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Abstract 

Background:  Brain image genetics provides enormous opportunities for examin-
ing the effects of genetic variations on the brain. Many studies have shown that the 
structure, function, and abnormality (e.g., those related to Alzheimer’s disease) of the 
brain are heritable. However, which genetic variations contribute to these phenotypic 
changes is not completely clear. Advances in neuroimaging and genetics have led us 
to obtain detailed brain anatomy and genome-wide information. These data offer us 
new opportunities to identify genetic variations such as single nucleotide polymor-
phisms (SNPs) that affect brain structure. In this paper, we perform a genome-wide 
variant-based study, and aim to identify top SNPs or SNP sets which have genetic 
effects with the largest neuroanotomic coverage at both voxel and region-of-interest 
(ROI) levels. Based on the voxelwise genome-wide association study (GWAS) results, 
we used the exhaustive search to find the top SNPs or SNP sets that have the largest 
voxel-based or ROI-based neuroanatomic coverage. For SNP sets with >2 SNPs, we 
proposed an efficient genetic algorithm to identify top SNP sets that can cover all ROIs 
or a specific ROI.

Results:  We identified an ensemble of top SNPs, SNP-pairs and SNP-sets, whose effects 
have the largest neuroanatomic coverage. Experimental results on real imaging genet-
ics data show that the proposed genetic algorithm is superior to the exhaustive search 
in terms of computational time for identifying top SNP-sets.

Conclusions:  We proposed and applied an informatics strategy to identify top SNPs, 
SNP-pairs and SNP-sets that have genetic effects with the largest neuroanatomic cover-
age. The proposed genetic algorithm offers an efficient solution to accomplish the task, 
especially for identifying top SNP-sets.
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Background
With recent technological advances in acquiring multimodal neuroimaging and high-
throughput genetics data, massive amounts of multimodal structural and functional imag-
ing data on the human brain as well as genome-wide genetic data from the same set of 
subjects have been collected. With the availability of these data sets, brain imaging genet-
ics has becoming an emerging research area, which provides enormous opportunities for 
examining the effects of genetic variations on the brain. Many studies have shown that the 
structure, function and abnormality (e.g., those related to Alzheimer’s disease) of the brain 
are heritable. However, which genetic variations contribute to these phenotypic changes are 
not completely clear.

To bridge this gap, a number of approaches for finding associations between genetic 
variations and imaging phenotypes arise. A genome-wide association study (GWAS) [1] 
conducted by Christopher et al., which links genetic variations such as single nucleotide 
polymorphisms (SNPs) to imaging phenotypes, mainly analyzed the association between 
SNPs with measures at regions of interest (ROIs). The voxelwise GWAS (vGWAS) was pro-
posed by Stein et al. [2, 3] to generate detailed three-dimensional maps of the SNP effects 
on the brain, without requiring defining ROIs on the brain. Huang et al. [4] developed a 
functional genome-wide association study (FGWAS) method to identify sparse signals in 
an extremely large search space. Compared to GWAS, FGWAS could improve detection 
capabilities to discover important genetic variations and gene-environment interactions 
that affect brain structure and function. Vounou et  al. [5] proposed another method for 
simultaneously selecting SNP variants and binding regions assuming that the signals are 
sparse. This could reduce the number of SNPs and phenotypes tested. Among these meth-
ods, the voxelwise GWAS makes it possible to study the SNPs from a more nuanced per-
spective, and can capture subtle signals that are easily missed by ROI-based methods [6–8].

As the number of SNPs increases, the amount of data increases exponentially. In prior 
studies, the researchers used a variety of methods to detect two marker effects [9]. Günther 
F, et,al. built models using neural networks to reveal the effects. There is a problem that the 
estimated weight cannot be explained [10]. The random Forests was used to build accurate 
decision trees for the effects [11] and the two-stage grouped sure independence screen-
ing [12] was used to detect the causal interactions. To detect the effects, other methods 
had been devised, such as odds ratio [13], Ant Colony Optimization Algorithm [14] and 
MegaSNPHunter [15]. However, since the effects of n SNPs is more complicated and the 
data increases rapidly, the research on it is still a problem to be developed.

Although brain imaging genetics has become an emerging and rapidly growing research 
field [16–19], the study of genetic effects on neuroanatomic coverage remains to be an 
underexplored topic. To bridge the gap, in this paper, we perform a genome-wide variant-
based study, and aim to identify top SNPs or SNP sets which have genetic effects with 
the largest neuroanotomic coverage at both voxel and ROI levels. Based on the voxelwise 
GWAS results, we use the exhaustive search to find the top SNPs or SNP sets that have the 
largest voxel-based or ROI-based neuroanatomic coverage. For SNP sets with >2 SNPs, we 
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propose an efficient genetic algorithm to identify top SNP sets that can cover all ROIs or a 
specific ROI.

Results
Results of single marker effects

We presented the frequency of the top 10 SNPs with different thresholds from VBC, 
VBP, RBC and RBP in Fig. 1. Twenty-four SNPs exhibited large neuroanotomic cover-
age. As expected, the most frequent loci were identified on chromosome 20, including 
rs6092321 from the RTF2 region, and rs6024860 (N/A). Other SNPs identified in this 
study are shown in Fig. 1. Table 1 shows the variances explained by identified SNPs. The 
main effects of rs6092321 and rs6024860 account for 0.93% and 0.82% of phenotypic 
variance respectively.

Results of SNP–SNP effects

Fifty-three pairs of SNPs showed statistically significant effects on neuroanotomic 
coverage. Only 1 pair passed the covering criterion: all the four strategy are required 
to be covered by the SNP pair. The result of SNP–SNP effects was rs6092321 (RTF2) - 
rs700319 (CNTNAP2). Figure 2 provided the frequency of other SNP pairs. The variance 
explained by rs6092321 - rs700319 is 0.94%, and the correlation of rs6092321 - rs700319 
are 0.0945, 0.0533 and −0.0381 (Table  1).
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Fig. 1  The top 10 SNPs and their frequency in VBC, VBP, RBC, RBP. The X axis represents the number of top 
10 SNPs in all set thresholds; The Y axis represents the name of SNPs; VBC = Ranking SNPs according to the 
number of covered voxels; VBP = Ranking SNPs according to minimally required p threshold; RBC = Ranking 
SNPs according to the number of ROIs; RBP = Ranking SNPs according to minimally required p threshold



Page 4 of 18Li et al. BMC Bioinformatics          (2021) 22:223 

Results of three SNPs effects

To find a suitable population size and a maximum evolutionary generation, we chose 100 
and 1000 as the center, 0–200 and 0–2000 as the range, and 20 and 200 as the step size 
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Fig. 2  The top 10 SNP pairs and their frequency in VBC, VBP, RBC, RBP. The X axis represents the number of 
top 10 SNPs in all set thresholds; The Y axis represents the name of SNP pairs; VBC = Ranking SNPs according 
to the number of covered voxels; VBP = Ranking SNPs according to minimally required p threshold; RBC 
= Ranking SNPs according to the number of ROIs; RBP = Ranking SNPs according to minimally required p 
threshold
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to calculate the scores separately. To avoid the occasional final score being too small, we 
counted the maximum score and the corresponding SNP set after 10 cycles in each case. 
The resulting score, population size and maximum evolutionary generation are shown in 
Fig. 3. As shown in Fig. 3, when we used the 100 (population size) and 1000 (maximum 
evolutionary generation) to filter the SNP sets, the score of the SNP sets reached the 
highest value of 2.08.

With the selected population size (100) and the maximum evolutionary generation 
(1000), we counted the relationship between the score and evolutionary generation. The 
resulting curve is shown in Fig. 4. To avoid the occasional final score being too small or 
big, we ran the genetic algorithm for 10 times with the same parameters. The scores of 
the 6th, 7th, 8th, 9th and 10th are around 1.5, and the 6th and 9th converge prematurely. 
The defects in the initial population and in the offspring may be the major reason. All 
the remaining scores are above 2.0, and the 1st, 3rd and 4th have the better scores. Their 
initial scores fluctuate drastically, and the scores increases rapidly over time. Wherein 
the 1st at about 600th generation converges to optimal score, and the turning point of 
3rd and 4th are around 400th generation. This is because the parent with better score 
that would have an opportunity to breed and pass on their codes.
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Fig. 3  The relationship between score and Mixed parameters (population size + maximum evolution 
generation). The X axis represents the score of SNP sets; The Y axis represents the sum of population size and 
maximum evolution generation
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Fig. 4  The curve of score and evolutionary generation. The population size is 100; The maximum 
evolutionary generation is 1000; 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th and 10th are the number of times in 
10 cycles
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Table 1  Eight significant SNPs, SNP pair and SNP sets identified in VBC, VBP, RBC, RBP, AR and SR

Explained variance = For 1, 2, 3 and 4, explained variance of whole brain; for 5, 6, 7 and 8, explained variance of 
hippocampus; Pearson correlation = the association between SNPs, SNP pair or SNP sets and features; Hippocampus, 
Memories and Memory = the part of features associated with Alzheimer’s disease

NO. SNP Gene CHR Explained variance Pearson correlation

(R square) Hippocampus Memories Memory

1 rs6092321 RTF2 20 0.009303 0.073 0.0806 0.0042

2 rs6024860 20 0.008197 0.0198 0.075 0.0354

3 rs6092321- RTF2 20 0.00939 0.0945 0.0533 − 0.0381

rs700319 CNTNAP2 7

4 rs6092321- RTF2 7 0.009825 0.0804 0.0675 − 0.0111

rs10500192- CNTNAP2 7

rs4811693 FAM210B 20

5 rs429358- APOE 19 0.0112 0.3034 0.1542 0.1274

rs2640726- EPHX2 8

rs4621717 CNTNAP2 7

6 rs429358- APOE 19 0.0112 0.3094 0.1463 0.1198

rs516125- SCARA3 8

rs4621717 CNTNAP2 7

7 rs429358- APOE 19 0.0113 0.3098 0.147 0.116

rs10933428- INPP5D 2

rs4621717 CNTNAP2 7

8 rs429358- APOE 19 0.0117 0.3085 0.1522 0.1186

rs12539907- CNTNAP2 7

rs4621717 CNTNAP2 7
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Fig. 5  The top 10 SNP sets and their frequency in AR and SR. The X axis represents the number of top 10 
SNPs in all set thresholds; The Y axis represents the name of SNP sets; AR = Ranking SNPS according to 
minimal p threshold covered all ROIS; SR = Ranking SNPS according to minimal p threshold covered a 
specific ROI
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As expected, the SNP sets with largest neuroanotomic coverage, minimum p value 
and high number from AR included rs6092321 (Fig.  3). With regard to SR (two ROIs 
were hippo-campus_L and hippo-campus_R in our experiment), rs429358 was found in 
most identified SNP sets with the minimum p value (Fig. 5). The results of three SNPs 
effects were rs6092321 (RTF2) - rs10500192 (CNTNAP2) - rs4811693 (FAM210B) from 
AR, and rs429358 (APOE) - rs2640726 (EPHX2) - rs4621717 (CNTNAP2), rs429358 
(APOE) - rs516125 (SCARA3) - rs4621717 (CNTNAP2), rs429358 (APOE) - rs10933428 
(INPP5D) - rs4621717 (CNTNAP2) and rs429358 (APOE) - rs12539907 (CNTNAP2) - 
rs4621717 (CNTNAP2) from SR. Details are available in Table  1.

Post hoc analysis

Table   1 also shows the correlation between SNPs and hippocampus, memories and 
memory. For each SNP, SNP pair and SNP set, we superimposed the voxel images of 
each group of SNPs. We combined the images and features [20] to determine the con-
tribution of SNPs to brain features. For rs6092321, the correlation account for 0.073, 
0.0806 and 0.0042, the correlation of rs6092321 - rs700319 account for 0.0945, 0.0533 
and −0.0381 , and the correlation of rs6092321 - rs10500192 - rs4811693 are 0.0804, 
0.0675 and -0.0111. In SR, the correlation of rs429358 - rs12539907 - rs4621717 are 
0.3085, 0.1522 and 0.1186.

Discussion
In this work, we performed voxelwise GWAS and using a sample of 1515 subjects from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. To our knowledge, 
this study on detecting SNP, SNP pairs and SNP sets is the first study of genetic effects 
on neuroanatomic coverage.

The down-sampled image were obtained under the different treatments and used for 
vGWAS with the genetic data. Then the resulting data analyzed using four computa-
tional programs (VBC, VBP, RBC, and RBP) for ranking the SNPs. SNPs were selected 
based on the number of voxels less than the set p value threshold in VBC, and VBP 
served as a control group to filter SNPs based on the p value corresponding to the given 
number of voxels. The primary purpose of VBP is to find the “missing SNPs” in VBC. As 
illustrated in Fig. 1, the top 9 SNPs are the same and a few SNPs are different in VBC and 
VBP. The difference of p value in voxels of SNPs accounts for the major cause. Selecting 
SNPs that affect ROIs and differ with chosen SNPs on voxel level is the main objective 
in RBC and RBP. The ROI coverage was added to RBC as an additional condition on 
the basis of VBC. Similar to RBC, the given number of voxels was changed to the set 
number of ROIs, and the coverage of ROI was added in RBP. Picking SNPs from another 
condition and comparing them with SNPs in RBC are the primary aim of RBP. A similar 
discrepancy among SNPs was observed on voxel level and ROI level and directly corre-
lated to the addition of ROI coverage.

According to the four different programs, different rankings of the top SNPs were 
shown and several missing SNPs were found. These highlight the necessity of utilizing 
multiple procedures to obtain the best possible SNPs. The frequency of the SNPs can be 
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observed directly by the number, and the lower values indicate “missing SNPs” that have 
been recovered.

For the number of SNP set selected equal or greater than 3, the number of SNP sets 
reaches 900 million, and the time of exhaustive strategies increases exponentially. There-
fore, algorithms to shorten the time or reduce the data set was developed. Genetic algo-
rithm is suitable to resolve the issue. The initial population of genetic algorithm can be 
considered a reduced data set, and the offspring after cross-inheritance can be treated as 
a new data set that is constantly changing. Importantly, when an offspring with a large 
score appears, the data set will quickly converge to this score, which greatly shortens the 
selection time. As shown in Fig. 4, the dramatic shifts in scores are about 3.5 and 2.8, and 
the scores afterwards plateau at this value. And the time for 1000 evolutionary genera-
tion can be shortened to less than 20 min.

In single-marker analysis, the most obvious SNP identified from the analysis is 
rs6092321 (within the RTF2 gene on chromosome 20). The ROIs affected by SNP 
rs6092321 (RTF2) with a high coverage are left gyrus rectus, right gyrus rectus, left 
entorhinal cortex, right entorhinal cortex, and vermis_9. The specific function for left 
gyrus rectus and right gyrus rectus has not yet been brought to light. However, subgroup 
analysis showed the negative impact of gyrus rectus resection on language and memory 
recall categories [21]. Ballmaier M. et al. had reported that very significant strong gray 
matter defects were observed in the gyrus rectus [22]. The volume of the left entorhinal 
cortex was different between progressive (Alzheimer’s disease) and stable mild cognitive 
patients [23]. MRIs show that Gomez-Lopez-Hernandez syndrome is characterized by 
cerebellar sacral loss or partial cerebellar loss and varying degrees of cerebellar fusion 
[1]. In terms of images, after calculating the Pearson correlation between rs6092321 
(RTF2) and features (hippocampus, memories, memory and speaker), we found that 
rs6092321 (RTF2) is positively correlated with hippocampus, memories, memory and 
speaker (Additional file 1). This gives an affirmation of the impact of rs6092321 on ROIs 
above.

In SNP–SNP analysis, rs700319 (within the CNTNAP2 gene on chromosome 7) 
and rs6092321 (RTF2) appear in pairs with highest frequency, since the frequency of 
700319 (CNTNAP2) in single marker analysis was not high. The variances explained by 
rs6092321 (RTF2) - rs700319 (CNTNAP2) is bigger than rs6092321 alone. Combined 
with additional file  1, these give the evidence that rs700319 (CNTNAP2) is another 
important SNP. Comparing with rs6092321 (RTF2), rs6092321 (RTF2) - rs700319 (CNT-
NAP2) is positively correlated with memories and hippocampus, and negatively corre-
lated with memory (Table  2).

Table 2  Participant characteristics

HC = Healthy Control; SMC = Significant Memory Concern; EMCI = Early Mild Cognitive Complaint; LMCI = Late Mild 
Cognitive Complaint; AD = Alzheimer’s Disease

Subjects HC SMC EMCI LMCI AD

Number 353 89 273 504 296

Gender (M/F) 187/166 36/53 153/120 309/195 166/130

Age(mean±sd) 74.9± 5.7 72.2± 5.7 71.3± 7.1 74.0± 7.6 74.7± 7.6

Edu(mean±sd) 16.1± 2.7 16.8± 2.6 16.1± 2.6 16.0± 2.9 15.5± 2.9
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Although the results obtained by the genetic algorithm are not the global optimal solu-
tions, the running time is reduced greatly. And the result achieves improvement with 
the increase of running time. In AR, considering the variances explained by rs6092321 
(RTF2) and rs6092321 (RTF2) - rs10500192 (CNTNAP2) - rs4811693 (FAM210B) and 
the additional file 1, rs10500192 (CNTNAP2) and rs4811693 (FAM210B) are the “miss-
ing SNPs” for the genetic effects on neuroanatomic coverage.

In SR, we found a sudden increase in the number of rs429358 (APOE). A meta-analysis 
estimated that the ratio of homozygous rs429358 (C;C) individuals to the more common 
ApoE3 / ApoE3 homozygote was 12 times of late-onset Alzheimer’s disease and 61 times 
of early-onset disease [24]. These results confirm our prediction and prove that the candi-
date SNPs we selected will provide more valuable information. For the SNP sets including 
rs429358 (APOE), the pearson correlation between SNP sets and features (hippocampus, 
memories and memory) show that the SNP sets have a positive correlation on these fea-
tures. This suggests that SNP group makes sense for hippocampus, and memory and is also 
consistent with our initial vision. Considering the difference among the SNP sets including 
rs429358 (APOE) and the additional file 1, rs12539907 (CNTNAP2) is a “missing SNP” for 
hippocampus.

Based on the above, the loci including the “missing SNPs” identified in our analysis are 
CNTNAP2 and FAM210B. CNTNAP2 has an pivotal effect in maintaining normal net-
work activity and synaptic transmission. The transsynaptic bridge formed by CNTNAP2 
on the presynaptic membrane and CNTN2 on the post-synaptic membrane can spans the 
synaptic cleft [25–27]. The dendritic arborization and the numbers of excitatory synapses, 
inhibitory interneurons, and inhibitory synapses were all reduced by the loss of CNTNAP2 
[28–30]. CNTNAP2 guides the cellular migration of neurons to their correct position in the 
brain [28, 31]. The impact of CNTNAP2 on cellular migration of neurons, synapse develop-
ment, and synaptic communication indicate that it plays a key role in the brain function. 
FAM210B can promote the transfer of protoporphyrinogen IX (PPIX) to FECH, and pro-
mote the introduction of iron and the synthesis of heme by forming oligomers with PPOX 
and FECH to enhance the introduction of mitochondrial iron and the synthesis of heme 
[32]. Stabilization of FECH protein caused by the binding of iron-sulfur clusters [33] or 
the increased transcription of FECH mRNA [34] lead to ferrochelatase protein expression 
increased during erythropoiesis. FAM210B can effectively transport iron to FECH, and / or 
affect the allosteric activation of the FECH enzyme [32]. The possible mechanisms behind 
APOE-CNTNAP2 and RTF2-CNTNAP2 warrant further investigation.

In summary, some of the SNPs and genes identified in our analysis have shown interest-
ing associations with the genetic effects on neuroanatomic coverage from prior knowledge 
of current literatures, such as rs6092321, rs429358, RTF2, APOE and CNTNAP2. The addi-
tional file 1 showed the correlation between the brain structure of identified SNPs, SNP 
pair and SNP sets and the features provide by [20]. These results were very encouraging and 
confirmed that the analysis was successful as it was able to identify the “missing SNPs” and 
the top SNPs that have largest neuroanatomic coverage. In addition, numerous SNPs, SNP 
pairs and SNP sets revealed in our study had genetic effects, which warrant further investi-
gation or replication in future studies.

The limitations of our study are as follows: (1) We examined 1784 SNPs. We also need use 
more SNPs to analyze. (2) We used the genetic algorithm to analyze the effects of multiple 
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SNPs. The result is a local optimal solution and more effective and efficient strategies are 
still to be developed in multiple SNPs. (3) Comparing the exhaustive search, we can get bet-
ter results in less time using genetic algorithms. However, the results get better with time, 
and users still have to wait a long time to get better results. (4) When a better set of SNPs 
appears, the offspring will be stuck in this combination.

Conclusion
Aiming at studying the relationship between SNPs and brain structures, we performed 
voxel-wise GWAS and SNPs analysis to discover the SNPs which could affect more areas 
of the brain based on ROI and voxel using a sample of 1515 subjects from the ADNI 
database. The single-marker analysis identified the SNPs rs6092321 and rs6024860, 
which contributed the highest genetic effects on neuroanatomic coverage in all case. 
The SNP–SNP analysis identified new SNP pair including rs6092321 in single-marker 
analysis, which showed strong associations with the neuroanatomic coverage. This was 
rs6092321 and rs700319. The n SNPs analysis identified a number of novel findings, 
which showed higher associations with whole brain or hippocampus. Perhaps what is 
more important in this study is the discovery of SNPs that has not yet been associated 
with the Alzheimer’s Disease (AD) in conventional GWAS studies. Based on voxelwise 
GWAS, the effects of n SNPs and SNP–SNP showed high-level statistical significance 
than the single-marker effects. These may help address part of missing SNPs and brain 
clusters. Although this study focuses on SNPs effects, the findings may well show that 
the genetic algorithm is an interesting method for detecting the effects of n SNPs.

Our voxelwise genome-wide association study and genetic effects study on neuroana-
tomic coverage have the following strengths in addition to the above interesting findings. 
(1) To our knowledge this is the first study of genetic effects on neuroanatomic coverage. 
(2) Using voxelwise volumetric measurements as phenotypes confers higher statistical 
power than using conventional phenotypes and is able to find the “missing SNPs”. (3) 
The sample in this study included HC, SMCI, EMCI, LMCI, and AD, thus providing a 
rank-ordered spectrum of the disease progression. (4) Our approach is more computa-
tionally efficient than the exhaustive strategies, facilitating the analysis of genome-wide 
SNPs effects.

Methods
We first describe the imaging and genotype data used in this work and then present our 
methods.

Imaging and Genotype Data

The imaging and genotype data of 1,515 non-Hispanic Caucasian subjects were down-
loaded from http://​adni.​loni.​usc.​edu. In this work, we analyzed the MRI scans and geno-
typing data, including 353 healthy control (HC), 89 significant memory concern (SMC), 
273 early MCI (EMCI), 504 late MCI (LMCI), and 296 AD participants. The characteris-
tics of these 1,515 subjects are shown in Table 2.

Preprocessed T1-weighted volumetric MRI scans were aligned to each participant’s 
same visit scan and normalized to the Montreal Neurological Institute (MNI) space. 
Voxel-based morphometry (VBM) was applied on MRI scans to extract voxel-wise 

http://adni.loni.usc.edu
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volumetric measurements. Briefly, scans were aligned to a T1-weighted template image, 
segmented into gray matter, white matter and cerebrospinal fluid maps, and then nor-
malized to the MNI space. The gray matter density (GMD) maps were extracted and 
smoothed with an 8mm FWHM kernel. The resulting GMD images are then down-
sampled to a dimension of 61× 73× 61 (i.e., containing 271,633 voxels) to reduce the 
computation cost in subsequent analyses. The 116 ROIs and their coordinates were ana-
tomically defined using the Automatic Anatomical Labeling (AAL) atlas [35], and regis-
tered with the down-sampled images.

Genotyping data was processed as described in [36, 37], which resulted in 565,373 
SNPs for all 1515 participants. A list of 24 AD candidate genes from a prior large scale 
GWAS meta-analysis [38] were analyzed in this study. We extracted SNPs located in 
±20 K bp of the 24 AD genes, and finally included total 1784 SNPs in our imaging genetic 
association analysis.

Overall strategy

As shown in Fig. 4, the first step of our investigation is to perform pairwise univariate 
voxelwise genetic association analysis on 1515 subjects to examine the variant effect of 
1784 SNPs on 271,633 voxels of the brain. The p value of each SNP-voxel pair was first 
obtained by performing genetic association of all the voxels for each studied SNP. Using 
these voxelwise SNP results, we implemented the following four strategies to identify 
top SNPs or SNP pairs that affect the largest portion of the neuroanatomy on the voxel 
or ROI basis. 

1	 VBC: Given a p threshold, rank SNPs according to the number of significant voxels.
2	 VBP: Given a voxel number threshold, rank SNPs according to minimally required p 

threshold.
3	 RBC: Given a p threshold and ROI coverage threshold, rank SNPs according to the 

number of ROIs covered by an enough number of significant voxels.
4	 RBP: Given an ROI number threshold and ROI coverage threshold, rank SNPs 

according to minimally required p threshold.

Although the exhaustive search strategy can be applied to identify top SNPs or SNP 
pairs, it won’t work on identifying SNP sets containing three or more SNPs (denoted 
as high-order SNP sets for convenience) due to exponentially increasing computational 
cost. To address this challenge, we propose a more efficient genetic algorithm to identify 
top high-order SNP-sets, whose effects have the largest neuroanatomic coverage.

Figure 6 shows a schematic design of the workflow of our analyses. In the following 
subsections, we describe these analyses in more detail.

Identification and prioritization of single marker effects

VBC: ranking SNPs according to the number of covered voxels. To get the number of 
voxels, we defined the score for each SNP as the number of voxels who had a p value 
smaller than a threshold. Then we got a list of SNPs sorted by the number of covered 
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Fig. 6  The schematic design of the workflow. VBC = Ranking SNPs according to the number of covered 
voxels; VBP = Ranking SNPs according to minimally required p threshold; RBC = Ranking SNPs according to 
the number of ROIs; RBP = Ranking SNPs according to minimally required p threshold; AR = Ranking SNPS 
according to minimal p threshold covered all ROIS; SR = Ranking SNPS according to minimal p threshold 
covered a specific ROI; top SNPs, SNP pairs and SNP sets = the identified top SNPs, SNP pairs and SNP sets 
which have genetic effects with the largest neuroanotomic coverage or specific ROI
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Fig. 7  The schematic diagram of ranking SNPs according to the number of covered voxels. 1. Calculate 
the number of voxels with p value less than the set threshold in each SNP; 2. Rank SNPs according to the 
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Fig. 8  The schematic diagram of ranking SNPs according to minimal p value threshold. 1. Rank voxels 
according to the p value; 2. Calculate the p value on the set voxel node in each SNP; 3. Rank SNPs according 
to the p values
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voxels in descending order (Fig. 7). To avoid accidental SNPs, we set multiple thresholds. 
The top 10 frequent SNPs of the results were shown in Fig. 1.

VBP: ranking SNPs according to minimal p value threshold. For finding the minimal 
p value of each SNP in this criterion, we set a condition that the number of voxels was 
limited (Fig. 8). Figure 1 showed the top 10 SNPs of the results limited by a number of 
thresholds.

To determine the union of voxels representing the ROI, one way was to calculate the 
weighted average of the ROI and the other was to select voxels above a certain threshold 
[39]. In our study, we used the percentile (at least 20%) and p value ( p < 0.05 ) of voxels 
as the threshold.

RBC: ranking SNPs according to number of covered ROIs. Like the VBC, to get the 
number of covered ROIs, we defined how one SNP affected a ROI. In a similar vein, 
given a threshold on p value, one SNP was considered affecting a ROI if it covered 
20% voxels of this ROI. Each SNP was ranked based on the number of the ROIs that it 
affected (Fig. 9). Figure 1 presented the top 10 SNPs.

RBP: ranking SNPs according to minimal p value threshold. The goal of this section 
was to got a minimal p value based on ROI. Each SNP was ranked according to the mini-
mal p value covered a given number of ROIs. In our experiments, in the condition of 
covering over 20% voxels of the ROI and the number of the ROI was set, one SNP could 
be taken into the selection (Fig. 10). The top 10 SNPs with the highest frequent were pre-
sented in Fig. 1.
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1 SNP
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>n%

1,784 SNPs

Numbers 
of 1,784 
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with a voxels 
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Fig. 9  The schematic diagram of ranking SNPs according to number of covered ROIs. 1. Calculate the 
percentage of voxels with p value less than the set threshold in each ROI; 2. Rank ROIs according to the 
percentages; 3. Calculate the number of ROIs with voxels’ percentage more than the set value in each SNP; 4. 
Rank SNPs according to the numbers
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The node of 
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Fig. 10  The schematic diagram of ranking SNPs According to minimal p value threshold. 1. Rank voxels 
according to p value in each ROI; 2. Calculate the p value on the set voxel node; 3. Rank ROIs according to the 
p value; 4. Calculate the p value on the set ROI node in each SNP; 5. Rank SNPs according to the p value
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Identification and prioritization of SNP–SNP effects

For SNP–SNP, a new concept was imported to determine the p value within the effects 
of SNP–SNP. To acquire an operable p value of SNP–SNP, we took the minimal p value 
of SNP–SNP on one voxel as the upshot since we used single marker effects. The main 
strategy of SNP–SNP effects were similar to VBC, VBP, RBC and RBP.

Identification and prioritization of three SNP effects

AR: ranking SNPs according to minimal p value covered all ROIs. In the effects of the three 
SNPs, the exhaustive search could take more than 30 days. Therefore, we improved the 
genetic algorithm to make it more suitable for our experiments. There were four main steps 
in genetic algorithms (Fig. 11).

Step 1, coding and initialization.
Step 2, fitness function and selection.
Step 3, Intersection and mutation.
Step 4, decoding.
In order to facilitate the analysis, the minimal p value of the three SNPs was set on one 

voxel as the consequence under the same experimental criterion of the two SNPs.
In step 1, considering the set of p value on 271,633 voxels of 1784 SNPs, the coding strat-

egy and decoding strategy were established. Since it was the effects of three SNPs, the cod-
ing strategy was determined to be a 3-bit code, and each bit was 1 to 1784.

In step 2, to filter out the parent, tournament strategy was introduced in this section. For 
choosing the parent in the tournament strategy, we defined the fitness function: based on 
the p value of 3 SNPs affecting 116 ROIs, the SNPs sets with larger score were picked out as 
the parent. The score was defined in formula 1. We first considered the p value of SNPs, and 

Coding

Initialization

Father Mather Fitness function

MutationOffspring

Tournament 
Strategy

probability of 
Mutation < 0.05

Decoding

Meet
or not

Intersection

Yes

No

Step 1

Step 2

Step 3

Step 4
Fig. 11  The workflow of the genetic algorithms. Coding = the SNP sets code into a 3-bit code; Initialization 
= the generation of initial data set; Tournament Strategy = mining the best code from a set of codes; 
Intersection = exchanging parents’ code in a random site; Mutation = generating a new 3-bit code; Offspring 
= the result of Intersection or Mutation; Fitness function = based on the p value of 3 SNPs affecting 116 ROIs 
or a specific ROI, the SNPs sets with minimal p value are picked out as the parent; Decoding = the 3-bit code 
decode into corresponding SNP sets
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then calculated the coverage of SNPs in ROIs. Therefore, when pvalue > 0.05 , the propor-
tion of p value was 0. When p = 0.05 , the proportion of coverage and p value were same. 
When p < 0.05 , the proportion of p value was greater than the coverage.

where p is the maximum pvalue of 3 SNPs. cov is the maximum coverage of 116 ROIs. 
log0.05 0.2 is used to modify the score of coverage = 20% to − log10 0.05.

In step 3, for yielding progeny populations, a random parameter called the probability 
of intersection was defined. If it was less than Pc , a random position was chosen as the 
intersection from the 3-bit code for crossover operation. To avoid data locking in a com-
bination, another parameter called probability of variation was generated randomly and 
compared with Pm . If it was less than Pm , a mutation operation would be performed.

The adaptive values of Pc and Pm were determined using formula 2 and 3 [40].

where k1, k2, k3, k4 ≤ 1.0 . fmax is the maximum score of the population. f ′ is the larger 
score of two intersecting individuals. f  is the average score of the population. f is the 
score of offspring.

In step 4, the results were decoded into corresponding SNP sets.
SR: ranking SNPs according to minimal p value covered a specific ROIs. The fitness 

function in step 2 was defined as: based on the p value of 3 SNPs affecting a sprcific ROI 
(the coverage > 20% and the biggest coverage of other ROIs < 15%), the SNPs sets with 
minimal p value were picked out as the parent. Other strategy of SR were similar to AR.
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