
RESEARCH ARTICLE

CD276 and the gene signature composed of

GATA3 and LGALS3 enable prognosis

prediction of glioblastoma multiforme

Yasuo TakashimaID
1, Atsushi Kawaguchi2, Azusa Hayano1, Ryuya Yamanaka1*

1 Laboratory of Molecular Target Therapy for Cancer, Graduate School for Medical Science, Kyoto

Prefectural University of Medicine, Kyoto, Japan, 2 Center for Comprehensive Community Medicine, Faculty

of Medicine, Saga University, Saga, Japan

* ryaman@koto.kpu-m.ac.jp

Abstract

Glioma is the most common type of primary brain tumor, accounting for 40% of malignant

brain tumors. Although a single gene may not be a marker, an expression profiling and multi-

variate analyses for cancer immunotherapy must estimate survival of patients. In this study,

we conducted expression profiling of immunotherapy-related genes, including those in Th1/

2 helper T and regulatory T cells, and stimulatory and inhibitory checkpoint molecules asso-

ciated with survival prediction in 571 patients with malignant and aggressive form of gliomas,

glioblastoma multiforme (GBM). Expression profiling and Random forests analysis of 21

immunosuppressive genes and Kaplan-Meier analysis in 158 patients in the training data

set suggested that CD276, also known as B7-H3, could be a single gene marker candidate.

Furthermore, prognosis prediction formulas, composed of Th2 cell-related GATA transcrip-

tion factor 3 (GATA3) and immunosuppressive galactose-specific lectin 3 (LGALS3), based

on 67 immunotherapy-related genes showed poor survival with high scores in training data

set, which was also validated in another 413 patients in the test data set. The CD276 expres-

sion helped distinguish survival curves in the test data set. In addition, inhibitory checkpoint

genes, including T cell immunoreceptor with Ig and ITIM domains, V-set domain containing

T cell activation inhibitor 1, T-cell immunoglobulin and mucin-domain containing 3, and

tumor necrosis factor receptor superfamily 14, showed potential as secondary marker candi-

dates. These results suggest that CD276 expression and the gene signature composed of

GATA3 and LGALS3 are effective for prognosis in GBM and will help us understanding tar-

get pathways for immunotherapy in GBM.

Introduction

Glioma is the most common type of primary brain tumor accounting for 40% of all malignant

brain tumors [1]. The World Health Organization (WHO) classifies gliomas into grades I-IV

by malignancy and overall survival (OS) [1]. Glioblastoma multiforme (GBM) is a fast-growing

grade IV malignant glioma [1]. GBM is the most common brain tumor in adults with a median
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OS of only 9–15 months and a 5-year survival rate of only 9.8%, in spite of treatment with

radiotherapy, chemotherapy, and surgery [2–4]. Therefore, early diagnosis and prognosis are

required for the accurate treatment of GBM.

Recent trends of studies on central nervous system tumors have focused on cancer immu-

notherapy, which target immune checkpoint molecules on the surfaces of tumors, antigen-pre-

senting cells (APCs), and T cells [5]. The monoclonal antibodies bind to programmed cell

death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA4), and indolea-

mine-2,3-dioxygenase 1 (IDO1), thereby, relieving T-cells from immunosuppression by tumor

cells [6,7]. The PD-1 receptor on T cells interacts with PD-1 ligands including PD-L1 (CD274)

and PD-L2 (PDCD1LG2), on the surface of tumor cells [8]. In the context of tumor, major

histocompatibility complex (MHC) class-I antigen presenting cells, a ligand interaction with

PD-1 induces suppression of T cells by inhibiting T-cell tumor lysis [8]. Similarly, CTLA4 is

also a highly potent inhibitory T-cell receptor and preferentially interacts with both CD80

(B7-H1) and CD86 (B7-H2) receptors on APCs. This prevents the CD28 stimulatory receptor

from binding on T cells and increases interleukin (IL)-6 production [9–11]. IDO-expressing

macrophages and dendritic cells regulate T-cell metabolism and response via kynurenine sig-

naling in tryptophan oxidation [12], aryl hydrocarbon receptor (AhR), mammalian target of

rapamycin (mTOR) signaling, and general control nonderepressible 2 (GCN2) in serine/threo-

nine kinetics [13].

The study on glioma reported PD-L1 expression in the patients’ characteristics and the data

were deposited in both Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome

Atlas (TCGA), however, it was hard to calculate the prognoses of the patients in mixed stages

II-IV, primary, recurrence, and progressive gliomas [14]. On the other hand, only in primary

GBM, grade IV glioma, the study on the balance of T helper type 1 (Th1) and Th2 cells associ-

ated with the PD-1 axis succeeded in estimating their prognoses. Thus, it is important to exam-

ine T-cell status coupled with the PD-1 axis in prognosis of GBM [15]. Here we examined the

expression of 67 immunotherapy-related genes involved in T-cell status and checkpoint mole-

cules, especially 21 inhibitory checkpoint molecules, in 571 non-treated primary GBM

patients. The results proposed a single gene marker candidate CD276 (B7-H3) and the gene

signature composed of GATA3 transcription factor and galectin-3 (LGALS3) in multivariate

analyses. The genes identified in the study could serve as novel candidate targets for immuno-

therapies and would help us understand target pathways in GBM.

Methods

Data set

RNA-Seq data and clinical information in glioblastoma multiforme (GBM) obtained from The

Cancer Genome Atlas (TCGA) (NIH, https://cancergenome.nih.gov/) were used. Training

data set and test data set comprised 158 samples derived from Glioblastoma Multiforme

(TCGA, Provisional) (https://www.cbioportal.org/study?id=gbm_tcga) and 413 samples

derived from Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Pro-

gression in Diffuse Glioma, 2016 (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_

2015/) available for survival analysis and expression profiling, respectively [15].

Kaplan-Meier analysis

The Kaplan-Meier analysis was performed to estimate survival distributions for subgroups

with log-rank test among subgroups using JMP (SAS Institute Inc., Tokyo, Japan) [16].
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Random survival forests analysis

Random survival forests analysis was performed to determine variable importance factors dis-

tinguishing expression of genes with survival times, which was estimated by randomly permu-

tating its values and recalculating the predictive accuracy of the model that were expressed as

the log rank test statistics using the randomForestSRC package in R [17].

Cox hazards regression analysis

Correlations between gene expression and survival times were evaluated by multivariate analy-

ses. Clinical characteristics were used as an additional variable to execute multivariate analyses.

The statistical data was determined by the Cox proportional hazards regression model using

JMP (SAS Institute Inc.) [18].

Multivariate correlation coefficient analysis

Correlation among variables were analyzed using the glasso package in R [19,20].

Statistics

Statistical analysis was performed using R software, Bioconductor, and JMP (SAS Institute

Inc.) [15]. P < 0.05 was considered statistically significant.

Results

Patient characteristics

The aim of this study was the discovery of novel prognosis markers and gene signatures from a

viewpoint of cancer immunotherapy, especially inhibitory checkpoints, based on the expres-

sion data and clinical information in two independent GBM data set. Therefore, we arranged

for the gene set related to cancer immunotherapy including type 1 T helper cells, type 2 T

helper cells, regulatory T cells, stimulatory checkpoint, and inhibitory checkpoint (S1 Table).

This study analyzed data for 571 non-treated primary GBM patients (WHO grade IV), depos-

ited in TCGA (Table 1, S1 Fig). The training data set constituted of 158 patients from the Glio-

blastoma Multiforme data set, as shown in S1A Fig. The median OS was 11.25 months (range:

0.16–88.07) (S1C Fig). The median age was 60 years (range: 21–89). Age� 60 (99 patients,

62.6%) showed poor prognosis than age< 60 (59 patients, 37.3%), with hazard ratio (HR) by

1.36 (P< 0.1107). The number of male and female patients was 102 (64.5%) and 56 (35.4%)

respectively; they showed no difference in OS (HR = 1.03, P = 0.4699). The median score of

the preoperative Karnofsky performance status (KPS) was 80 (range: 40–100); KPS� 70 (89

patients, 74.7%) and the KPS< 70 (30 patients, 25.2%) showed no difference in OS (HR =

0.93, P = 0.7984). Patients were monitored for tumor recurrence during the initial and mainte-

nance therapies by using magnetic resonance imaging or computed tomography. There were

13 patients who had cancer recurrence. The test data set constituted of 413 patients from the

Merged Cohort of LGG and GBM data set, as shown in S1B Fig. The median OS was 11.3

months (range: 0.1–127.5) (S1D Fig). The median age was 58 years (range: 10–88). Age� 60

(238 patients, 57.6%) showed poor prognosis than age< 60 (175 patients, 42.3%) with HR

by 2.18 (P < 0.0001). The numbers of male and female patients were 243 (58.9%) and 170

(41.0%), respectively; they showed no difference in OS (HR = 1.2, P = 0.1095). The median

score of KPS was 80 (range: 20–100); KPS� 70 (237 patients, 77.1%) showed better prognosis

than KPS< 70 (70 patients, 22.8%) with HR by 0.45 (P < 0.0001).
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Multivariate analyses for the genes encoding inhibitory checkpoint

molecules

First, we examined whether the genes encoding inhibitory checkpoint molecules could serve

as prognosis markers (S1 Table). The expression values of 21 immunosuppressive genes were

obtained from 158 GBM patients, which were derived from post-RNA-Seq of the resected

tumors and biopsies. Since the expression values were relatively compact, analyses were done

using the values of fragments per kilobase of exon per million reads mapped (FPKM). Random

survival forests analysis returned variable importance of each gene in the training data set (Fig

1A). Especially, CD276 (B7-H3), CD96, CD160, LGALS3, LGALS9, HAVCR2 (TIM-3), and

TIGIT were associated with relatively high scores, followed by TNFRSF14, PVR, VTCN1,

LAG3, PDCD1 (PD-1), and BTLA (Fig 1A), while CTLA-4, CD86, CD80, CD274 (PD-L1),

VISTA (C10orf54), PDCD1LG2 (PD-L2), and IDO1 were associated with relatively low scores

(Fig 1A). Graphical lasso analysis was performed to investigate genetic interaction among the

21 immunosuppressive genes (Fig 1B). The results demonstrated that CD96, CD80, CD86,

and TNFRSF14 constitute a network hub (node� 7), interacting with PDCD1LG2, VISTA,

Table 1. Patient characteristics of glioblastoma multiform.

Training data set (N = 158)

N (%) Median (Min—Max) Multivariate analysis for OSa

Median (Min—Max) HRb 95% CIc P-value

Total 158 (100) OS (days): 337 (5–2642)

Age (years) 158 (100) 60 (21–89)

Age > 60 99 (62.6) OS (days): 272 (6–2095) 1.36 0.93–2.02 0.1107

Age < 60 59 (37.3) OS (days): 408 (5–2642) 1

Gender 158 (100)

Male 102 (64.5) OS (days): 314.5 (5–2642) 1.03 0.73–1.54 0.7699

Female 56 (35.4) OS (days): 273.5 (6–1458) 1

KPSd 119 (100) 80 (40–100)

KPS > 70 89 (74.7) OS (days): 331 (13–1458) 0.93 0.53–1.70 0.7984

KPS < 70 30 (25.2) OS (days): 192 (26–1448) 1

Test data set (N = 413)

N (%) Median (Min—Max) Multivariate analysis for OS

Median (Min—Max) HR 95% CI P-value

Total 413 (100) OS (days): 339 (3–3825)

Age (years) 413 (100) 58 (10–88)

Age > 60 238 (57.6) OS (days): 250.5 (3–3615) 2.18 1.74–2.73 <0.0001

Age < 60 175 (42.3) OS (days): 477 (12–3825) 1

Gender 413 (100)

Male 243 (58.9) OS (days): 363 (3–3474) 1.2 0.96–1.50 0.1095

Female 170 (41.0) OS (days): 288 (3–3825) 1

KPS 307 (100) 80 (20–100)

KPS > 70 237 (77.1) OS (days): 432 (3–3825) 0.45 0.33–0.62 <0.0001

KPS < 70 70 (22.8) OS (days): 207 (6–1791) 1

NOTE:
aOS; overall survival,
bHR; hazard ratio,
cCI; confidence interval,
dKPS; Karnofsky performance status.

https://doi.org/10.1371/journal.pone.0216825.t001
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Fig 1. Prognostic marker candidates for immunosuppression in the training data set of glioblastoma multiform (GBM). (A) Random survival

forests analysis for immunosuppressive pathway genes in GBM. Top 20 of variable importance were shown. (B) Graphical lasso estimation for the

genetic interaction of immunosuppressive pathway genes in GBM. Schematics were drawn by glasso package in R. Numbers in the parentheses indicate

the numbers of genetic interaction. Thick and thin lines indicate strong and weak interaction, respectively. (C-H) Kaplan-Meier survival analysis for

immunosuppressive pathway genes in GBM. (C) CD276/B7-H3. (D) HAVCR2/TIM-3. (E) PDCD1/PD-1. (F) TIGIT. (G) TNFRSF14. (H) VTCN1.

Numbers in the parentheses indicate the threshold of gene expression. High and low indicate subgroups with over and under the threshold. OS, overall

survival. HR, hazard ratio. Subgroups were divided by the median expression of genes.

https://doi.org/10.1371/journal.pone.0216825.g001
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LGALS9, TIGIT, LGALS3, CD276, LAG3, PDCD1, PVR, and VTCN1 (node� 6) (Fig 1B).

Moreover, we tried to develop a prognosis prediction formula using the 21 immunosuppres-

sive genes, whereas a Cox hazard regression analysis returned only CD276 (S2 Fig). Higher

expression of CD276 showed poor prognosis (HR = 1.923, P = 0.002) (Fig 1C). Besides, higher

expression of HAVCR2, PDCD1, TIGIT, and TNFRSF14, and lower expression of VTCN1

also showed poor prognosis (HR > 1.495, P< 0.05) (Fig 1D–1H). These results suggest that

CD276 and TIGIT could contribute to prognosis in several analyses and construction of

immunosuppressive genetic networks in the training data set of GBM.

Multivariate analyses for the genes involved in cancer immunotherapy in

the training data set

Second, we analyzed 67 immunotherapy pathway-related genes that include 17 Th1-related

genes, 18 Th2-related genes, 21 stimulatory checkpoint genes, 21 inhibitory checkpoint genes,

and 14 regulatory T cells (Treg)-related genes, thereby, focusing on the immunosuppressive

genes to identify prognosis markers (Fig 2, S1 Table). Since the expression values were

expanded in the genes variously categorized, the values were converted into a log scale by

log2(x+1). Random survival forests analysis returned variable importance of each gene in the

training data set (Fig 2A). Especially, TNFRSF18, TNFSF14, TNFSF9, TNFSF18, CD276,

GATA3, TNF, STAT4, and TGFB1 were associated with relatively high scores (Fig 2A). Immu-

nosuppressive genes including CD276, VTCN1, and CD96 were ranked by relatively high

score of the variable importance (Fig 2A). Cox proportional hazards regression analysis

resulted in 16 candidate genes being associated with the effect of variables on the OS (S3 Fig).

Based on the results, a prognosis prediction formula was constructed as follows (Fig 2B): Z1 =

0.325 × TNFRSF18–0.256 × TNFSF18–0.352 × HHLA2 + 0.228 × GATA3 + 0.481 × TNFSF9–

0.406 × CTLA4 + 0.693 × FOXP3 + 0.213 × LGALS3–0.22 × CD70–0.518 × PDCD1LG2 +

0.33 × BTLA + 0.5 × TNFRSF14 + 0.971 × CD86–0.962 × CD4–0.191 × CEACAM1–0.154 ×
LAG3.

The 158 GBM patients were divided by the median score of Z1 by 4.11. The subgroup with

Z1� 4.11 showed poor prognosis for OS (HR = 6.10, P< 0.0001) (Fig 2C) and disease-free

survival (HR = 2.30, P = 0.0027) (Fig 2D). In immunosuppressive genes, higher expression of

CD276 (HR = 1.785, P = 0.0044) and TIGIT (HR = 1.515, P = 0.038) showed poor prognosis

(Fig 2E and 2F). On the contrary, lower expression of VTCN1 (HR = 2.0, P = 0.0041) and

CD86 (HR = 1.7, P = 0.021) showed poor prognosis (Fig 2G and 2H). Besides, higher expres-

sion of CD163, FOXP3, GATA3, IL18R1, TGFB3, TGFB1, TNFRSF18, TNFSF14, and TNFSF4

also showed poor prognosis (HR > 1.492, P< 0.05) (S4A–S4I Fig). On the contrary, lower

expression of HHLA2, STAT1, and TBX21 also showed poor prognosis (HR > 1.6, P< 0.05)

(S4J–S4L Fig). These results suggested that the formula Z1 is effective in estimating prognosis

in the training data set. Besides, Kaplan-Meier analyses suggested that expression of the genes

involved in Th2 cells, Treg, and stimulatory checkpoint molecules and suppression of the

genes involved in Th1 cells would result in poor prognosis.

Multivariate analyses for the genes involved in cancer immunotherapy in

the test data set

Similarly, we also analyzed the immunotherapy pathway-related genes using log scale-expres-

sion values in the test data set (Fig 3). Random survival forests analysis returned variable

importance of each gene (Fig 3A). Especially, IL12RB, GATA3, LGALS9, IL6, HAVCR2,

CD3D, CD3E, CD276, TGFB1, and TNF were associated with relatively high scores (Fig 3A).

Immunosuppressive genes including LGALS9, HAVCR2, CD276, PVR, and LGALS3 were

Gene signature and prognosis prediction in glioblastoma
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Fig 2. Prognostic marker candidates for cancer immunotherapy in the training data set of glioblastoma multiform (GBM). (A) Random survival

forest analysis for cancer immunotherapy-related genes in GBM. Top 20 of variable importance was shown. (B) Prognosis prediction formula for

cancer immunotherapy-related genes in GBM. The Z1 score is calculated by the expression values of 16 immunosuppressive pathway genes. (C,D)

Kaplan-Meier survival analysis using the Z1 score = 4.11. (C) Overall survival analysis (OS). (D) Disease free survival analysis. HR, hazard ratio. (E-H)

Kaplan-Meier survival analysis for representative immunosuppressive pathway genes in GBM. (E) CD276/B7-H3. (F) TIGIT. (G) VTCN1. (H) CD86.

Numbers in the parentheses indicate the threshold of gene expression. High and low indicate subgroups with over and under the threshold. OS, overall

survival. HR, hazard ratio. Subgroups were divided by the median score of Z1 and the median expression of genes.

https://doi.org/10.1371/journal.pone.0216825.g002
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Fig 3. Prognostic marker candidates for cancer immunotherapy in the test data set of glioblastoma multiform (GBM). (A) Random survival forest

analysis for cancer immunotherapy-related genes in GBM. Top 20 of variable importance was shown. (B) Prognosis prediction formula for cancer

immunotherapy-related genes in GBM. The Z2 score is calculated by the expression values of 8 immunosuppressive pathway genes. (C) Kaplan-Meier

survival analysis for overall survival (OS) using the Z2 score = 0.15. HR, hazard ratio. (D-H) Kaplan-Meier survival analysis for representative

immunosuppressive pathway genes in GBM. (D) CD276/B7-H3 (E) HAVCR2/TIM-3. (F) TNFRSF14. (G) LGALS9. (H) CD274/PD-L1. (I)

PDCD1LG2/PD-L2. (J) LGALS3. (K) IDO1. Numbers in the parentheses indicate the threshold of gene expression. High and low indicate subgroups

with over and under the threshold. OS, overall survival. HR, hazard ratio. Subgroups were divided by the median score of Z2 and the median expression

of genes.

https://doi.org/10.1371/journal.pone.0216825.g003
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ranked in the top 20 genes (Fig 3A). Cox hazards regression analysis returned 8 candidates

genes associated with the effect of variables upon the OS (S5 Fig). Based on the results, a prog-

nosis prediction formula was constructed as follows (Fig 3B): Z2 = 0.601 × IL2RB—0.616 ×
GATA3–0.508 × TMIGD2–0.929 × LTA—0.873 × LGALS3–0.416 × TGFB2 + 0.394 ×
IL12RB2 + 0.566 × TGFB3.

The 413 GBM patients were divided by the median score of Z2 = 0.15. The subgroup with

Z2� 0.15 showed poor prognosis for OS (HR = 1.67, P< 0.0001) (Fig 3C). For immunosup-

pressive genes, higher expression of CD276 (HR = 1.369, P = 0.0059), HAVCR2 (HR = 1.562,

P = 0.003), TNFRSF14 (HR = 1.315, P = 0.017), LGALS9 (HR = 1.333, P = 0.0099), CD274

(HR = 1.282, P = 0.038), and PDCD1LG2 (HR = 1.282, P = 0.038) showed poor prognosis (Fig

3D–3I). On the contrary, lower expression of LGALS3 (HR = 1.5, P = 0.013) and IDO1

(HR = 1.4, P = 0.018) showed poor prognosis (Fig 3J and 3K). Besides, higher expression of

CSF2, IL12RB2, IL13, IL2RB, IL3, IL4, IL5, IL6, IL9, TBX21, TGFB1, TNFRSF18, and

TNFRSF4 also showed poor prognosis (HR > 1.315, P< 0.05) (S6A–S6M Fig). On the con-

trary, lower expression of CD3D, CD3E, CD3G, GATA3, LTA, STAT1, STAT4, and TNF also

showed poor prognosis (HR > 1.3, P< 0.05) (S6N–S6U Fig). These results suggest that the

formula Z2 is effective for estimating prognosis in the test data set. Besides, Kaplan-Meier anal-

yses suggested that expression of the genes involved in Th2 cells, stimulatory checkpoint mole-

cules, and suppression of the genes involved in Th1 cells would result in poor prognosis.

The gene signature for prognosis prediction in glioblastoma multiforme

We tested whether the prognosis prediction formula Z1 derived from the training data set and

Z2 derived from test data set are effective to estimate prognosis in the test data set and training

data set, respectively. However, the subgroup with Z1� -0.064 (median score) showed no dif-

ference in OS (HR = 0.853, P = 0.1554) in the test data set (S7A Fig). Similarly, the subgroup

with Z2� -11.118 (median score) also showed no differences in OS (HR = 0.735, P = 0.12) in

the test data set (S7B Fig). Then, we next focused on the common factors, including the

GATA3 transcription factor and the LGALS3 β-galactoside-binding protein family, in the

both data sets, thereby, constructed the formulas as follows (Fig 4A and 4B): Z3 = 0.228 ×
GATA3 + 0.213 × LGALS3 in the training data set, and Z4 = − 0.616 × GATA3–0.873 ×
LGALS3 in the test data set.

The training data set and test data set were divided into the two subgroups by the median

scores of Z3 by 3.22 and Z4 by 0.102. The subgroups with Z3� 3.22 (HR = 1.549, P = 0.0253)

and Z4� 0.102 (HR = 1.31, P = 0.0157), showed poor prognosis for OS in each data set (Fig

4A and 4B). These results suggest that the gene signature composed of common factors includ-

ing GATA3 and LGALS3 would be useful to estimate prognosis of the patients with GBM.

However, indices of each gene and cutoff values depended on the data set. Thus, the common

formula using identical factors, indices, and cutoff values was unable to be constructed. The

problem should be solved using a huge data with development of more useful and exact analyt-

ical methods in future studies.

Discussion

Naive T cells differentiate to Th1 and Th2 cells [21,22]. Th1 cells are characterized by TBX21

and STAT4 expression [21,22]. Interferon (IFN)-γ is expressed in Th1 cells and constitutively

activates type I IFN-α/β against the growth of glioma cells [23]. Further, IL-4 activates Th2

cells, which functions by eliminating extracellular parasites and producing effector cytokines

[24]. The effector cells of Th2 immunity mainly comprise mast cells, IL-4/IL-5 CD4+ T cells,

and B cells [24]. GATA3 and STAT6 play pivotal roles in Th2 cells [24]. Although the score of

Gene signature and prognosis prediction in glioblastoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0216825 May 10, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0216825


Th1 gene signature, including TBX21, IFNG, and IL12RB1/2, makes it difficult to estimate

prognosis in GBM, higher score of Th2 gene signature, including GATA3 and IL-4, is associ-

ated with poor prognosis in GBM [15]. In the study, higher expression of GATA3, IL18R1,

and TGFB3 were also associated with poor prognosis in the training data set (S4C–S4E Fig), as

well as CSF2 and IL-3/4/5/6/9/13 in the test data set (S6A, S6C and S6E–S6I Fig). The Th1/

Th2 lineage is developmentally different from the Th17 lineage [25]. TBX21, GATA3, and reti-

noic acid receptor (RAR)-related orphan receptor gamma thymus (RORC) stimulate CD4+

cells to differentiate into Th17 cells, defined by IL-17 production [26–28]. Th17 cells also pro-

duce IL-2, which is required for generation and maintenance of Tregs. However, IL-2 inhibits

Th17 differentiation [28]. Dysregulation of Th17 cells causes malfunction of Tregs by decreas-

ing TGF-β signaling [29,30]. In the context of Treg differentiation as described above, higher

expression of TGFB1 was also associated with poor prognosis in the study (S4F Fig and S6K

Fig). Furthermore, higher expression of CD163, FOXP3, and TGFB3 showed poor prognosis

in the training data set (S4A, S4B and S4E Fig), but not in the test data set. Similarly, IL4

expression also showed poor prognosis in the test data set (S6F Fig).

PD-1 is significantly correlated with genes including CD40, ICOS, IDO1, SATB1 and

TGFB1, and other immune checkpoint molecules including CD276, CTLA4, LAG3, and

TIM3, which represents an anticancer agent [31]. The higher expression of PD-1 is associated

with poor prognosis in patients with diffuse gliomas [31]. The low score of Th2 gene signature

with lower expression of PD-L1, PD-L2, and PD-1 is associated with good prognosis in GBM

[15]. In the study, lower expression of PD-1 and PD-1 ligands were associated with good prog-

nosis in the training data set (Fig 1E) and the test data set (Fig 3H and 3I), respectively. In the

study, lower expression of STAT1 for stimulatory checkpoint was associated with poor prog-

nosis (S4K and S6S Figs), suggesting the suppression of stimulatory checkpoint activity as a

prognosis marker candidate.

Fig 4. Gene signature constituted of Th2 cell-related gene GATA3 and immunosuppressive gene LGALS3 in glioblastoma multiform (GBM). (A)

Survival distribution using the Z3 score in the training data set of GBM. (B) Survival distribution using the Z4 score in the test data set of GBM. OS,

overall survival. HR, hazard ratio. Subgroups were divided by the median scores of Z3 and Z4.

https://doi.org/10.1371/journal.pone.0216825.g004
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CD276 (B7-H3) is an immune checkpoint molecule that belongs to the CD28 family, which

plays pivotal roles in T-cell suppression in glioma [32]. The higher expression of CD276

showed poor prognosis in glioma patients from CGGA and TCGA [33]; this was also consis-

tent with the present data (Figs 1C, 2E and 3D). The 4IgB7H3 isoform is a candidate of thera-

peutic target in GBM [34]. Isocitrate dehydrogenase (IDH) mutation also seems to influence

differential expression of CD276 between the grade II and higher-grade gliomas [35]. Gene

ontology analysis reveals that CD276 is associated with immune response, cell cycle, cell prolif-

eration, and Toll-like receptor signaling [35]. CD276 also discriminates endothelial cells

resected from malignant tissues and normal tissues [36]. Furthermore, in addition to the

advanced colorectal and breast cancers, CD276-positive circulating endothelial cells also occur

in higher frequencies in patients with GBM [36]. Expression analysis represents the marked

increase of GATA3 expression in phosphate-activated glutaminase-expressing GBM cell line

and GBM patients [37]. In this study, higher expression of GATA3 was associated with poor

prognosis in the training data set (S4C Fig), but not in the test data set (S6Q Fig). Galectin-3, a

glioma-related marker encoded by LGALS3, is a β-galactosidase-binding lectin that is impor-

tant in cell proliferation, adhesion, and apoptosis [38]. Galectin-3 is activated in microglia and

macrophages according to the progression of glioma, however, it is not expressed in oligoden-

drocytic cells representing the early stage of glioma tumorigenesis [38]. In this study, lower

expression of LGALS3 (galectin-3) and LGALS9 (galectin-9) were associated with a poor prog-

nosis in the test data set (Fig 3G and 3J), but not in the training data set.

In summary, we have demonstrated that a single gene CD276 (B7-H3) and the gene signa-

ture composed of GATA3 and LGALS3 would be promising marker candidates for prognoses

in GBM. Interestingly, a combination of the expression levels of GATA3 and LGALS3 enables

prognosis prediction in GBM, but each gene individually is not a single marker. In addition,

indices of each gene in the prediction formulas have distinct eigenvalues based on the data set,

which should be further analyzed in future. However, the aim of this study, a detection for

diagnosis and/or prognosis marker candidates for GBM, namely, CD276, GATA3, and

LGALS3, would have been achieved successfully by using of their expression data, clinical

information, and multivariable analyses. Besides, we also found the second candidate of GBM

diagnosis/prognosis markers, including TIGIT, HAVCR2, PDCD1, TIGIT, and TNFRSF14.

These genes were associated with patients’ survival and genetically interacted within a complex

network hub, suggesting a possibility of simple diagnosis in GBM. Especially, it is of great

importance that higher expression of the genes related to Th2 cells and stimulatory checkpoint

molecules and lower expression of the Th1-related genes resulted in worse prognoses in the

two independent GBM data sets. In addition, higher expression of the Treg-related genes also

tended to show poor prognosis. These results could provide promising marker candidates for

cancer immunotherapies, especially involving the inhibitory checkpoint, and would also make

way for understanding and developing target therapies and pathways in GBM.

Supporting information

S1 Fig. Glioblastoma multiforme (GBM) data set used in this study. (A-B) Construction of

the training data set and the test data set for GBM used in this study. (A) Training data set

(N = 158). (B) Test data set (N = 413). Both data set are derived from The Cancer Genome

Atlas (TCGA) and are independent of each other. The training data was used for initial analy-

sis, and furthermore, the test data set was used for validations of results from the training data

set. (C-D) Overall survival (OS) distributions of the total samples in the training data set and

test data set of GBM. (C) Training data set. (D) Test data set.

(TIF)
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S2 Fig. Cox hazard regression analysis for 21 immunosuppressive genes in the training

data set of glioblastoma multiform. (A) Coefficient value. (B) Hazard ratio.

(TIF)

S3 Fig. Cox hazard regression analysis for 67 cancer immunotherapy-related genes in the

training data set of glioblastoma multiform. (A) Coefficient values. (B) Hazard ratios.

(TIF)

S4 Fig. Kaplan-Meier survival analysis for immunosuppressive genes in the training data

set of glioblastoma multiform. Numbers in the parentheses indicate the threshold of gene

expression. (A) CD163. (B) FOXP3. (C) GATA3. (D) IL18R1. (E) TGFB3. (F) TGFB1.

(G) TNFRSF18. (H) TNFSF14. (I) TNFSF4. (J) HHLA2. (K) STAT1. (L) TBX21. High and low

indicate subgroups with over and under the threshold. OS, overall survival. HR, hazard ratio.

Subgroups were divided by the median expression of genes.

(TIF)

S5 Fig. Cox hazard regression analysis for 67 cancer immunotherapy-related genes in the

test data set of glioblastoma multiform. (A) Coefficient values. (B) Hazard ratios.

(TIF)

S6 Fig. Kaplan-Meier survival analysis for immunosuppressive genes in the test data set of

glioblastoma multiform. Numbers in the parentheses indicate the threshold of gene expres-

sion. (A) CSF2. (B) IL12RB2. (C) IL13. (D) IL2RB. (E) IL3. (F) IL4. (G) IL5. (H) IL6. (I) IL9.

(J) TBX21. (K) TNF. (L) TNFRSF18. (M) TNFRSF4. (N) CD3D. (O) CD3E. (P) CD3G. (Q)

GATA3. (R) LTA. (S) STAT1. (T) STAT4. (U) TGFB1. High and low indicate subgroups with

over and under the threshold. OS, overall survival. HR, hazard ratio. Subgroups were divided

by the median expression of genes.

(PDF)

S7 Fig. Kaplan-Meier survival analysis for cancer immunotherapy-related genes in the

training data set and test data set of glioblastoma multiform. (A) Kaplan-Meier survival

analysis using the Z1 score (= -0.064) in the test data set. (B) Kaplan-Meier survival analysis

using the Z2 score (= -11.181) in the training data set. OS, overall survival. HR, hazard ratio.

Subgroups were divided by the median scores of Z1 and Z2.

(TIF)

S1 Table. List of cancer immunotherapy-related genes.
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