the peripheral nervous system are

important contributors to the function of the SN. However, dynamic

connectivity between SN nodes and the periphery cannot be modeled

with DCM. Though our results make a significant contribution to

understanding network dynamics between nodes of the SN, interpre-

tation of our results requires consideration of these analytical

limitations.

In this study, we applied a novel approach by using effective con-

nectivity DCM estimates to explore social behavior. This provides an

example of how different analytical methods can be used to further

expand our understanding of how activity in one brain node influ-

ences another, and how this forms observably different types of

behavior. We showed that a relationship can be identified between

effective connectivity and a very subtle type of behavior (detecting

implicit socioemotional cues) that was measured using observer rat-

ings (not rated by participants themselves), and was recognizable in

nondisease models (healthy individuals) as well as in patients with

focal neurodegeneration. This observation delivers substantial evi-

dence that effective connections in the SN play an important role in

behavior, and network mechanics should similarly be investigated in

other cognitive domains as well. Additionally, expanded use of this

approach with patients could extend our understanding of exactly

how the function of intrinsically connected networks breaks down in

neurologic disease, and whether this drives the wide variation in clini-

cal symptoms frequently observed among individuals with the same

syndrome.

ACKNOWLEDGMENTS

We would like to thank all patients, patients' caregivers and research

volunteers for participating in this research project. We would also

like to thank all research coordinators and fellows or postdocs at the

UCSF Memory and Aging Center who supported us with data collec-

tion for this study.

RIJPMA ET AL. 1705



CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTION

Myrthe G. Rijpma: Designed research plan, analyzed data, and wrote

the article. Winson F.Z. Yang: Designed research plan, analyzed data,

provided writing and editorial input on the article. Gianina Toller:

Designed research plan, analyzed data, provided writing and editorial

input on the article. Giovanni Battistella: Consulted on research

design, contributed analytical tools, provided editorial input on the

article. Arseny A. Sokolov: Consulted on research design, provided

conceptual and technical consultation, provided editorial input on the

article. Virginia E. Sturm: Provided conceptual and technical consulta-

tion and editorial input on the article. William W. Seeley: Provided

conceptual and technical consultation and editorial input on the arti-

cle. Joel H. Kramer: Provided participants and participant data and

editorial input on the article. Bruce L. Miller: Provided participants

and participant data, provided editorial input on the article. Katherine

P. Rankin: Designed research plan, provided participant data, contrib-

uted to analytical tools, supported data analysis, and wrote the article.

ETHICS STATEMENT

All elements of this study were reviewed and approved by the UCSF

Institutional Review Board (#14-14044). Prior to testing all partici-

pants gave voluntary written informed consent, giving permission to

use the collected data for analysis.

DATA AVAILABILITY STATEMENT

All code used for analysis will be available at https://github.com/

MyrtheGwenRijpma/DCM. Data matrices from individuals that sup-

port the imaging findings in this study will be available in the open

access repository Dryad (https://datadryad.org/stash/share). Addi-

tional deidentified raw participant data cannot be placed in an open

archive because it is not permitted under the study's IRB approval due

to the sensitive nature of patients' data. However, all data is available

to any interested research via a request submitted through a public-

facing resource request portal at: http://memory.ucsf.edu/resources/

data. Following a UCSF-regulated procedure, access will be granted to

designated individuals in line with ethical guideline on the reuse of

sensitive data. This would require submission of the Material Transfer

Agreement, available at https://icd.ucsf.edu/material-transfer-and-

data-agreements.

ORCID

Myrthe G. Rijpma https://orcid.org/0000-0001-7276-9175

REFERENCES

Allman, J. M., Tetreault, N. A., Hakeem, A. Y., Manaye, K. F.,

Semendeferi, K., Erwin, J. M., … Hof, P. R. (2010). The von Economo

neurons in frontoinsular and anterior cingulate cortex in great apes

and humans. Brain Structure & Function, 214(5–6), 495–517. https://
doi.org/10.1007/s00429-010-0254-0

Almgren, H., van de Steen, F., Kühn, S., Razi, A., Friston, K., &

Marinazzo, D. (2018). Variability and reliability of effective

connectivity within the core default mode network: A multi-site longi-

tudinal spectral DCM study. NeuroImage, 183, 757–768. https://doi.
org/10.1016/j.neuroimage.2018.08.053

Anderson, L. R. (1991). Test-retest reliability of the revised self-monitoring

scale over a two-year period. Psychological Reports, 68(3), 1057–1058.
https://doi.org/10.2466/pr0.1991.68.3.1057

Bajaj, S., & Killgore, W. D. S. (2021). Association between emotional intelli-

gence and effective brain connectome: A large-scale spectral DCM

study. NeuroImage, 229, 1053–8119. https://doi.org/10.1016/j.

neuroimage.2021.117750

Bandler, R., Keay, K. A., Floyd, N., & Price, J. (2006). Central circuits medi-

ating patterned autonomic activity during acttive vs. passive emotional

coping. Brain Research Bulletin, 53(1), 95–104.
Basso, M. A., Uhlrich, D., & Bickford, M. E. (2005). Cortical function: A

view from the thalamus. Neuron, 45(4), 485–488. https://doi.org/10.
1016/j.neuron.2005.01.035

Battistella, G., & Simonyan, K. (2019). Top-down alteration of functional con-

nectivity within the sensorimotor network in focal dystonia. Neurology,

92(16), 1–9. https://doi.org/10.1212/WNL.0000000000007317

Beissner, F., Meissner, K., Bar, K.-J., & Napadow, V. (2013). The autonomic

brain: An activation likelihood estimation meta-analysis for central

processing of autonomic function. Journal of Neuroscience, 33(25),

10503–10511. https://doi.org/10.1523/JNEUROSCI.1103-13.2013

Benarroch, E. E. (2012). Periaqueductal gray. Neurology, 78, 210–217.
Bonakdarpour, B., Rogalski, E. J., Wang, A., Sridhar, J., & Hurley, R. S.

(2017). Functional connectivity is reduced in early stage primary pro-

gressive aphasia when atrophy is not prominent. Alzheimer Disease and

Associated Disorders, 31(2), 101–106. https://doi.org/10.1097/WAD.

0000000000000193.Functional

Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of

interest analysis using an SPM toolbox. Presented at the 8th interna-

tional conferance on functional mapping of the human brain.

NeuroImage, 16(2), 497.

Cameron, A. A., Khan, I. A., Westlund, K. N., & Willis, W. D. (1995). The

efferent projections of the periaqueductal gray in the rat: A phaseolus

vulgaris-leucoagglutinin study. II. Descending projections. Journal of

Comparative Neurology, 351(4), 585–601. https://doi.org/10.1002/

cne.903510408

Carrive, P. (1993). The periaqueductal gray and defensive behavior: Func-

tional representation and neuronal organization. Behavioural Brain

Research, 58(1–2), 27–47. https://doi.org/10.1016/0166-4328(93)

90088-8

Craig, A. D. (1996). An ascending general homeostatic afferent pathway

originating in lamina I. Progress in Brain Research, 107(1993), 225–242.
https://doi.org/10.1016/s0079-6123(08)61867-1

Craig, A. D. (2005). Forebrain emotional asymmetry: A neuroanatomical

basis? Trends in Cognitive Sciences, 9(12), 566–571. https://doi.org/10.
1016/j.tics.2005.10.005

Craig, A. D. B. (2009). How do you feel—Now? The anterior insula and

human awareness. Nature Reviews Neuroscience, 10, 59–70. https://
doi.org/10.1038/nrn2555

Cui, L.-B., Liu, J., Wang, L.-X., Li, C., Xi, Y.-B., Guo, F., … Lu, H. (2015). Ante-

rior cingulate cortex-related connectivity in first-episode schizophre-

nia: A spectral dynamic causal modeling study with functional

magnetic resonance imaging. Frontiers in Human Neuroscience, 9(589),

1–10. https://doi.org/10.3389/fnhum.2015.00589

Cunningham, W. A., & Brosch, T. (2012). Motivational salience: Amygdala

tuning from traits, needs, values, and goals. Current Directions in Psy-

chological Science, 21(1), 54–59. https://doi.org/10.1177/

0963721411430832

Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary

and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143–
152. https://doi.org/10.1038/nrn3403

Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its

parts: A review of studies combining structural connectivity and

1706 RIJPMA ET AL.

https://github.com/MyrtheGwenRijpma/DCM
https://github.com/MyrtheGwenRijpma/DCM
https://datadryad.org/stash/share/5GkjoBlbRpNrbO6jUckySwskZ8g9kwg-ma8uqRT254w
http://memory.ucsf.edu/resources/data
http://memory.ucsf.edu/resources/data
https://icd.ucsf.edu/material-transfer-and-data-agreements
https://icd.ucsf.edu/material-transfer-and-data-agreements
https://orcid.org/0000-0001-7276-9175
https://orcid.org/0000-0001-7276-9175
https://doi.org/10.1007/s00429-010-0254-0
https://doi.org/10.1007/s00429-010-0254-0
https://doi.org/10.1016/j.neuroimage.2018.08.053
https://doi.org/10.1016/j.neuroimage.2018.08.053
https://doi.org/10.2466/pr0.1991.68.3.1057
https://doi.org/10.1016/j.neuroimage.2021.117750
https://doi.org/10.1016/j.neuroimage.2021.117750
https://doi.org/10.1016/j.neuron.2005.01.035
https://doi.org/10.1016/j.neuron.2005.01.035
https://doi.org/10.1212/WNL.0000000000007317
https://doi.org/10.1523/JNEUROSCI.1103-13.2013
https://doi.org/10.1097/WAD.0000000000000193.Functional
https://doi.org/10.1097/WAD.0000000000000193.Functional
https://doi.org/10.1002/cne.903510408
https://doi.org/10.1002/cne.903510408
https://doi.org/10.1016/0166-4328(93)90088-8
https://doi.org/10.1016/0166-4328(93)90088-8
https://doi.org/10.1016/s0079-6123(08)61867-1
https://doi.org/10.1016/j.tics.2005.10.005
https://doi.org/10.1016/j.tics.2005.10.005
https://doi.org/10.1038/nrn2555
https://doi.org/10.1038/nrn2555
https://doi.org/10.3389/fnhum.2015.00589
https://doi.org/10.1177/0963721411430832
https://doi.org/10.1177/0963721411430832
https://doi.org/10.1038/nrn3403


resting-state functional connectivity. Brain Structure and Function,

213(6), 525–533. https://doi.org/10.1007/s00429-009-0208-6
Day, D. V., Schleicher, D. J., Unckless, A. L., & Hiller, N. J. (2002). Self-

monitoring personality at work: A meta-analytic investigation of con-

struct validity. Journal of Applied Psychology, 87(2), 390–401. https://
doi.org/10.1037/0021-9010.87.2.390

Ellis, R. J. (1988). Self-monitoring and leadership emergence in groups. Per-

sonality and Social Psychology Bulletin, 14(4), 681–693.
Evrard, H. C. (2018). Von Economo and fork neurons in the monkey insula,

implications for evolution of cognition. Current Opinion in Behavioral

Sciences, 21, 182–190. https://doi.org/10.1016/j.cobeha.2018.05.006
Franklin, H. D., Russell, L. L., Peakman, G., Greaves, C. V., Bocchetta, M.,

Nicholas, J., … Finger, E. (2021). The revised self-monitoring scale

detects early impairment of social cognition in genetic frontotemporal

dementia within the GENFI cohort. Alzheimer's Research & Therapy,

13(127), 1–12.
Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations:

An fMRI investigation of the resting-state default mode of brain func-

tion hypothesis. Human Brain Mapping, 26(1), 15–29. https://doi.org/
10.1002/hbm.20113

Frässle, S., Harrison, S. J., Heinzle, J., Clementz, B. A., Tamminga, C. A.,

Sweeney, J. A., … Stephan, K. E. (2021). Regression dynamic causal

modeling for resting-state fMRI. Human Brain Mapping, 42(7), 2159–
2180.

Friston, K. J., Kahan, J., Biswal, B., & Razi, A. (2014). A DCM for resting

state fMRI. NeuroImage, 94, 396–407. https://doi.org/10.1016/j.

neuroimage.2013.12.009

Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., Van

Wijk, B. C. M., … Zeidman, P. (2016). Bayesian model reduction and

empirical Bayes for group (DCM) studies. NeuroImage, 128, 413–431.
https://doi.org/10.1016/j.neuroimage.2015.11.015

Grillner, S. (2006). Biological pattern generation: The cellular and computa-

tional logic of networks in motion. Neuron, 52(5), 751–766. https://
doi.org/10.1016/j.neuron.2006.11.008

Guo, C. C., Sturm, V. E., Zhou, J., Gennatas, E. D., Trujillo, A. J., Hua, A. Y.,

… Seeley, W. W. (2016). Dominant hemisphere lateralization of corti-

cal parasympathetic control as revealed by frontotemporal dementia.

Proceedings of the National Academy of Sciences of the United States of

America, 113(17), 2430–2439. https://doi.org/10.1073/pnas.

1509184113

Ham, T., Leff, A., de Boissezon, X., Joffe, A., & Sharp, D. J. (2013). Cogni-

tive control and the salience network: An investigation of error

processing and effective connectivity. Journal of Neuroscience, 33(16),

7091–7098. https://doi.org/10.1523/JNEUROSCI.4692-12.2013

Harrington, D. L., Rubinov, M., Durgerian, S., Mourany, L., Reece, C.,

Koenig, K., … Paulsen, J. S. (2015). Network topology and functional

connectivity disturbances precede the onset of Huntington's disease.

Brain, 138(8), 2332–2346. https://doi.org/10.1093/brain/awv145

Kahan, J., Urner, M., Moran, R., Flandin, G., Marreiros, A., Mancini, L., …
Foltynie, T. (2014). Resting state functional MRI in Parkinson's disease:

The impact of deep brain stimulation on “effective” connectivity.

Brain, 137(4), 1130–1144. https://doi.org/10.1093/brain/awu027

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American

Statistical Association, 90(430), 773–795. https://doi.org/10.1080/

01621459.1995.10476572

Krout, K. E., & Loewy, A. D. (2000). Periaqueductal gray matter projections

to midline and intralaminar thalamic nuclei of the rat. Journal of Com-

parative Neurology, 424(1), 111–141. https://doi.org/10.1002/1096-
9861(20000814)424:1<111::AID-CNE9>3.0.CO;2-3

Lamichhane, B., & Dhamala, M. (2015). The salience network and its func-

tional architecture in a perceptual decision: An effective connectivity

study. Brain Connectivity, 5(6), 362–370. https://doi.org/10.1089/

brain.2014.0282

Lennox, R. D., & Wolfe, R. N. (1984). Revision of the self-monitoring scale.

Journal of Personality and Social Psychology, 46(6), 1349–1364.

Li, G., Liu, Y., Zheng, Y., Li, D., Liang, X., Chen, Y., … Shen, D. (2020). Large-

scale dynamic causal modeling of major depressive disorder based on

resting-state functional magnetic resonance imaging. Human Brain

Mapping, 41(4), 865–881. https://doi.org/10.1002/hbm.24845

Li, L., Li, B., Bai, Y., Liu, W., Wang, H., Leung, H. C., … Tan, Q. (2017).

Abnormal resting state effective connectivity within the default mode

network in major depressive disorder: A spectral dynamic causal

modeling study. Brain and Behavior, 7(7), 1–10. https://doi.org/10.

1002/brb3.732

Linnman, C., Moulton, E. A., Barmettler, G., Becerra, L., & Borsook, D.

(2012). Neuroimaging of the periaqueductal gray: State of the field.

NeuroImage, 60(1), 505–522. https://doi.org/10.1016/j.neuroimage.

2011.11.095

Mantyh, P. W. (1983). Connections of midbrain periaqueductal gray in the

monkey. I. Descending efferent projections. Journal of Neurophysiology,

49(3), 567–581. https://doi.org/10.1152/jn.1983.49.3.567
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and con-

trol: A network model of insula function. Brain Structure and Function,

214(5–6), 655–667. https://doi.org/10.1007/s00429-010-0262-0
Miller, M. L., Omens, R. S., & Delvadia, R. (1991). Dimensions of social

competence: Personality and coping style correlates. Personality and

Individual Differences, 12(9), 955–964. https://doi.org/10.1016/0191-
8869(91)90185-E

Motta, S. C., Carobrez, A. P., & Canteras, N. S. (2017). The periaqueductal

gray and primal emotional processing critical to influence complex

defensive responses, fear learning and reward seeking. Neuroscience

and Biobehavioral Reviews, 76, 39–47. https://doi.org/10.1016/j.

neubiorev.2016.10.012

Narum, S. R. (2006). Beyond Bonferroni: Less conservative analyses for

conservation genetics. Conservation Genetics, 7(5), 783–787. https://
doi.org/10.1007/s10592-005-9056-y

Nicholson, A. A., Friston, K. J., Zeidman, P., Harricharan, S., McKinnon, M. C.,

Densmore, M., … Lanius, R. A. (2017). Dynamic causal modeling in PTSD

and its dissociative subtype: Bottom–up versus top–down processing

within fear and emotion regulation circuitry. Human Brain Mapping,

38(11), 5551–5561. https://doi.org/10.1002/hbm.23748

Nimchinsky, E. A., Gilissen, E., Allman, J. M., Perl, D. P., Erwin, J. M., &

Hof, P. R. (1999). A neuronal morphologic type unique to humans and

great apes. Proceedings of the National Academy of Sciences of the

United States of America, 96(9), 5268–5273. https://doi.org/10.1073/
pnas.96.9.5268

O'Cass, A. (2000). A psychometric evaluation of a revised version of the

Lennox and Wolfe revised self-monitoring scale. Psychology and Mar-

keting, 17(5), 397–419. https://doi.org/10.1002/(SICI)1520-6793

(200005)17:5<397::AID-MAR3>3.0.CO;2-D

Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and

neurocognitive scaffolding. Annual Review of Psychology, 60, 173–196.
https://doi.org/10.1146/annurev.psych.59.103006.093656

Park, H. J., & Friston, K. (2013). Structural and functional brain networks:

From connections to cognition. Science, 342. https://doi.org/10.1126/

science.1238411

Park, H. J., Friston, K. J., Pae, C., Park, B., & Razi, A. (2018). Dynamic effec-

tive connectivity in resting state fMRI. NeuroImage, 180, 594–608.
https://doi.org/10.1016/j.neuroimage.2017.11.033

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E.

(2012). Spurious but systematic correlations in functional connectivity

MRI networks arise from subject motion. NeuroImage, 59(3), 2142–
2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H.,

Neuhaus, J., … Miller, B. L. (2011). Sensitivity of revised diagnostic

criteria for the behavioural variant of frontotemporal dementia. Brain,

134(9), 2456–2477. https://doi.org/10.1093/brain/awr179

Razi, A., Kahan, J., Rees, G., & Friston, K. J. (2015). Construct validation of

a DCM for resting state fMRI. NeuroImage, 106, 1–14. https://doi.org/
10.1016/j.neuroimage.2014.11.027

RIJPMA ET AL. 1707

https://doi.org/10.1007/s00429-009-0208-6
https://doi.org/10.1037/0021-9010.87.2.390
https://doi.org/10.1037/0021-9010.87.2.390
https://doi.org/10.1016/j.cobeha.2018.05.006
https://doi.org/10.1002/hbm.20113
https://doi.org/10.1002/hbm.20113
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/j.neuroimage.2013.12.009
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.neuron.2006.11.008
https://doi.org/10.1016/j.neuron.2006.11.008
https://doi.org/10.1073/pnas.1509184113
https://doi.org/10.1073/pnas.1509184113
https://doi.org/10.1523/JNEUROSCI.4692-12.2013
https://doi.org/10.1093/brain/awv145
https://doi.org/10.1093/brain/awu027
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1002/1096-9861(20000814)424:1%3C111::AID-CNE9%3E3.0.CO;2-3
https://doi.org/10.1002/1096-9861(20000814)424:1%3C111::AID-CNE9%3E3.0.CO;2-3
https://doi.org/10.1089/brain.2014.0282
https://doi.org/10.1089/brain.2014.0282
https://doi.org/10.1002/hbm.24845
https://doi.org/10.1002/brb3.732
https://doi.org/10.1002/brb3.732
https://doi.org/10.1016/j.neuroimage.2011.11.095
https://doi.org/10.1016/j.neuroimage.2011.11.095
https://doi.org/10.1152/jn.1983.49.3.567
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1016/0191-8869(91)90185-E
https://doi.org/10.1016/0191-8869(91)90185-E
https://doi.org/10.1016/j.neubiorev.2016.10.012
https://doi.org/10.1016/j.neubiorev.2016.10.012
https://doi.org/10.1007/s10592-005-9056-y
https://doi.org/10.1007/s10592-005-9056-y
https://doi.org/10.1002/hbm.23748
https://doi.org/10.1073/pnas.96.9.5268
https://doi.org/10.1073/pnas.96.9.5268
https://doi.org/10.1002/(SICI)1520-6793(200005)17:5%3C397::AID-MAR3%3E3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6793(200005)17:5%3C397::AID-MAR3%3E3.0.CO;2-D
https://doi.org/10.1146/annurev.psych.59.103006.093656
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1016/j.neuroimage.2017.11.033
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1093/brain/awr179
https://doi.org/10.1016/j.neuroimage.2014.11.027
https://doi.org/10.1016/j.neuroimage.2014.11.027


Razi, A., Seghier, M. L., Zhou, Y., Mccolgan, P., & Zeidman, P. (2018).

Large-scale DCMs for resting-state fMRI. Network Neuroscience, 1(3),

222–241. https://doi.org/10.1162/NETN

Rijpma, M. G. (2021a). DCM second and third level visualization. Zenodo.

https://doi.org/10.5281/ZENODO.5081142

Rijpma, M. G. (2021b). Dynamic causal modeling PEB scripts. Zenodo.

https://doi.org/10.5281/ZENODO.5081128

Rijpma, M. G. (2021c). Dynamic causal modeling RSMS scripts. Zenodo.

https://doi.org/10.5281/ZENODO.5081135

Rijpma, M. G., Yang, W. F. Z., Toller, G., Battistella, G., Sokolov, A. A.,

Sturm, V. E., … Rankin, K. P. (2021). Data from: Influence of per-

iaqueductal gray on other salience network nodes predicts social sen-

sitivity. Dryad.

Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., Perry, R. J., Schuff, N.,

Weiner, M., … Miller, B. L. (2002). Patterns of brain atrophy in

frontotemporal dementia and semantic dementia. Neurology, 58(2),

198–208. https://doi.org/10.1212/WNL.58.2.198

Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E., & Wager, T. D.

(2014). Representation of aversive prediction errors in the human per-

iaqueductal gray. Nature Neuroscience, 17(11), 1607–1612. https://

doi.org/10.1038/nn.3832

Saper, C. B. (2002). The central autonomic nervous system: Conscious vis-

ceral perception and autonomic pattern generation. Annual Review of

Neuroscience, 25(1), 433–469. https://doi.org/10.1146/annurev.

neuro.25.032502.111311

Saper, C. B., & Lowell, B. B. (2014). The hypothalamus. Current Biology,

24(23), R1111–R1116. https://doi.org/10.1016/j.cub.2014.10.023
Seeley, W. W. (2008). Selective functional, regional, and neuronal vulnerabil-

ity in frontotemporal dementia. Current Opinion in Neurology, 21(6),

701–707. https://doi.org/10.1097/WCO.0b013e3283168e2d.Selective

Seeley, W. W. (2010). Anterior insula degeneration in frontotemporal

dementia. Brain Structure and Function, 214(5), 465–475. https://doi.
org/10.1007/s00429-010-0263-z

Seeley, W. W. (2019). The salience network: A neural system for perceiv-

ing and responding to homeostatic demands. The Journal of Neurosci-

ence: The Official Journal of the Society for Neuroscience, 39(50), 9878–
9882. https://doi.org/10.1523/JNEUROSCI.1138-17.2019

Seeley, W. W., Allman, J. M., Carlin, D. A., Crawford, R. K., Macedo, M. N.,

Greicius, M. D., … Miller, B. L. (2007a). Divergent social functioning in

behavioral variant frontotemporal dementia and Alzheimer disease:

Reciprocal networks and neuronal evolution. Alzheimer Disease and

Associated Disorders, 21(4), 50–57.
Seeley, W. W., Bauer, A. M., Miller, B. L., Gorno-Tempini, M. L.,

Kramer, J. H., Weiner, M., & Rosen, H. J. (2005). The natural history of

temporal variant frontotemporal dementia. Neurology, 264(8), 1384–
1390.

Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M.,

Miller, B. L., & Gorno-Tempini, M. L. (2008). Frontal paralimbic net-

work atrophy in very mild behavioral variant frontotemporal dementia.

Archives of Neurology, 65(2), 249–255. https://doi.org/10.1001/

archneurol.2007.38

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H.,

Kenna, H., … Greicius, M. D. (2007b). Dissociable intrinsic connectivity

networks for salience processing and executive control. The Journal of

Neuroscience, 27(9), 2349–2356. https://doi.org/10.1523/

JNEUROSCI.5587-06.2007

Seeley, W. W., Merkle, F. T., Gaus, S. E., Craig, A. D., Allman, J. M., &

Hof, P. R. (2012a). Distinctive neurons of the anterior cingulate and

frontoinsular cortex: A historical perspective. Cerebral Cortex, 22(2),

245–247. https://doi.org/10.1093/cercor/bhr005
Seeley, W. W., Zhou, J., & Kim, E.-J. (2012b). Frontotemporal dementia:

What can the behavioral variant teach us about human brain organiza-

tion? The Neuroscientist, 18(4), 373–385. https://doi.org/10.1177/

1073858411410354

Sevel, L. S., Craggs, J. G., Price, D. D., Staud, R., & Robinson, M. E. (2015).

Placebo analgesia enhances descending pain-related effective connec-

tivity: A dynamic causal modeling study of endogenous pain modula-

tion. Journal of Pain, 16(8), 760–768. https://doi.org/10.1016/j.jpain.
2015.05.001

Sharaev, M. G., Zavyalova, V. V., Ushakov, V. L., Kartashov, S. I., &

Velichkovsky, B. M. (2016). Effective connectivity within the default

mode network: Dynamic causal modeling of resting-state fMRI data.

Frontiers in Human Neuroscience, 10(14), 1–9. https://doi.org/10.

3389/fnhum.2016.00014

Shdo, S. M., Ranasinghe, K. G., Gola, K. A., Mielke, C. J., Sukhanov, P. V.,

Miller, B. L., & Rankin, K. P. (2016). Deconstructing empathy: Neuroan-

atomical dissociations between affect sharing and prosocial motivation

using a patient lesion model. Neuropsychologia, 116, 1–10. https://doi.
org/10.1016/j.neuropsychologia.2017.02.010

Sokolov, A. A., Ryvlin, P., Zeidman, P., Pavlova, M. A., Friston, K. J., &

Erb, M. (2018). Structural and effective brain connectivity underlying

biological motion detection. Proceedings of the National Academy of Sci-

ences, 115(51), E12034–E12042. https://doi.org/10.1073/pnas.

1812859115

Sokolov, A. A., Zeidman, P., Erb, M., Pollick, F. E., Fallgatter, A. J., Ryvlin, P.,

… Pavlova, M. A. (2020). Brain circuits signaling the absence of emo-

tion in body language. Proceedings of the National Academy of Sciences

of the United States of America, 117(34), 20868–20873. https://doi.
org/10.1073/pnas.2007141117

Sokolov, A. A., Zeidman, P., Erb, M., Ryvlin, P., Pavlova, M. A., & Friston, K. J.

(2019). Linking structural and effective brain connectivity: Structurally

informed parametric empirical Bayes (si-PEB). Brain Structure and Func-

tion, 224, 205–217. https://doi.org/10.1007/s00429-018-1760-8
Stevens, F. L., Hurley, R. A., & Taber, K. H. (2011). Anterior cingulate cor-

tex: Unique role in cognition and emotion. Journal of Neuropsychiatry

and Clinical Neurosciences, 23(2), 121–125. https://doi.org/10.1176/
jnp.23.2.jnp121

Sturm, V. E., Brown, J. A., Hua, A. Y., Lwi, S. J., Zhou, J., Kurth, F., …
Seeley, W. W. (2018). Network architecture underlying basal auto-

nomic outflow: Evidence from frontotemporal dementia. Journal of

Neuroscience, 38(42), 8943–8955. https://doi.org/10.1523/

JNEUROSCI.0347-18.2018

Toller, G., Brown, J., Sollberger, M., Shdo, S. M., Bouvet, L., Sukhanov, P.,

… Rankin, K. P. (2018). Individual differences in socioemotional sensi-

tivity are an index of salience network function. Cortex, 103, 211–223.
https://doi.org/10.1016/j.cortex.2018.02.012

Toller, G., Mandelli, M. L., Cobigo, Y., Rosen, H. J., Kramer, J. H.,

Miller, B. L., … Rankin, K. P. (2021). Right uncinate fasciculus supports

socioemotional sensitivity in health and neurodegenerative disease.

Unpublished manuscript.

Toller, G., Ranasinghe, K., Cobigo, Y., Staffaroni, A., Appleby, B.,

Brushaber, D., … Rankin, K. (2020). Revised self-monitoring scale: A

potential endpoint for frontotemporal dementia clinical trials. Neurol-

ogy, 94(22), e2384–e2395. https://doi.org/10.1212/WNL.

0000000000009451

Uddin, L. Q. (2015). Salience processing and insular cortical function and

dysfunction. Nature Reviews Neuroscience, 16(1), 55–61. https://doi.
org/10.1038/nrn3857

van de Steen, F., Almgren, H., Razi, A., Friston, K., & Marinazzo, D. (2019).

Dynamic causal modelling of fluctuating connectivity in resting-state

EEG. NeuroImage, 189, 476–484. https://doi.org/10.1016/j.

neuroimage.2019.01.055

Vianna, D. M. L., & Brand~ao, M. L. (2003). Anatomical connections of the

periaqueductal gray: Specific neural substrates for different kinds of

fear. Brazilian Journal of Medical and Biological Research, 36(5), 557–
566. https://doi.org/10.1590/S0100-879X2003000500002

Wei, L., Wu, G. R., Bi, M., & Baeken, C. (2020). Effective connectivity pre-

dicts cognitive empathy in cocaine addiction: A spectral dynamic

1708 RIJPMA ET AL.

https://doi.org/10.1162/NETN
https://doi.org/10.5281/ZENODO.5081142
https://doi.org/10.5281/ZENODO.5081128
https://doi.org/10.5281/ZENODO.5081135
https://doi.org/10.1212/WNL.58.2.198
https://doi.org/10.1038/nn.3832
https://doi.org/10.1038/nn.3832
https://doi.org/10.1146/annurev.neuro.25.032502.111311
https://doi.org/10.1146/annurev.neuro.25.032502.111311
https://doi.org/10.1016/j.cub.2014.10.023
https://doi.org/10.1097/WCO.0b013e3283168e2d.Selective
https://doi.org/10.1007/s00429-010-0263-z
https://doi.org/10.1007/s00429-010-0263-z
https://doi.org/10.1523/JNEUROSCI.1138-17.2019
https://doi.org/10.1001/archneurol.2007.38
https://doi.org/10.1001/archneurol.2007.38
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1093/cercor/bhr005
https://doi.org/10.1177/1073858411410354
https://doi.org/10.1177/1073858411410354
https://doi.org/10.1016/j.jpain.2015.05.001
https://doi.org/10.1016/j.jpain.2015.05.001
https://doi.org/10.3389/fnhum.2016.00014
https://doi.org/10.3389/fnhum.2016.00014
https://doi.org/10.1016/j.neuropsychologia.2017.02.010
https://doi.org/10.1016/j.neuropsychologia.2017.02.010
https://doi.org/10.1073/pnas.1812859115
https://doi.org/10.1073/pnas.1812859115
https://doi.org/10.1073/pnas.2007141117
https://doi.org/10.1073/pnas.2007141117
https://doi.org/10.1007/s00429-018-1760-8
https://doi.org/10.1176/jnp.23.2.jnp121
https://doi.org/10.1176/jnp.23.2.jnp121
https://doi.org/10.1523/JNEUROSCI.0347-18.2018
https://doi.org/10.1523/JNEUROSCI.0347-18.2018
https://doi.org/10.1016/j.cortex.2018.02.012
https://doi.org/10.1212/WNL.0000000000009451
https://doi.org/10.1212/WNL.0000000000009451
https://doi.org/10.1038/nrn3857
https://doi.org/10.1038/nrn3857
https://doi.org/10.1016/j.neuroimage.2019.01.055
https://doi.org/10.1016/j.neuroimage.2019.01.055
https://doi.org/10.1590/S0100-879X2003000500002


causal modeling study. Brain Imaging and Behavior, 15(3), 1553–1561.
https://doi.org/10.1007/s11682-020-00354-y

Whitwell, J. L., Avula, R., & Vemuri, P. (2010). Gray and white matter water

diffusion in the syndromic variants of frontotemporal dementia. Neu-

rology, 74(16), 1279–1287.
Wolfe, R. N., Lennox, R. D., & Cutler, B. L. (1986). Getting along and get-

ting ahead. Empirical support for a theory of protective and acquisitive

self-presentation. Journal of Personality and Social Psychology, 50(2),

356–361. https://doi.org/10.1037/0022-3514.50.2.356
Zeidman, P., Jafarian, A., Corbin, N., Seghier, M. L., Razi, A., Price, C. J., &

Friston, K. J. (2019a). A guide to group effective connectivity analysis,

part 1: First level analysis with DCM for fMRI. NeuroImage, 200, 174–
190. https://doi.org/10.1016/j.neuroimage.2019.06.031

Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Cathy, J., …
Wing, W. (2019b). A tutorial on group effective connectivity analysis,

part 2: Second level analysis with PEB 1 Introduction. NeuroImage,

200, 12–25.
Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y.,

Rabinovici, G. D., … Seeley, W. W. (2010). Divergent network

connectivity changes in behavioural variant frontotemporal dementia

and Alzheimer's disease. Brain, 133(5), 1352–1367. https://doi.org/10.
1093/brain/awq075

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Rijpma, M. G., Yang, W. F. Z., Toller,

G., Battistella, G., Sokolov, A. A., Sturm, V. E., Seeley, W. W.,

Kramer, J. H., Miller, B. L., & Rankin, K. P. (2022). Influence of

periaqueductal gray on other salience network nodes predicts

social sensitivity. Human Brain Mapping, 43(5), 1694–1709.

https://doi.org/10.1002/hbm.25751

RIJPMA ET AL. 1709

https://doi.org/10.1007/s11682-020-00354-y
https://doi.org/10.1037/0022-3514.50.2.356
https://doi.org/10.1016/j.neuroimage.2019.06.031
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1002/hbm.25751

	Influence of periaqueductal gray on other salience network nodes predicts social sensitivity
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  Revised self-monitoring scale
	2.3  Image acquisition and preprocessing
	2.4  Spectral DCM with PEB
	2.4.1  Time series extraction
	2.4.2  ROI identification
	2.4.3  First level model specification and inversion
	2.4.4  Second level PEB analysis and Bayesian model averaging
	2.4.5  Third level PEB analysis

	2.5  Effective connectivity of the PAG in relation to the RSMS EX score
	2.5.1  PAG summary and single effective connection estimates predicting RSMS EX score
	2.5.2  Cluster analysis with PAG summary estimates


	3  RESULTS
	3.1  Demographics and clinical characteristics
	3.2  Group average effective connectivity strength of each SN node connection
	3.2.1  Effective connections in the ONC group
	3.2.2  Effective connections in the bvFTD group
	3.2.3  Differences in effective connectivity for bvFTD patients compared with ONCs

	3.3  Role of effective PAG connections in socioemotional sensitivity
	3.3.1  PAG summary estimates in relation to the RSMS EX score
	3.3.2  Single PAG effective connections in relation to the RSMS EX score
	3.3.3  All node pair effective SN connections as a predictor of RSMS EX score
	3.3.4  Cluster groups based on PAG output to cortical and subcortical SN nodes


	4  DISCUSSION
	4.1  Stronger PAG output to other SN nodes drives greater socioemotional sensitivity
	4.2  bvFTD patients show altered PAG effective connectivity patterns predicting sensitivity
	4.3  Effective SN connections are different in bvFTD patients compared with ONCs
	4.4  Limitations and conclusions

	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTION
	  ETHICS STATEMENT
	  DATA AVAILABILITY STATEMENT

	REFERENCES


