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Abstract

Municipal landfill leachates are a source of toxic heavy metals that have been shown to

have a detrimental effect on human health and the environment. This study aimed to assess

heavy metal contamination in leachates, surface water, and sediments from non-sanitary

landfills in Uyo, Nigeria, and to identify potential health and environmental effects of leachate

contamination. Over the wet and dry seasons, surface water and sediment samples were

collected from an impacted freshwater ecosystem, and leachates samples from six monitor-

ing wells. Elemental analyses of samples were conducted following standard analytical pro-

cedures and methods. The results indicated that leachate, surface water, and sediment

samples all had elevated levels of heavy metals, implying a significant impact from landfills.

Pollution indices such as the potential ecological risk index (PERI), pollution load index

(PLI), degree of contamination (Cd), modified degree of contamination (mCd), enrichment

factor (EF), geoaccumulation index (Igeo), and Nemerov pollution index (NPI) were used to

assess the ecological impacts of landfill leachates. The following values were derived: PERI

(29.09), PLI (1.96E-07), Cd (0.13), mCd (0.16), EF (0.97–1.79E-03), Igeo (0), and NPI

(0.74). Pollution indicators suggested that the sediment samples were low to moderately

polluted by chemical contaminants from the non-sanitary landfills, and may pose negative

risks due to bioaccumulation. Human health risks were also assessed using standard risk

models. For adults, children, and kids, the incremental lifetime cancer rate (ILCR) values

were within the acceptable range of 1.00E-06–1.00E-04. The lifetime carcinogenicity risks

associated with oral ingestion exposure to heavy metals were 9.09E-05, 1.21E-05, and 3.60

E-05 for kids, adults, and children, respectively. The mean cumulative risk values for dermal

exposures were 3.24E-07, 1.89E-06, and 1.17E-05 for adults, children, and kids, respec-

tively. These findings emphasized the risks of human and biota exposure to contaminants

from landfills.
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1. Introduction

Anthropogenic activities and processes tend to generate tons of waste that may consist of bio-

degradable and non-degradable to very hazardous wastes. However, the manner in which such

wastes are collected, processed, stored, managed and disposed of, represents sources of poten-

tial environmental and human health risks. In metropolitan centers, particularly in rapidly

expanding municipalities in developing countries, the dilemmas of solid waste management

are of significant concern [1]. In most developing economies, it is a routine trend to dispose of

household waste in poorly maintained and unregulated dumpsites, drainages, waterways,

street piles, water channels, and concrete sidewalks [2]. However, in most developed nations,

large-scale disposal of municipal solid wastes (MSW) may not pose a big problem due to the

availability of waste management facilities. Given the likelihood that waste management facili-

ties are sparse in developing countries, including Nigeria, the collection, processing and dis-

posal of solid waste are mainly done through direct labour, intensive operations, and many

opportunities for direct contact and exposure to hazardous substances are possible.

Non-sanitary landfilling, particularly open tipping dumpsites, is the most common method of

waste management in developing countries such as Nigeria. There is widespread use of non-engi-

neered and uncontrolled landfills without adequate bottom liners, leachate collecting, or treatment

systems for proper management of municipal solid wastes. This has led to the generation of landfill

leachates which have significant loads of organic and inorganic contaminants and are particularly

hazardous to the environment [3,4]. Leachate is any substance that has seeped from decomposed

wastes, dissolved or suspended materials. Landfill leachates are produced at dumpsites when the

water mixes mostly with waste dumps [5,6]. The composition of leachates is variable but mostly

comprises xenobiotic organic materials (e.g., halogenated organic compounds, PAHs, pharmaceu-

ticals, plasticizers, etc.), highly infective microorganisms, emerging organic contaminants, heavy

metal and other inorganic compounds [7–10]. In certain dumpsites, the leachate is comprised of

fluid which has penetrated the open landfill from diverse external sources, including soil erosion,

groundwater, precipitation, and wastewater generated from the organic waste decomposition

[11,12]. Biodegradation of solid wastes produces landfill leachate, which can contaminate both sur-

face water and underground water [3,13–15]. Potentially hazardous substances such as toxins,

chemical pollutants, etiological products, endocrine disruptors, and emerging chemical contami-

nants associated with municipal wastewater, sewage and solid wastes may be spread in the envi-

ronment from landfill leachates. Highly toxic plants, pests, bugs, rodents, microorganisms and

endogenous pathogens are biohazards that may be found at open dumpsites [1,16].

Potentially toxic heavy metals are ubiquitous in the environment and have been widely

reported in sediments, surface water and aquatic organisms [17–20]. However, heavy metals

are frequently detected in municipal landfill leachates from hazardous waste landfills as well as

solid waste dumpsites [21–24]. Toxic chemical compounds such as heavy metals and persistent

organic compounds are released into the atmosphere and the environment when municipal

solid wastes are burned or dumped in the open [2,25–28]. Leachates from municipal landfills

have been reported to release toxic metals into the environment, posing serious threats to

nearby lands and groundwater, and then to surface water [2]. Even though the impact of gen-

erated leachate is reduced to a certain degree from the source of its generation, it could still

bear deleterious effects to the environment and the public health through accumulated toxi-

cants to the underlying surface and groundwater contamination. Additionally, the presence of

organic carbon waste could influence the taste and smell of underground water, while nitroge-

nous compounds could trigger eutrophication in surface waters [22,29].

These environmental endpoints are apparent in non-sanitary landfills that lack suitable lin-

ing materials, enabling raw toxic leachates to seep into the subsoil, underground water and

PLOS ONE Heavy metals in landfill leachates and impacted freshwater ecosystem

PLOS ONE | https://doi.org/10.1371/journal.pone.0263279 February 3, 2022 2 / 18

https://doi.org/10.1371/journal.pone.0263279


contaminate them [23,30,31]. Once in the environment, heavy metals are bioaccumulative and

could pose considerable risk to public health, e.g., acute toxicity, carcinogenicity and mutage-

nicity, detrimental effects to the growth of terrestrial and aquatic organisms [9,32–37]. Poten-

tially toxic metals, such as arsenic, can lead to adverse health disorders, including heart

disease, cancer as well as intestinal abnormalities, peripheral arterial disease, diabetes and high

blood pressure [38–40].

Waste disposal and treatment are particularly acute in developing countries, owing to a lack

of technological interventions and infrastructure. In Nigeria, the waste management system is

rudimentary, with virtually no landfills equipped with good bottom liners. Many studies in

Africa and the Middle East have documented the occurrence, ecotoxicological, and health risk

assessment of heavy metals in soils, sediments, leachate wells, and surface waters impacted by

non-sanitary municipal solid wastes landfills [2,25,41–45]. Thus, non-sanitary landfills could

become a repository and point source of multiple types of chemical compounds, which could

contaminate soil and groundwater through seepage of toxic leachates. Therefore, identifying,

determining, and assessing the ecotoxicological profile of heavy metals around soils, surface-

and groundwaters impacted by landfill leachates, and associated health risks posed by munici-

pal dumpsites becomes significantly critical.

The primary objectives of this study were (i) to determine the concentrations of potentially

toxic metals in landfill leachates, sediments, and surface water samples collected from an eco-

system that receives waste directly from municipal waste dumpsites, (ii) to assess the contami-

nation levels of heavy metals using different pollution indices, (iii) to assess the

ecotoxicological and human health risks associated with toxic metals in leachates and the

receiving freshwater ecosystems using risk assessment models.

2. Materials and method

2.1 Samples collection

Leachates from six leachate wells located around MSW dumpsites were collected using a

hand-held scoop. Each sample was transferred aseptically into clean sterilized containers

(10-litre capacity), filtered to remove debris, marked, and stored at 4˚C prior to analysis. For

the stated purpose of this study, sediment and surface water samples were also collected to rep-

resent the identified impacted freshwater ecosystems using a Shipek grab sampler and sterile

1-litre plastic bottles, respectively. Each sampling location was labeled using Global Position-

ing System (GPS) Gramin e-Trex 10. Prior to transportation to the laboratory, the sediment

samples were stored in glass containers and kept in coolers packed with ice blocks. The

required standard quality control and quality assurance procedures were strictly followed dur-

ing sample collection, preservation, and storage prior to extraction and analysis. Samples were

collected during the dry season, and the elemental analysis was completed within 48 hours of

the sample being collected.

2.2 Elemental analysis in leachates, water and sediment samples

Before the analysis, the sediment samples were oven-dried at 80˚C for 48 hours in petri dishes

and then carefully ground with a roller pin to disaggregate each sediment subsamples. The

powdered samples were then passed through a 63 μm sieve. Each sediment subsample was

digested using the wet digestion method as previously described [2,46,47], using a cocktail of

HCl (6.0 mL), HNO3 (0.3 mL), and 20 mL of 5.0 M (1 M = 1 mol dm-3) HNO3 solutions. Total

metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Ni, and Zn) in the digested solutions were mea-

sured using the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Experi-

mental blanks were prepared and used to validate the sample preparation procedure. The
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calibration standards were prepared using serial dilutions of commercially available heavy metal

stock solutions (1000 μg/mL BDH Grade). During the investigation, analytical grade chemicals

from Sigma-Aldrich were used for extraction. Prewashing with distilled water and rinsing with

1% HNO3 (v/v) were performed on all glassware used in this study. Triplicate analyses were per-

formed for all extracted samples to determine the accuracy/reproducibility of the metal diges-

tion procedure, and the concentration of heavy metals in leachates, sediments and surface water

samples were determined on a dry weight basis mg kg-1 and mgL-1. The detection limits for As,

Cd, Cr, Cu, Fe, Pb, Ni, and Zn were 0.01, 0.05, 0.1, 0.01, 0.01 and 0.01 mgkg-1, respectively. The

analytical recovery rates from spiked surrogates ranged between 93–97%.

2.3 Evaluation of toxic metal contamination using pollution indices

The assessment of the ecotoxicological contamination associated with heavy metals in landfill

leachates, sediments and surface waters, potentially originating from the municipal solid waste

dumpsites in the study area employed existing pollution risk indices including contamination

factor [48], degree of contamination [17,18,48–51], Tomlinson’s pollution load index [52],

geoaccumulation index [53], modified degree of contamination [54,55], enrichment factor

[54], Nemerow pollution index [56], and potential ecological risk index [48,57–59]. The poten-

tial health risks to humans associated with daily exposure via dermal contact and oral ingestion

routes were evaluated using the US Environmental Protection Agency’s model for risks assess-

ment [60,61]. However, the target hazard quotient (THQ) was used to evaluate the noncancer

risks posed by possible exposure to potentially harmful heavy metals via direct oral ingestion

of leachates, sediments, and water by [60,62]. The model equations and specific gradations of

the degree of contamination and associated ecotoxicological and human risks have been

reported [2,58,63].

The contamination factor (CF) evaluates the contamination impact of a single metal in sed-

iments. The index CF is a pollution measure defined as the ratio of the concentration of an

individual heavy metal to its background concentration [48]. The CF is usually expressed as:

CF ¼
Cmetal

Cbackground

where Cmetal is the metal concentration in the sediment and Cbackground represents the back-

ground concentration of the metal. A computed contamination factor higher than 6 indicates

high sediment contamination, and a value between 3–6 expresses considerable sediment con-

tamination, while CF values between 1–3, <1 indicate moderate and low sediment contamina-

tions for the assessed element, respectively.

Tomlinson’s pollution load index (PLI) is an integrated index commonly used to assess the

ecosystem’s quality in relation to the amount of anthropogenic heavy metal concentrations in

sediments [52]. In general, the PLI is a standardized pollution indicator of a given sediment

sample’s heavy metal ecotoxicity status, reflecting the concentration of an individual heavy

metal will potentially exceed the average natural background concentration. The PLI, in gen-

eral, can be used to analyze and assess the combined heavy metal contamination status of sedi-

ment samples collected. The PLI is mathematically expressed as the nth root of the product of

the nCF:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CF1 � CF2 � CF3 � CF4 � . . .� CFn

n
p

where CF is the contamination factor and n is the number of heavy metals analyzed. The back-

ground concentration used in this study is the pre-anthropogenic concentration of heavy met-

als in shale sediment [64].
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The geoaccumulation index (Igeo) is commonly applied for the assessment of sediment

contamination by heavy metals [17,18,65–67]. The Igeo for respective individual heavy metal

was calculated from the following equation:

Igeo ¼ log2

Cn

1:5Bn

� �

where Cn is the concentration of nth heavy metal in the sediment sample, 1.5 is a correction

factor adopted to address possible variations in the background concentration of heavy metals

attributed to lithogenic and anthropogenic effects, and Bn is the geochemical background con-

centration of the nth heavy metal. The degree of sediment contamination is generally catego-

rized into seven rankings according to the Igeo values, and extremely polluted (5 < Igeo),

heavily to extremely polluted (4 < Igeo� 5), heavily polluted (3 < Igeo� 4), moderately to

heavily polluted (2< Igeo� 3), moderately polluted (1< Igeo� 2), unpolluted to moderately

polluted (0< Igeo� 1), and practically unpolluted (Igeo� 0) [17,53,66,68].

The modified degree of contamination usually expressed as mCd symbolizes a standardized

Håkanson [48] equation modified and proposed by [69] as a pollution index for evaluating the

relative contamination levels at a specified sampling site [18]. Mathematically, mCd is written

as:

mCd ¼
Pn

i¼1
CFi

n

For the assessment and quantification of modified degree of contamination in sediments, the

following rankings have been developed: mCd� 32 denotes an extremely high level of con-

tamination; 16�mCd< 32 denotes an extremely high level of contamination; 8�mCd< 16

denotes an extremely high level of contamination; 4�mCd< 8 denotes a high level of con-

tamination; 2�mCd < 4 denotes a moderate level of contamination; 1.5�mCd < 2 denotes

a low level of contamination; and mCd < 1.5 denotes nil to very low levels of contamination.

The enrichment factor (EF) is often used to accurately evaluate the contributions of human

activities to the heavy metal concentrations mostly in sediments of an aquatic ecosystem, and

could be calculated using the mathematical expression:

EF ¼

Cmetal
CFe

� �

sample

Cmbkg
CFebkg

� �

crust

where Cmetal and Cmbkg are the heavy metal concentrations in the sediment sample and the

background/baseline value, respectively. CFe and CFebkg represents the Fe concentrations in the

sample and the background/earth crust, respectively. For reference, the average crustal abun-

dance values of heavy metals are usually used as background concentration of the elements. In

this analysis, the average crustal abundance data reported by [64] was used as a background

reference. The EF values were categorized as follows: <1 represents no enrichment, < 3 repre-

sents mild enrichment, 3–5 represents moderate enrichment, 5–10 represents moderately

severe enrichment, 10–25 represents severe enrichment, 25–50 represents very severe enrich-

ment, and>50 represents extreme enrichment, which may be due associated with anthropo-

genic activities.

2.4 Statistical analysis

The XLSTAT-Pro software AddinSoft, Inc., NY, USA, was used for statistical analysis. The

interrelationships between heavy metals and sampling sites were investigated using the
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principal component analysis (PCA). The data for PCA were validated using the Kaiser–

Meyer–Olkin (KMO) and Bartlett sphericity tests. A p<0.05 difference was considered signifi-

cant. The observed dataset was also subjected to agglomerative hierarchical clustering (AHC)

analysis using Ward’s method, with Euclidean distances (proximity matrix) as a measure of

similarity between the heavy metals and sampling sites.

3. Results and discussion

3.1 Concentrations of heavy metals from waste leachate

The MSW leachate contained high concentrations of heavy metals. Fe with a mean concentra-

tion of 1473.16±413.59 mg/L was the most dominant contaminant, followed by Zn and Cd

with mean contaminants loads of 23.88±14.40 and 7.12±4.8 mg/L, respectively. The least

encountered heavy metal was As, with a mean concentration of 0.35±0.34 mg/L (Table 1).

Potentially hazardous heavy metals are pervasive in landfill leachates from municipal landfills

and solid waste dumpsites [21,24,70]. In a similar report, [23] showed that raw leachate from

sanitary and non-sanitary landfills contained elevated amounts of As, Cr, Mn, Se, and Fe. In

landfill leachate, essential elements including iron, zinc, chromium, copper, and manganese

are often prevalent and biologically complexed and bioaccumulative, thus making them con-

siderably bioavailable through the trophic food chains [71–73]. According to [71], elevated

concentrations of toxic heavy metals including As, Cd, Hg, Ni, Se, and Pb were detected from

monitoring leachate landfills with varying volumes of deposited wastes, with the substantial

impact of leachates on groundwater attributed to increasing heavy metals. According to find-

ings by [74], heavy metal concentrations in impacted ultisols from a municipal landfill were

found to be higher than those in less impacted samples. Additionally [75], reported very high

heavy metal contaminations associated with Fe, Mn, and Zn.

Furthermore, the high concentrations of heavy metals in non-sanitary landfill leachate, sur-

face water, and impacted sediments may be due to human activities, including the use of agro-

chemicals, fertilizers, leaded fuel, and the industrial production of cement, steel, and

chemicals. Other land-based sources of heavy metals include industrial emissions, surface run-

offs, tyre wears, demolition wastes, discarded construction materials, and end-of-life electronic

wastes [23,41,76–81].

3.2 Heavy metal concentrations in surface water

The results recorded revealed seasonal variations in the elemental concentrations of heavy

metals between stations. Tables 2 and 3 show the distribution, mean, and standard deviation

Table 1. Heavy metal concentrations (mg/L) in non-sanitary landfills leachate.

Metals DLS-1 DLS-2 DLS-3 DLS-4 DLS-5 DLS-6 Mean±S.d

Pb 4.23 3.38 4.11 2.02 1.94 2.33 3.00±1.04

Cd 11.16 9.23 13.44 4.14 1.68 3.11 7.12±4.80

Ni 1.34 7.02 1.99 1.04 0.92 2.22 2.42±2.31

Cr 2.86 1.99 1.48 0.988 1.552 0.144 1.50±0.91

Zn 33.42 47.66 23.66 11.22 16.22 11.13 23.88±14.40

As 0.14 1.06 0.722 0.088 0.054 0.033 0.35±0.43

Fe 1644 2004 1822 1033 1022 1314 1473.16±413.59

Landfill leachate samples from Udo Street dumpsite (DLS-1, DLS-2, DLS-3).

Landfill leachate samples from Anua hospital dumpsite (DLS-4, DLS-5, DLS-6).

https://doi.org/10.1371/journal.pone.0263279.t001
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of heavy metals in MSW sediments impacted by leachates and wastewater during the dry and

wet seasons, respectively. Fe, followed by Cr, had the highest mean concentrations of all metals

analyzed in sediment samples collected during dry and wet seasons. The mean concentrations

for Pb (1.89±0.79), Zn (0.22±0.39), Cr (4.19±3.37), Fe (10.77±4.47), Ni (0.63±0.45), As (0.03

±0.01) and Cd (0.29±0.36) recorded in sediment samples collected during the dry season were

slightly lower than Pb (2.58±1.23), Zn (0.44±0.59), Cr (4.82±3.72), Fe (11.78±5.37), Ni (0.73

±0.51), As (0.04±0.01) and Cd (0.15±0.11) obtained during the wet season. However, with the

exception of Fe, which was readily detected in surface water samples from MSW-impacted

water bodies, and Pb, which was detected in water samples from Ibaoku stream, the majority

of heavy metals detected in receiving water bodies were at trace levels or below detectable levels

(Tables 4 and 5).

3.3 Ecotoxicological status of heavy metals in landfill impacted freshwater

sediment

Health risks associated with carcinogenic and noncarcinogenic contaminants were evaluated

using EPA-developed standard risk models [62]. As indicated in Table 6, carcinogenic risks

were estimated for oral ingestion (EDDing) and dermal contact (EDDdermal) exposures. Non-

carcinogenic risk assessment, on the other hand, is typically expressed in terms of the ratio of

the determined dose of a contaminant to the reference dose (RfD) below which they are

unlikely to pose any significant health risk. The present study adopted the target hazard quo-

tient (THQ) method for assessing noncancer risk associated with determined toxic metals.

The values presented in Table 6 revealed lower risk when compared with the impacted soil

indices. The results recorded for adults, children and kids were within the acceptable incre-

mental lifetime cancer rate (ILCR) range of 1.00×10−6–1.00×10−4. The carcinogenic lifetime

Table 2. Heavy metal concentrations (mg/kg) in sediment during the dry season.

Metals SDS-1 SDS-2 SDS-3 SDS-4 SDS-5 SDS-6 Mean

Pb 0.98 3.02 2.44 2.22 1.48 1.22 1.89±0.79

Cd 1.02 0.09 0.14 0.31 0.16 0.03 0.29±0.36

Ni 0.84 1.06 0.59 1.12 0.07 0.12 0.63±0.45

Cr 6.99 9.41 4.22 1.99 1.53 1.02 4.19±3.37

Zn 0.08 0.08 1.03 0.08 0.03 0.04 0.22±0.39

As 0.03 0.03 0.05 0.03 ND ND 0.03±0.01

Fe 16.66 15.46 10.44 7.44 9.44 5.23 10.77±4.47

Sediment samples from Ibaoku Stream (SDS 1, SDS 2, SDS 3).

Sediment samples from Anua Stream (SDS 4, SDS 5, SDS 6).

https://doi.org/10.1371/journal.pone.0263279.t002

Table 3. Heavy metal levels (mg/kg) in sediment during the wet season.

Metals SDS-1 SDS-2 SDS-3 SDS-4 SDS-5 SDS-6 Mean

Pb 1.34 3.22 4.56 2.74 1.29 2.34 2.58±1.23

Cd 0.34 0.09 0.16 0.25 0.06 0.05 0.15±0.11

Ni 1.05 1.22 0.98 1.02 0.08 0.07 0.73±0.51

Cr 7.86 9.89 6.38 2.38 1.44 0.98 4.82±3.72

Zn 0.17 1.06 1.33 0.06 0.008 0.012 0.44±0.59

As 0.02 0.06 0.04 0.05 ND ND 0.04±0.01

Fe 17.25 14.66 15.57 11.11 9.68 2.45 11.78±5.37

https://doi.org/10.1371/journal.pone.0263279.t003
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risks among kids via oral ingestion recorded mean cumulative risk value of 9.09E-05 while val-

ues of 3.60E-05 and 1.21E-05 were obtained for children and adults. For dermal exposures,

cumulative risk average values of 3.24E-07, 1.89E-06 and 1.17E-05 were recorded for adults,

children and kids, respectively.

Table 7 presents the pollution indicators in sediment of the freshwater stream with a pollu-

tion load index, degree of contamination, Nemerov pollution index, and potential ecological

risk index recorded as 1.96E-07, 1.13, 0.74, and 29.80, respectively. These results indicate that

sediment samples from the Ibaoku stream location SDS-1 are laden with harmful heavy metals

load and may pose considerably high risks to public health and the environment (Fig 1). The

calculated modified degree of contamination (mCd) of 0.16 also revealed a possible moderate

risk to public health (Fig 2). The Nemerov pollution index of 0.74 was very low while the mCd
of 1.16 revealed moderate risks for sediment samples collected from location SDS-1. The mean

enrichment factors (EF) of As, Cd, Cr, Ni, Pb, and Zn with reference to background concen-

trations in shale sediment showed poor enrichment as all the metals determined had EF values

less than 1.5, indicating that they are more of crustal origin (Table 7). The calculated geoaccu-

mulation index (Igeo) recorded relatively low values (<0) for most elements except Cd (>1.0)

in sediment sample from location SDS-1 (Table 8), indicating that the sediments of the fresh-

water ecosystem within the MSW impacted environ might be moderately contaminated due to

anthropogenic activities.

Fig 3 presents the computed principal components describing the relationships between

heavy metals (variables) and the sampling points. The first principal component accounted for

48.70 percent of the total variance and was positively correlated with Cd, Cr, Fe, and Ni

loadings.

This indicates that the heavy metals contamination at the SDS-1—SDS-3 landfill sites origi-

nated predominantly from anthropogenic sources to the leachate impacted sediments of the

investigated ecosystems. The second principal component, which accounted for 27.61 percent

of the total variance, exhibited a negative relationship between heavy metal contamination and

Table 4. Heavy metal concentrations (mg/L) in landfill impacted surface water during the wet season.

Metals SWS-1 SWS-2 SWS-3 SWS-4 SWS-5 SWS-6 Mean

Pb 0.24 0.03 0.02 <0.01 <0.01 <0.01 0.09±0.12

Cd 0.02 0.03 0.02 0.01 0.02 0.02 0.02±0.006

Ni 1.01 0.04 0.04 <0.01 <0.01 <0.01 0.36±0.56

Cr 0.08 0.11 0.09 <0.01 0.03 <0.01 0.07±0.03

Zn 0.025 0.013 0.022 0.04 0.05 0.02 0.02±0.01

As <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ND

Fe 1.55 0.88 1.44 0.062 0.032 0.015 0.66±0.72

https://doi.org/10.1371/journal.pone.0263279.t004

Table 5. Heavy metal concentrations (mg/L) in landfill impacted surface water during the dry season.

Metals SWS-1 SWS-2 SWS-3 SWS-4 SWS-5 SWS-6 Mean

Pb 0.09 0.43 <0.01 <0.01 <0.01 <0.01 0.26±0.24

Cd 0.03 ND 0.01 <0.01 <0.01 <0.01 0.02±0.01

Ni <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 ND

Cr 0.03 0.23 0.04 <0.01 <0.01 <0.01 0.1±0.11

Zn 0.01 <0.01 0.01 <0.01 0.02 <0.01 0.01±0.005

As <0.01 <0.01 ND <0.01 <0.01 <0.01 ND

Fe 2.12 1.03 0.89 0.02 0.01 0.01 0.68±0.84

https://doi.org/10.1371/journal.pone.0263279.t005
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sediment samples from the SDS5—SDS-6 sites. The present study revealed no significant dif-

ferences in heavy metal concentrations in sediment samples across the landfill leachate

impacted sites. However, the Ward method’s hierarchical clustering analysis revealed a signifi-

cant and site-specific link between heavy metals in the analyzed sediment samples. The results

revealed Fe, Cr and Cd as dominant sedimentary heavy metals (Fig 4).

3.4 Ecotoxicity status of heavy metals in the surface water and MSW

leachate

Analysis has shown that the concentrations of heavy metals in surface water and MSW leachate

samples may be toxic to humans. Hazard quotients of their toxicity to adults and children are

Table 7. Pollution indicators of heavy metals contamination of MSW dumpsite impacted sediment.

Pb Cd Ni Cr Zn As Fe

Contamination factor 9.46 E-02 9.72 E-01 9.31 E-03 4.66 E-02 2.35 E-03 1.79 E-03 2.28 E-04

Degree of contamination 1.13

Modified degree of Contamination 0.16

Pollution load index 1.96 E-07

Ecological risk factor 0.47 29.16 0.05 0.09 0.002 0.02 -

Potential ecological risk index (DSS1 –DSS9) 29.80

Enrichment factor 0.09 0.97 9.31 E-03 4.65 E-02 2.35 E-03 1.79 E-03 -

Nemerov pollution index

(DSS1 –DSS9)

0.74

https://doi.org/10.1371/journal.pone.0263279.t007

Fig 1. Ecological risk index (RI) of heavy metals in MSW dumpsite impacted sediment.

https://doi.org/10.1371/journal.pone.0263279.g001
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given in Table 9. The probable hazard index established for adults and children who may be

exposed to contaminated water during the dry and wet seasons, as well as exposure to MSW

leachates, is relatively significant and may pose serious long-term health effects (Table 9).

4. Conclusions

The occurrence of heavy metals in landfills leachate has been investigated in a major municipal

area in Uyo, Nigeria. The elemental compositions of impacted surface water and sediment

samples were determined. Analyses were conducted using standard analytical procedures and

methods. The results indicated that municipal solid waste leachate, surface water, and sedi-

ment samples all contained elevated concentrations of heavy metals, implying a significant

Fig 2. Modified degree of contamination of heavy metals in MSW dumpsite impacted sediment.

https://doi.org/10.1371/journal.pone.0263279.g002

Table 8. Geoaccumulation indices (Igeo) of heavy metals in MSW sediment at investigated sites.

SDS-1 SDS-2 SDS-3 SDS-4 SDS-5 SDS-6

Pb -4.93 -3.31 -3.62 -3.76 -4.34 -4.62

Cd 1.18 -2.32 -1.68 -0.54 -1.49 -3.91

Ni -6.92 -6.59 -7.43 -6.50 -10.51 -9.73

Cr -4.27 -3.84 -4.99 -6.08 -6.46 -7.05

Zn -10.80 -10.79 -7.11 -10.79 -12.21 -11.79

As -9.34 -9.34 -8.60 -9.34 0 0

Fe -12.05 -12.16 -12.72 -13.22 -12.87 -13.72

https://doi.org/10.1371/journal.pone.0263279.t008
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influence of seeping leachate from the dumpsites. Concentrations of heavy metals in the

impacted freshwater ecosystem are season-dependent and variable. Pollution indicators

revealed that the sediment samples examined were low to moderately polluted by toxic ele-

ments from the investigated non-sanitary landfills. Standard risk models were used to evaluate

the significant threats posed by these toxic elements to human health. Elevated levels of these

potentially toxic heavy metals in leachate from the non-sanitary landfills indicated a

Fig 3. The two principal components reflecting the relationship of study sites and heavy metals (variables) in

sediment samples.

https://doi.org/10.1371/journal.pone.0263279.g003
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statistically significant carcinogenic lifetime risk to adults, children, and kids, owing to the

landfill leachate’s ability to bioaccumulate and be distributed predominantly through the sur-

rounding soils into the groundwater. In the case of adults, children, and kids, the incremental

lifetime cancer rate (ILCR) values were within the tolerable range of 1.00E-06–1.00E-04. The

lifetime carcinogenicity risks associated with oral ingestion exposure to heavy metals were

9.09E-05 for kids, but 1.21E-05 and 3.60 E-05 for adults and children, respectively. Further-

more, the mean cumulative risk values for dermal exposures were 3.24E-07, 1.89E-06, and

1.17E-05 for adults, children, and kids, respectively. The findings highlight the potential

Fig 4. Hierarchical clustering analysis (Ward’s Method) showing the relevant association among heavy metals of

sediment samples. (Distance metrics are based on the Euclidean distance single linkage method (proximity matrix).

https://doi.org/10.1371/journal.pone.0263279.g004

Table 9. Hazard quotient associated with heavy metal exposure in adults and children.

Water (wet) Water (dry) Water (dry 2) Leachate

ADULTS

Pb 4.23E-02 7.41E-02 1.50E+00 2.38E+00

Cd 1.14E+00 8.00E-01 1.67E+01 4.07E+02

Ni 2.67E-01 1.43E-02 9.05E-01 3.46E+00

Cr 1.05E+00 1.05E+00 7.99E+01 2.86E+01

Zn 2.70E-03 1.11E-03 2.13E-02 2.27E+00

As 9.52E-01 9.52E-01 3.33E+00 3.33E+01

Fe 2.71E-02 2.78E-02 4.40E-01 6.01E+01

CHILDREN

Pb 6.17E-02 1.08E-01 2.19E+00 3.47E+00

Cd 1.67E+00 1.17E+00 2.43E+01 5.94E+02

Ni 3.89E-01 2.08E-02 1.32E+00 5.05E+00

Cr 1.53E+00 1.53E+00 1.16E+02 4.17E+01

Zn 3.94E-03 1.62E-03 3.10E-02 3.32E+00

As 1.39E+00 1.39E+00 4.86E+00 4.85E+01

Fe 3.95E-02 4.05E-02 6.42E-01 8.77E+01

Hazard Index Adult 3.48E+00 2.92E+00 1.03E+02 5.37E+02

Children 5.08E+00 4.25E+00 1.50E+02 7.84E+02

https://doi.org/10.1371/journal.pone.0263279.t009
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dangers of human and biota exposure to pollutants in MSW landfills and reaffirm the impor-

tance of limiting fish and water intake from the impacted ecosystems associated with the land-

fills. These findings reinforce the need for routine monitoring to ascertain the safety status of

humans and resources close to the dumpsites. Such surveillance would provide useful insight

into individual, population, and overall ecosystem quality.
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