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Abstract

Motivation: To increase detection power, researchers use gene level analysis methods to aggre-

gate weak marker signals. Due to gene expression controlling biological processes, researchers

proposed aggregating signals for expression Quantitative Trait Loci (eQTL). Most gene-level eQTL

methods make statistical inferences based on (i) summary statistics from genome-wide association

studies (GWAS) and (ii) linkage disequilibrium patterns from a relevant reference panel. While

most such tools assume homogeneous cohorts, our Gene-level Joint Analysis of functional SNPs

in Cosmopolitan Cohorts (JEPEGMIX) method accommodates cosmopolitan cohorts by using het-

erogeneous panels. However, JEPGMIX relies on brain eQTLs from older gene expression studies

and does not adjust for background enrichment in GWAS signals.

Results: We propose JEPEGMIX2, an extension of JEPEGMIX. When compared to JPEGMIX, it

uses (i) cis-eQTL SNPs from the latest expression studies and (ii) brains specific (sub)tissues and

tissues other than brain. JEPEGMIX2 also (i) avoids accumulating averagely enriched polygenic in-

formation by adjusting for background enrichment and (ii) to avoid an increase in false positive

rates for studies with numerous highly enriched (above the background) genes, it outputs gene

q-values based on Holm adjustment of P-values.

Availability and implementation: https://github.com/Chatzinakos/JEPEGMIX2.

Contact: chris.chatzinakos@vcuhealth.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression is believed to have influenced human evolution and

play a key role in diseases (Emilsson et al., 2008). Thus, it is critical

for understanding diseases and developing treatments. The import-

ance of gene expression was further underlined by the enrichment of

association signals in SNPs tagging gene expression (Nica and

Dermitzakis, 2008; Nicolae et al., 2010), which are denoted as ex-

pression quantitative trait loci (eQTL).

Currently, the identification of complex disease susceptibility

loci is performed via genome-wide association studies (GWAS). It

involves scanning single nucleotide polymorphisms (SNPs) across

the entire genome for genetic variants associated with a trait.

Univariate analysis of GWAS is still the de facto tool for identifying

trait associated SNPs (Wellcome Trust Case Control, 2007).

However, when analyzing more complex GWAS SNPs with weak or

moderate effect sizes, the significant findings account only for a

small fraction of the total trait variation (Manolio et al., 2009). Due

to their small effect sizes, these SNPs are rarely detected in GWAS

(Yang et al., 2010). To increase the power of detection, researchers

proposed analyzing genetic variants multivariately (Wang et al.,

2007).

One type of multivariate analyses is the transcriptome-wide asso-

ciation study (TWAS) which identifies significant expression-trait

associations. Such methods, e.g. joint effect on phenotype of eQTL/
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functional SNPs associated with a gene (JEPEG) (Lee et al., 2015),

PredictXcan (Gamazon et al., 2015), JEPEGMIX (Lee et al., 2016)

and TWAS (Gusev et al., 2016) use eQTL to predict gene expression

and/or infer which genes are associated with traits. However, unlike

competing non-eQTL paradigms, e.g. LDscore/LDpred (Bulik-

Sullivan et al., 2015), current TWAS methods (i) lack competitive

adjustment for background enrichment (‘average signal’) and (ii) do

not output q-values that control false positive rates when there is a

substantial number of genes enriched (above background) in signals.

To address these shortcomings, we propose JEPEGMIX2, an exten-

sion of JEPEGMIX, which, in addition to the existing advantage of

imputing eQTLs statistics and inferring gene-trait association in cosmo-

politan cohorts, it also (i) adjusts for background enrichment, (ii) offers

the option to upweight rarer eQTLs and (iii) to avoid false positive rate

increase for high signal enrichment, it outputs Holm q-values.

2 Materials and methods

To avoid a mere accumulation of just averagely enriched polygenic

information, we competitively adjust v2 statistics for background

enrichment. This is achieved by adjusting the statistic for average

non-centrality. Such ‘centralized’ JEPEGMIX statistic we denote as

competitive (C) and the original statistic as the non-competitive (NC).

Let Z be the vector of Z-scores for measured SNPs in the genome

scans. Due to polygenicity, the expected genome scan v2
1 ¼ Z2 statis-

tics, each with 1 degree of freedom (df), has a non-zero background

noncentrality parameter k2, i.e. EðZ2Þ ¼ 1þ k2. Thus, by the

method of moments, we can estimate bk2 ¼ �Z2 � 1, where �Z2 is

computed using all measured SNPs in the genome scan, However,

given that k2 � 0, a better estimator is, thus, bk2 ¼ maxð �Z2 � 1; 0Þ.
To develop a competitive test, before computing gene-level statistics,

Z-scores must be shrunk towards zero by adjusting for the average

background enrichment. This can be achieved via a 3 step process:

1. Recompute, under ‘average’ noncentrality, the P-value associ-

ated with v2
1 statistics: P0 ¼ 1� FðZ2j bk2 ), where Fð:j bk2 ), is the

cumulative distribution function (cdf) of the non-central v2
1 dis-

tribution with 1 df and noncentrality parameter bk2 .

2. Transform P0 into its quantile vector from a central v2
1 distribu-

tion with 1 df, i.e. v2 ¼ F�1ð1� P0j k2 ¼ 0),

3. Transform v2 to a ‘central’ Z-score: Z
0 ¼ sign Zð Þ �

ffiffiffiffiffi
v2

p
.

By Delta method (a first order Taylor approximation), Z
0
as a linear

transformation (deflation) of Z has the same correlation structure.

Thus, Z
0

can be used to build the competitive gene statistics

(Supplementary Text S1), which has the same variance as their non-

competitive versions.

To facilitate user-specific input along with future extensions, the

new annotation file now includes a R-like formula for the expression

of each gene as a function of its eQTL genotypes. The annotation

file includes cis-eQTL for all tissues available in PREDICTDB

(http://predictdb.hakyimlab.org/). To avoid making inference about

genes poorly predicted by SNPs, for the 44 available tissues we

retain only genes for which the expression is predicted with q-val-

ue < 0:05 from its eQTLs. Additionally, given the increased delete-

riousness of rarer mutations, we offer the possibility to upweight

coefficient of rarer variants (Supplementary Text S1 for statistic

computation) using a Madsen and Browning type approach

(Madsen and Browning, 2009). For linkage disequilibrium (LD) esti-

mates in cosmopolitan cohorts (needed for both imputation and

statistical inference), we allow user to input the study cohort propor-

tions of ethnicities from the reference panel. LD patterns of the

study cohort are estimated as a weighted mixture (with the above

weights) of the LD matrices for all ethnic groups in a reference panel

(Supplementary Text S2). LD patterns are subsequently used to

(i) accurately impute summary statistics of unmeasured eQTLs

(Supplementary Text S3) and (ii) compute the variance of the

SNP linear combinations used for gene level tests in each tissue

(Supplementary Text S2). The current version uses the 1000 genome

(1KG) Phase I release version 3 as reference panel (Durbin et al.,

2010). It consists of 379 Europeans, 286 Asians, 246 Africans and

181 Native Americans.

3 Simulations

To estimate the false positive rates of JEPEGMIX2, for five different

cosmopolitan studies scenarios (Supplementary Text S4), we simu-

lated (under H0) 100 cosmopolitan cohorts of 10, 000 subjects for

Ilumina 1 M autosomal SNPs using 1KG haplotype patterns

(Supplementary Text S4, Supplementary Table 1). The subject

phenotypes were simulated independent of genotypes as a random

Gaussian sample. SNP phenotype-genotype association summary

statistics, were computed as a correlation test. We obtained

JEPEGMIX2 statistics for: (i) competitive (C), non-competitive

(NC) and (ii) tests with rare (Madsen and Browning like) (R) and

non-rare (NR) eQTL weights. To test the ability of methods to

maintain false positive rates under background enrichment, we pro-

vide an enriched scenario. Under this scenario, we quantile trans-

form the simulated ‘central’ Z-score (CZ) to a ‘non-central’ Z-score

(NCZ) scenario by following the three steps from the previous sec-

tion with the first step having noncentrality k2 ¼ 0 and the second

one k2 ¼ 0:5 [extrapolation of PGC3 Schizophrenia nocentrality

from PGC2 k2{\booklink="DPDFMK55"} (Ripke et al., 2013)].

We also applied JEPEGMIX2 to 16 real summary datasets

(Supplementary Text S5, Supplementary Table S2). To limit the in-

crease in Type I error rates of JEPEGMIX2, we deem as significantly

associated only genes with Holm-adjusted P-value (q-value)< 0:05:

Due to C4 explaining most of Major Histocompatibility (MHC)

(chr6: 25–33 Mb) (McCarthy et al., 2016), signals for schizophrenia

(SCZ), for this trait, we omit non-C4 genes in this region.

4 Results

JEPEGMIX2 with competitive (C) statistics, controls the false positive

rates at or below nominal thresholds for both central (CZ) and non-

central (NCZ) scenarios while the non-competitive (NC) has similar

behavior only for the central case (when the GWAS statistics are

not enriched) (Supplementary Text S5, Supplementary Figs S1–S5).

Under the enriched scenario (NCZ) the non-competitive version of

the test has much increased false positive rates.

Table 1. Signals for real datasets

Traits No unique genes

SCZ 68

ALZ 34

AMD 17

BIP 11

HDL 79

LDL 78

T2D 5

TG 48

Smoking 5

JEPEGMIX2: improved gene-level joint analysis of eQTLs in cosmopolitan cohorts 287

Deleted Text: (&hx201C;
Deleted Text: &hx201D;) 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: p
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
http://predictdb.hakyimlab.org/
Deleted Text: ,
Deleted Text: 3 SIMULATIONS
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: (
Deleted Text: )
Deleted Text: p
Deleted Text:  (Table I). 
Deleted Text: -
Deleted Text: 4 RESULTS


Using the Holm P-value adjustment and both rare (R) and non-

rare (NR) e QTL weights, for the real datasets significant gene sig-

nals were found in 9 traits, for which we present heatmaps

(Supplementary Text S5, Supplementary Figs S6–S23). The number

of genes with q-value < 0:05 is presented in Table 1 (for the abbre-

viations see Supplementary Table S2). Each analysis ran in less than

3 h on a cluster node with 4� Intel Xeon 6 core 2.67 GHz.

5 Conclusions

We propose JEPEGMIX2, an updated software/method for testing the

association between (cis-eQTL mediated) gene expression and trait.

Unlike existing methods, even for highly enriched GWAS, JEPEGMIX2

competitive version fully controls the false positive rates at or below

nominal levels. To the applicability of JEPEGMIX to cosmopolitan co-

horts, we add a competitive version and extend the number of included

(i) eQTLs and (ii) tissues. Unlike existing methods, it also accommo-

dates up weighting of the rare variants and avoids the increased rate of

false positives incurred by FDR adjustment (under enrichment) by using

a Holm adjustment. While gene expression in different tissues are often

correlated and incomplete due to the rather small sample sizes of exist-

ing gene expression experiments, the capacity of discriminating causal

tissues will be enhanced by further increases in sample size of such stud-

ies. Being written in Cþþ, JEPEGMIX2 is very fast. Future versions of

the software will use larger reference panels.

Conflict of Interest: none declared.

References

Bulik-Sullivan,B.K. et al. (2015) LD Score regression distinguishes confound-

ing from polygenicity in genome-wide association studies. Nat. Genet., 47,

291–295.

Durbin,R.M. et al. (2010) A map of human genome variation from

population-scale sequencing. Nature, 467, 1061–1073.

Emilsson,V. et al. (2008) Genetics of gene expression and its effect on disease.

Nature, 452, 423–428.

Gamazon,E.R. et al. (2015) A gene-based association method for map-

ping traits using reference transcriptome data. Nat Genet., 47,

1091–1098.

Gusev,A. et al. (2016) Atlas of prostate cancer heritability in European and

African-American men pinpoints tissue-specific regulation. Nat. Commun.,

7, 10979.

Lee,D. et al. (2015) JEPEG: a summary statistics based tool for gene-level joint

testing of functional variants. Bioinformatics, 31, 1176–1182.

Lee,D. et al. (2016) JEPEGMIX: gene-level joint analysis of functional SNPs in

cosmopolitan cohorts. Bioinformatics, 32, 295–297.

Madsen,B.E. and Browning,S.R. (2009) A groupwise association test for

rare mutations using a weighted sum statistic. PLoS Genet., 5,

e1000384.

Manolio,T.A. et al. (2009) Finding the missing heritability of complex dis-

eases. Nature, 461, 747–753.

McCarthy,S. et al. (2016) A reference panel of 64,976 haplotypes for genotype

imputation. Nat. Genet., 48, 1279–1283.

Nica,A.C. and Dermitzakis,E.T. (2008) Using gene expression to investi-

gate the genetic basis of complex disorders. Hum. Mol. Genet., 17,

R129–R134.

Nicolae,D.L. et al. (2010) Trait-associated SNPs are more likely to be

eQTLs: annotation to enhance discovery from GWAS. PLoS Genet., 6,

e1000888.

Ripke,S. et al. (2013) Genome-wide association analysis identifies 13 new risk

loci for schizophrenia. Nat. Genet., 45, 1150–1159.

Wang,K. et al. (2007) Pathway-based approaches for analysis of genomewide

association studies. Am. J. Hum. Genet., 81, 1278–1283.

Wellcome Trust Case Control (2007) Genome-wide association study of

14,000 cases of seven common diseases and 3,000 shared controls. Nature,

447, 661–678.

Yang,J. et al. (2010) Common SNPs explain a large proportion of the herit-

ability for human height. Nat. Genet., 42, 565–569.

288 C.Chatzinakos et al.

Deleted Text: p
Deleted Text: are 
Deleted Text: ours
Deleted Text: x
Deleted Text: 5 CONCLUSIONS

