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Simple Summary: In this study, we developed a simple simulation model to illustrate the effects of
different mating patterns on the spread of autosomal recessive deafness 1A (DFNB1A) in an isolated
human population with regard to the intensity of selection pressure. The modeling results have
revealed that the prevalence of DFNB1A in an isolated population can be dramatically increased
under frequent assortative marriages in a relatively short time period under the pressure of “relaxed”
selection. However, under current conditions, the proportion of recessive homozygotes quickly
reaches a short plateau and then continuously decreases. Moreover, in the long term, the studied
effect can be leveled by growing social equality for deaf people, as evidenced by the results of neutral
selection modeling.

Abstract: An increase in the prevalence of autosomal recessive deafness 1A (DFNB1A) in populations
of European descent was shown to be promoted by assortative marriages among deaf people.
Assortative marriages became possible with the widespread introduction of sign language, resulting
in increased genetic fitness of deaf individuals and, thereby, relaxing selection against deafness.
However, the effect of this phenomenon was not previously studied in populations with different
genetic structures. We developed an agent-based computer model for the analysis of the spread of
DFNB1A. Using this model, we tested the impact of different intensities of selection pressure against
deafness in an isolated human population over 400 years. Modeling of the “purifying” selection
pressure on deafness (“No deaf mating” scenario) resulted in a decrease in the proportion of deaf
individuals and the pathogenic allele frequency. Modeling of the “relaxed” selection (“Assortative
mating” scenario) resulted in an increase in the proportion of deaf individuals in the first four
generations, which then quickly plateaued with a subsequent decline and a decrease in the pathogenic
allele frequency. The results of neutral selection pressure modeling (“Random mating” scenario)
showed no significant changes in the proportion of deaf individuals or the pathogenic allele frequency
after 400 years.

Keywords: agent-based computer modeling; hereditary deafness; GJB2; genetic fitness; assortative
mating; sign language; isolated population
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1. Introduction

Hearing loss (HL), caused by both environmental and genetic factors, affects more than
10% of the world’s population and is associated with disability and significantly reduced
quality of life among affected individuals. On average, 1 in 1000 newborns is born deaf
and, in 50–60% of cases, the pathology has a genetic cause [1,2]. Hereditary HL cases are
subdivided into two forms: non-syndromic (isolated HL) and syndromic (HL in addition
to other clinical traits). Syndromic HL comprises roughly 30% of all HL cases, with more
than 400 HL-associated syndromes having been described, while the remaining 70% are
non-syndromic [3]. Hereditary non-syndromic HL is a monogenic disease with uniquely
high genetic heterogeneity. Around 160 genetic loci associated with non-syndromic HL are
currently known, and about 120 genes have been identified, mutations that led to hearing
impairment [4]. Autosomal recessive deafness 1A (DFNB1A), caused by mutations in
the GJB2 gene (MIM 121011, 13q12.11) encoding the protein connexin 26 (Cx26), is the
most prevalent in many populations [5]. The proportion of DFNB1A among hereditary
forms of HL is 17.3% worldwide and reaches up to 27.1% in populations of European
descent [5]. In total, about 400 mutations in the GJB2 gene are known, the majority of
which are recessively inherited [6]. A varying prevalence of different GJB2 mutations has
been shown in various populations worldwide, which can be explained by large-scale
populational events throughout history [7–13]. The unique GJB2 mutational spectrum and
the accumulation of certain GJB2 mutations in certain ethnic groups can be attributed to
the founder effect [14–22].

At the same time, Nance et al. [23,24] suggested that certain social factors could be a
strong driving force behind the increased incidence of DFNB1A in developed countries,
due to relaxed selection against deafness. This phenomenon began after the introduction of
sign language 400 years ago in many Western countries and the subsequent establishment
of residential schools for the deaf [23,24]. It was hypothesized that sign language-based
homogamy among deaf people promoted assortative marriages between them and con-
sequently improved genetic fitness (reproductive capabilities). This hypothesis was later
supported by a comparative analysis of modern and retrospective demographic parameters
of the deaf population in the USA [25,26]. Thus, it was evidenced that the combined effect
of a high assortative mating rate and increased genetic fitness of deaf people may have
doubled the frequency of DFNB1A in the United States over the past 200 years [23,25]. The
impact of assortative mating by deafness on the incidence of DFNB1A is defined by the
proportion of marriages in which both partners are homozygous by recessive pathogenic
allele and hence have a possibility of having only deaf children; such marriages are termed
as non-complementary [23,24] (Supplementary Materials, Chapter S1). On the other hand,
complementary marriages are expected to have hearing children since each partner has a
different etiology of HL.

However, using computer simulations, it was shown that this effect is limited only to
the most frequent recessive form of hereditary HL, and the influence on the total prevalence
of deafness in the population was found to be insignificant due to the high heterogeneity
of HL, both hereditary and nonhereditary etiology [27]. These results are in accordance
with theoretical models of non-random mating. Assortative mating was originally mathe-
matically studied by R.A. Fisher [28] and S. Wright [29] and later reworked by Crow and
Felsenstein [30]. Their general conclusion was that in the case of recessive trait assortative
mating, recessive homozygosity increases, and most of the increase occurs in the first
generations, while the underlying allelic frequencies in the population do not change.
While it is evident that the emergence of assortative mating changed the pressure of natural
selection on recessive deafness in relatively large populations of European descent, it is
unclear what level of impact it will have on populations with different genetic backgrounds
and social structures. Thus, in this study, we present an analysis of computer modeling of
autosomal recessive deafness 1A (DFNB1A) prevalence in an isolated human population
under different evolutionary scenarios.
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2. Materials and Methods

Agent-based modeling can simulate very specific behaviors of individuals depending
on the environment and is a widely used tool for investigating the spreading of human dis-
eases [31–35]. It is utilized to model infectious diseases like HIV [36–38], COVID-19 [39] and
others [40,41], as well as non-infectious diseases like diabetes mellitus [42,43], obesity [44],
Alzheimer’s disease [45]. To assess the prevalence of congenital recessive HL under dif-
ferent intensities of selection pressure for deafness in an isolated human population, we
developed an agent-based model that simulated a phenotype-based mating behavior. For
the purposes of the correct modeling of the spread of DFNB1A, an isolated population with
known data on the prevalence of GJB2 gene mutations causing hereditary HL and data on
the proportion of assortative mating among deaf people and their reproductive capabilities
in comparison with their hearing siblings were needed.

2.1. Reference Population

Data from the Yakut population was used as a reference for the developed model. The
Yakuts (originally known as the Sakha) are the largest population of indigenous people in
Siberia (466,492 according to the Russian Census, 2010) living in the Sakha Republic (East-
ern Siberia, Russia). The Yakuts are characterized by specific anthropological, demographic,
linguistic and historical features linked to their relationships with the nomadic Turkic tribes
of South Siberia and Central Asia. The genetic data revealed a relatively small size of the
Yakut ancestor population and a strong bottleneck effect in the Yakut paternal lineages
(around 80% of the Y chromosomes of the Yakuts belong to one haplogroup, N3) [46].
Marriage traditions and geographical isolation played a significant role in the genetic and
demographic history of the Yakut population. A high frequency of some Mendelian disor-
ders in the Yakut population was found to be the result of the founder effect. For example,
the high prevalence of HL in Yakuts is caused by the founder c. − 23 + 1 G > A mutation
in the GJB2 gene (92.2% of all mutant GJB2 alleles found in deaf patients), which was found
with extremely high carrier frequency among hearing Yakut individuals (10.3% of the total
population) [17,47]. Moreover, the data on marriage structure and reproduction of deaf
people living in the Sakha Republic were presented in comparison with the contribution of
GJB2 gene mutations to the etiology of HL. The relative fertility of deaf people compared
with their hearing siblings was 0.78 (mean number of children 1.76 and 2.24 for deaf individ-
uals and their hearing siblings, respectively) [48]. The rate of assortative marriages among
deaf people was 77.1% [48]. The known genetic structure of hereditary HL in Yakuts and
the availability of data on the reproductive capabilities and marital structure of deaf people
make this population suitable for computer simulation of the distribution of DFNB1A.

2.2. The Model

To build our model, we used the C++ programming language and the Microsoft Visual
Studio 2019 (ver 16.8.4) development environment. The key element of the model is a
decentralized agent, which represents an individual with a set of parameters defining
their mating behavior. The main cycle of the algorithm represents one generation (one
generation = 20 years). The generations in the model are non-overlapping.

At the start, the program generates agents according to the initial size of the popula-
tion and the proportions of phenotypes and genotypes. A genotype is represented by two
independent alleles. Each allele is assigned the values “1” or “0”, where 1 is the recessive
mutant allele (deafness allele), and 0 is the dominant normal allele. Thus, recessive ho-
mozygotes are deaf. Additionally, the agent will be deaf regardless of genotype according
to the non-genetic deafness proportion value specified in the initial parameters. Whether
the agent will know sign language is defined according to the proportion value in the initial
parameters, which can be specified for deaf and hearing agents. Thus, each agent in the
model has the following parameters:

- sex—male or female; main criterion in marriage step of model algorithm;
- genotype with two alleles—each allele can be mutant or normal;



Biology 2022, 11, 257 4 of 13

- phenotype—true if agent is deaf, false if agent is hearing;
- sign language—knowledge of sign language (true/false).

After the creation of the population, the main process starts with the formation of
couples. To simulate the process of agent marriage, a matrix is formed, the first row of
which corresponds to male agents ID and the first column to female agents ID. Each cell
of this matrix contains an “S” score assigned to each potential couple according to the
algorithm for the mutual evaluation of potential partners (Equation (1)). A simplified
scheme of the main cycle of the program is demonstrated in Figure 1.
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Figure 1. Simplified scheme of the main cycle of the program. At the initial stage, a population of
agents (individuals) is created according to the parameters set by the user. The population of the next
generation consists of the progeny of the agents of the previous generation.

The algorithm for the mutual evaluation of candidate agents calculates the “S” score
for a potential couple based on the similarity of their phenotypes and their knowledge of
sign language. Preference for similarity of these parameters by agents can be regulated
in order to meet the criteria of assortative mating, which is implemented by assigning
“weights” to the parameters of phenotype and sign language for all agents. The variables
weight_pheno_h and weight_pheno_d define the value of similarity of their phenotype for
candidate agents, hearing and deaf, respectively. For brevity, in the manuscript, we further
refer to these variables as WH

P (weight_pheno_h) and WD
P (weight_pheno_d). The variables

weight_sign_h and weight_sign_d define the value of knowledge of sign language for candi-
date agents, hearing and deaf, respectively, hereinafter referred to as WH

S (weight_sign_h)
and WD

S (weight_sign_d). This allowed us to regulate whether these parameters will equally
determine the attractiveness of a potential partner, or one of them will make up a larger part
of the resulting “S” score. If both candidates are hearing, the values of the WH

P parameters
of both candidates are added to the “S” score (i.e., 2 × WH

P). If both candidates are deaf,
the value 2 × WD

P is added to the “S” score, and 2 × WD
S is added if both candidates

know sign language (Equation (1)). If one candidate agent is deaf and the other is hearing,
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the sum (WH
S + WD

S) will be added to the “S” score only if both candidates know sign
language. Thus, agents with similar phenotypic parameters will have higher scores.

Sij

(
malei, f emalej

)
=



2 × WH
P , if malei.phenotype = femalej.phenotype = false

2 × WD
P , if malei.phenotype = femalej.phenotype = true

2 ×
(
WD

P + WD
S
)

, if malei.phenotype = femalej.phenotype = true and both signlanguage = true

WD
P + WD

S , if
(

malei.genotype! = femalej.phenotype
)

and both signLanguage = true
0, in other ways

(1)

Next, if the resulting “S” score is greater than the lower threshold values of both
candidate agents, which are defined by the “socialPosition” parameter, then the value
of “S” is recorded in the cell of the matrix corresponding to a given pair of candidates
(Equation (2)).

Mij ={
S
(

malei, femalej

)
, i f S

(
malei, femalej

)
> max

(
min

(
malei.socialPosition, femalej.socialPosition

))
0, in other way

(2)

Next, the program selects a pair of candidate agents with the highest score in the M
matrix, and a couple is created. If there are two or more pairs with equally high scores, one
of them is selected randomly. The selected agents become unavailable to other candidate
agents. We must also note that a pair of candidate agents with a low “S” score will also
have a chance of “marriage” if it is higher than the “socialPosition” value and there are no
higher scores. After all of the couples are formed, the process of offspring generation starts.

The offspring generation algorithm considers the phenotypes of the partners (DD,
DH or HH, where D is deaf and H is hearing) and a mean number of children (birthrate),
which is specified in the initial parameters for each type of couple. For every couple, the
number of children is defined individually using generated values corrected with a beta
distribution. The program creates the corresponding number of new agents, which are
equally likely to be male or female. The parental genes are inherited by a new agent with
equal probability; there are no de novo pathogenic alleles. The possibility of non-genetic
deafness is determined in the same way as described above for the initial population.
After offspring are generated for every couple, the parental agent population is deleted
and replaced by the new agents, and the process of couple formation starts again. A
detailed description of the algorithm and a list of the input parameters are presented in the
Supplementary Materials, Chapters S2 and S3.

For the batch operation of the program and statistical processing of the output data, we
developed a service script that controls the number of simulation runs, sets the starting pa-
rameters for the model, performs statistical calculations and generates summary plots. The
script was written in the Python programming language using the pandas and matplotlib
libraries. A single simulation of the “Assortative mating” scenario takes approximately 70 s
on 1 thread of the 3.5 GHz AMD Threadripper 1920X processor (Advanced Micro Devices,
Inc., Santa Clara, California, USA) with an SSD hard drive. The program can be run on
both Windows and Linux operating systems.

2.3. Verification and Validation of the Model

The correct implementation of the sign language-based assortative mating mechanism
in our model was verified by reproducing the outcomes of previous studies on the analysis
of linguistic homogamy’s influence on recessive hereditary deafness in the USA [23,25]
(Figure 2A; Supplementary Materials, Chapter S4). The model was run using data from
the nationwide sample of pedigrees of deaf marriages between 1803 and 1894 [49] in order
to reach the modern characteristics of the deaf population in the USA [23,25]. The current
proportion of people with autosomal recessive deafness among the deaf population in the
USA was estimated to be 0.35 [23] and 0.47 [25], which is 1.5 to 2.4 times higher than that of
the 19th century (0.2) [49].
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Figure 2. Model validation and verification. (A) Comparison of model outcome with archive data
for the USA deaf population. Increase in the proportion of recessive mutant homozygotes in the
model outcome (dotted line with diamonds—10 data points) was comparable to the data reported by
Nance et al. [23] and Arnos et al. [25]. (B) Comparison of model outcome with archive census data
on the Yakut population. The trend of population size increase in the model outcome (black dashed
line with squares) was comparable to the actual growth of the Yakut population according to census
data (grey solid line with crosses).

The model parameters were set to meet the reported characteristics [23,25,49], and
the initial prevalence of individuals homozygous for GJB2 gene mutations was set at
0.2%. The proportion of assortative marriages among deaf individuals was set to 76%; the
marriage rate and fitness of hearing and deaf individuals were equal, with a mean number
of 2.1 children per marriage; deaf individuals were assumed to know sign language; the
modeling time was set to 10 generations (200 years), the model was run 1000 times; and
95% confidence intervals were calculated. Modeling under these parameters indicated that
the proportion of deaf homozygotes increased 1.9 times (from 0.2% to 0.38%) over 200 years,
which corresponds to the 1.5–2.4 times increase reported in the USA. Thus, the modeled
dynamics of recessive mutant homozygotes in the model outcome were in accordance with
the data reported by Nance et al. [23] and Arnos et al. [25] (Figure 2A).

In order to verify the model on the reference Yakut population, we reproduced the
population growth according to archive and modern census data, without consideration of
pathogenic allele frequency and mating characteristics. According to the census data, the
Yakut population was 227,384 in 1897 and had increased to 466,492 by 2010. The birth rate
value was set to 2.24, which is a mean value for the number of children who survived to
reproductive age in 1897 (2.18 per woman) and 2010 (2.31 per woman), according to archive
census data. By assigning these values in the initial population number and birthrate
parameters, after 100 years (five generations), the population growth in the model outcome
was comparable to the census data for the same period (Figure 2B; Supplementary Materials,
Chapter S4).

2.4. Simulation Scenarios

We carried out the simulations with three different combinations of initial parameters
for the model population (Supplementary Materials Table S1). In the first scenario, the
agents (individuals) did not know sign language, and there was no deaf community (“No
deaf mating” scenario). In the second scenario, deaf individuals used sign language and
formed a community (“Assortative mating” scenario). In the third scenario, all agents
were mating regardless of their phenotype (“Random mating” scenario). Other parameters
were set in order to meet actual data from the Yakut population. The initial frequency of
recessive homozygous agents was set to 0.25%, which is calculated from the registered
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frequency of heterozygous individuals (10.3%) [17]. The proportion of non-genetic deafness
was also set to 0.25% in accordance with the DFNB1A contribution in the etiology of HL
in the Yakut population [17]. The average number of children in the marriage of two deaf
agents was set to 1.78; of deaf and hearing was set to 1.7; and of two hearing agents was
set to 2.24 children, in order to represent registered reduced relative fertility (by 22%) of
deaf people in Yakutia [48]. The assortative mating rate was set to 77.1% [48]. To generate
reliable statistical data, the simulation of each scenario was performed 1000 times. Statistical
processing was carried out by calculating 99% confidence intervals for each set of values
(n = 1000) of the variables produced by the program.

3. Results

We developed an agent-based computer model for analysis of the spread of heredi-
tary congenital recessive HL in an isolated human population (Supplementary Materials,
Chapter S5). The agent in this model was a single decentralized individual. Each agent was
characterized by their phenotype and genotype. The main phenotypic parameters were: sex
(male/female), hearing status (deaf/hearing) and sign language (knowledge/ignorance).
The genotype was represented by one locus/gene in which a recessive allele is pathogenic.
The main algorithm of the program represents the life cycle of one generation (which was
considered to be 20 years) of the model population. One cycle of the program includes the
choice of marital partners based on phenotype, creation of a new population consisting of
the progeny of agents of the current generation and modeling of consolidated communities
of deaf people. We ran the model in three different scenarios (different combinations of
initial parameters for the model population) in order to simulate changes in DFNB1A
prevalence under different intensities of selection pressure. For each generation, the pro-
gram registered data on the total population number and the number of deaf individuals,
calculated the proportion of recessive mutant homozygotes and the frequency of recessive
mutant alleles and compiled these parameters into tables.

3.1. The Scenario “No Deaf Mating”

The first scenario, “No deaf mating”, was a model of a population where deaf individ-
uals did not mate and had no progeny, hence representing the full pressure of “purifying”
selection against deafness. The simulation results revealed an increase in the population
size from the initial 200,000 to 1,721,203.74 (99% CI = ± 29.72) individuals by the 20th
generation, and the number of deaf individuals increased from an initial 999.31 (± 0.37)
to 5440.07 (± 14.01). The frequency of the recessive mutant allele decreased from 5.25%
to (± 0.00) to 2.57% (± 0.00) (Figure 3A) after 20 generations. The proportion of deaf
individuals (recessive mutant homozygotes) continuously decreased from 0.25% (± 0.00)
to 0.07% (± 0.00) by the 20th generation (Figure 3B).

3.2. The Scenario “Assortative Mating”

The second scenario, “Assortative mating”, was a model of a population with the
presence of sign language, and 77.1% of marriages of deaf people were assortative. This
scenario represented “relaxed” selection due to the presence of linguistic homogamy among
deaf individuals. The simulation results revealed that the population number increased
from an initial 200,000 to 1,814,625.89 (± 142.06) individuals by the 20th generation, and the
number of deaf individuals increased from an initial 997.60 (± 1.55) to 8719.41 (± 15.80).
The frequency of the recessive mutant allele decreased from 5.25% (± 0.00) to 3.96% (± 0.00)
after 20 generations (Figure 3A). The proportion of recessive mutant homozygotes increased
up until the 4th generation, from 0.25% (± 0.00) to 0.39% (± 0.00), and then decreased to
0.23% (± 0.00) by the 20th generation (Figure 3B).
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3.3. The Scenario “Random Mating”

The third scenario, “Random mating”, was a model of a population where all indi-
viduals mated randomly regardless of their phenotypes. This scenario represented neutral
selection due to a seeming lack of pressure on the deafness phenotype. In this scenario, the
population number increased from an initial 200,000 to 1,868,655.58 (± 345.94) individu-
als by the 20th generation, and the number of deaf individuals increased from an initial
999.0 (± 0.81) to 9776.90 (± 0.16). The frequency of the recessive mutant allele slightly
lowered in the first two generations from an initial 5.25 (± 0.00) to 5.23% (± 0.00) and
then remained constant during 18 generations of modeling (Figure 3A). The proportion
of recessive mutant homozygotes increased slightly from 0.25% to 0.27% in the 1st gen-
eration and then also remained constant until the 20th generation (Figure 3B). The total
population number dynamics between all three scenarios were comparable. The number
and proportion of deaf individuals (recessive mutant homozygotes) and the frequency
of recessive alleles changed variably in each scenario, depending on the intensity of the
modeled selection pressure.

4. Discussion

In this study, we developed a simple model to illustrate the effects of different in-
tensities of natural selection on the spread of autosomal recessive deafness in an isolated
human population. In contrast to previously presented models [24,27], the agent-based
model developed in this study explicitly describes the sign language appearance in deaf
communities and proposes an algorithm for the selection of marital partners based on
preference for certain phenotypic parameters. In order to test the different levels of selection
pressure on deafness, we ran the program under three different scenarios (different sets of
initial parameter combinations for the model population).

The model population of the “No deaf mating” scenario resulted in a decrease in the
proportion of deaf individuals (from 0.25% to 0.07%) and the frequency of the pathogenic
allele (from 5.25% to 2.57%) (Figure 3). This scenario assumed that deaf people could not
marry unless they used sign language to communicate (linguistic homogamy) and therefore
could not have offspring without it. Thus, the genetic fitness of deaf individuals was close
to zero, which represented a high selection pressure against deafness. According to this
scenario, deaf children could be born (with a 25% probability) only from hearing parents
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who were both heterozygous carriers of a recessive pathogenic allele. Consequently, the
observed continuous decrease in mutant allele frequency was the result of a decreasing
proportion of recessive mutant homozygotes in the population. Currently, the indigenous
population of Yakutia (Eastern Siberia, Russia) is characterized by a relatively recent
establishment of schools for deaf and hard of hearing and the highest heterozygous carrier
rate of DFNB1A causing mutation due to strong founder effect and genetic isolation. Thus,
this scenario represents a hypothetical outcome in the Yakut population, where the genetic
fitness of deaf individuals is extremely low due to the absence of a consolidated community
based on specialized education. Such a situation was virtually possible in Yakutia up until
the emergence of the first school for deaf and hard of hearing in 1951.

The model population of the “Assortative mating” scenario showed that the propor-
tion of recessive homozygotes increased 1.5 times (from 0.25% to 0.39%) in the first four
generations (80 years), and then decreased to 0.23% by the 20th generation (400 years)
(Figure 3B). The frequency of recessive mutant alleles decreased from 5.25% to 3.96%
(Figure 3A). These data suggest that in a population with high heterozygosity (10.3%),
assortative marriages between deaf people can increase the initial incidence of hereditary
HL (Figure 3B), as was previously shown in other studies of the potential influence of
social factors on hereditary HL [24–26]. A following decrease in the proportion of recessive
mutant homozygotes after the 4th generation was associated with the 22% reduced fertility
of deaf individuals relative to hearing individuals [48]. Thus, we can assume that if current
reproductive parameters (0.78 relative fertility) and marital structures (77.1% of assortative
mating) of deaf people in Yakutia remain unchanged, we expect up to a 1.5 times increase
in DFNB1A cases in the next 80 years, which then will be followed by a prolonged decrease.
However, if the relative fertility of deaf people increases, the incidence of recessive HL
could possibly reach a new equilibrium level.

Modeling of the “Random mating” population indicated that the prevalence of heredi-
tary HL did not change, in contrast to the “Assortative mating” (Figure 3). In this case, there
were no assortative marriages by deafness since all individuals mate randomly, and the
genetic fitness of all individuals was considered equal, regardless of their genotype. There-
fore, the proportion of recessive homozygotes (q2) in the population will determine the
probability of marriage between two deaf individuals (q2 × q2), and the proportion of such
marriages will be much lower than in a population with assortative mating by deafness.
This scenario represents a panmictic population in which all individuals have equal genetic
fitness, and the proportions of genotypes and allele frequencies will remain constant from
generation to generation according to the Hardy–Weinberg principle. A similar “panmic-
tic” scenario was tested in two previous studies [24,27]. Nance and Kearsey modeled a
population with a totally random choice of a partner (random mating) and equal repro-
ductive capabilities of deaf and hearing individuals, which resulted in a minimal increase
in the proportion of mutant homozygotes (by around 1.5%) over 400 years [24]. Braun
et al. demonstrated that in a model population with random mating, the frequency of the
pathogenic allele and the proportion of mutant homozygotes did not change over 200 years
(10 generations) [27]. Such a scenario could be possible in the near future when all people
in a population will have equal social accessibility, which could be provided by massive
availability of communicational and informational resources, education and healthcare.

Several study limitations and modeling assumptions may have affected our results.
First, while we were confident in the current parameters of relative fitness, mating rate and
prevalence of GJB2 gene causative variants of deaf individuals in Yakutia [48], it is unknown
how these parameters could change in the near future. Further, we did not include other
hereditary forms of HL in the model, and their contribution to the structure of deafness in
the Yakut population has not been explicitly defined. More realistic and complex agent-
based simulations including these factors would provide a better understanding of their
interactions and support more solid predictions. Despite these limitations, the results of
this study emphasize how agent-based computer simulations provide a powerful tool
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for the analysis of autosomal recessive deafness dynamics in isolated human populations
under different mating patterns.

Modeling and predicting the dynamics of hereditary deafness is complicated by the
high heterogeneity of HL. More causative genetic loci (two or even three) occurring in dif-
ferent populations of interest need to be considered with regards to mating structure. More-
over, translation of the model to a different scale would reveal previously unconsidered
issues. Modeling of large populations, e.g., metropolises, cannot be simply implemented
by increasing the number of agents in a simulated population. To achieve this, data on
the interactions of large groups of people are needed. We assumed that interactions in
very large populations (tens or hundreds of millions of people) are, in fact, interactions
of practically independent communities of a smaller scale (from tens of thousands to a
million). In this regard, this study was devoted to such relatively small communities. After
we obtain a clearer understanding of how the interactions within them function, it will be
possible to study larger communities.

5. Conclusions

In this study, we developed a simple simulation agent-based model to illustrate the
effects of different mating patterns on the spread of autosomal recessive deafness in an
isolated human population with regard to the intensity of selection pressure. The modeling
results of the purifying” selection pressure on deafness (“No deaf mating” scenario) resulted
in a decrease in the proportion of deaf individuals and the frequency of the pathogenic
allele. The modeling results of “relaxed” selection (“Assortative mating” scenario) have
revealed that prevalence of DFNB1A in an isolated human population can be dramatically
increased under frequent assortative marriages in the relatively short time period. However,
under current conditions, the proportion of recessive homozygotes quickly reaches a short
plateau and then continuously decreases. Moreover, in the long term, the studied effect can
be leveled by growing social equality for deaf people, as evidenced by the results of neutral
selection modeling (“Random mating” scenario).
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