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Abstract: Survival analysis of the Cancer Genome Atlas (TCGA) dataset is a well-known method for
discovering gene expression-based prognostic biomarkers of head and neck squamous cell carcinoma
(HNSCC). A cutoff point is usually used in survival analysis for patient dichotomization when using
continuous gene expression values. There is some optimization software for cutoff determination.
However, the software’s predetermined cutoffs are usually set at the medians or quantiles of gene
expression values. There are also few clinicopathological features available in pre-processed datasets.
We applied an in-house workflow, including data retrieving and pre-processing, feature selection,
sliding-window cutoff selection, Kaplan–Meier survival analysis, and Cox proportional hazard
modeling for biomarker discovery. In our approach for the TCGA HNSCC cohort, we scanned
human protein-coding genes to find optimal cutoff values. After adjustments with confounders,
clinical tumor stage and surgical margin involvement were found to be independent risk factors
for prognosis. According to the results tables that show hazard ratios with Bonferroni-adjusted
p values under the optimal cutoff, three biomarker candidates, CAMK2N1, CALML5, and FCGBP,
are significantly associated with overall survival. We validated this discovery by using the another
independent HNSCC dataset (GSE65858). Thus, we suggest that transcriptomic analysis could help
with biomarker discovery. Moreover, the robustness of the biomarkers we identified should be
ensured through several additional tests with independent datasets.

Keywords: head and neck squamous cell carcinoma (HNSCC); the Cancer Genome Atlas (TCGA);
transcriptomic analysis; survival analysis; optimal cutoff; effect size; calcium/calmodulin dependent
protein kinase II inhibitor 1 (CAMK2N1); calmodulin like 5 (CALML5); Fc fragment of IgG binding
protein (FCGBP); mindfulness meditation

1. Introduction

Head and neck squamous cell carcinoma (HNSCC), including that of oral, oropharyn-
geal, and hypopharyngeal origins, is the fourth leading cause of cancer-related death for
males in Taiwan [1]. The age-standardized incidence rate of HNSCC in males is 42.43 per
100,000 persons [2]. The treatment strategies of HNSCC are surgery alone, systemic ther-
apy with concurrent radiation therapy (systemic therapy/RT), and surgery with adjuvant
systemic therapy/RT (according to National Comprehensive Cancer Network, NCCN,
Clinical Practice Guidelines for HNSCC, Version 2.2020) [3]. Despite the improvements
in those interventions, the survival of HNSCC has improved only marginally over the
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past decade worldwide [4]. The critical advancements of targeted therapy and immuno-
oncology should benefit from emerging prognostic biomarkers guiding modern systemic
therapies.

Cumulative knowledge shows that some biomarkers have prognostic significance in
HNSCC. For example, node-negative HNSCC patients with p53 overexpression were found
to have lower survival [5]. Overexpression of hypoxia-inducible factor (HIF)-1 alpha [6] or
Ki-67 [7] was found to be correlated with poor response to radiotherapy of HNSCC. Both
epidermal growth factor receptor (EGFR) [8,9] and matrix metalloproteinase (MMP) [10]
were found to be overexpressed to promote the invasion and metastasis of HNSCC. From
2000 to 2006, the first anti-EGFR antibody-drug (cetuximab) was developed and combined
with radiotherapy, known as bio-RT, to increase survival with unresectable locoregionally
advanced disease [11]. The systemic therapy of cetuximab plus platinum-fluorouracil
chemotherapy (EXTREME regimen) improves overall survival when given as a first-line
treatment in patients with recurrent or metastatic HNSCC [12,13]. It was approved by
the US Food and Drug Administration (FDA) in 2008. The bio-RT could be proceeded
with docetaxel, cisplatin, and 5-fluorouracil (Tax-PF) induction chemotherapy to overcome
radio-resistance of HNSCC [14].

However, Rampias and his colleagues [15] suggested that Harvey rat sarcoma viral
oncoprotein (HRAS) mutations could mediate cetuximab resistance in systemic therapy
of HNSCC via the EGFR/rat sarcoma (RAS)/extracellular signal-regulated kinases (ERK)
signaling pathway. After that, the EGFR tyrosine kinase inhibitor (TKI) was introduced to
help cetuximab in 2018. Anti-tumor activity was observed in a phase 1 trial for HNSCC
patients using cetuximab and afatinib, a TKI of EGFR, human epidermal growth factor
receptor (HER)2, and HER4 [16]. Other EGFR TKIs, such as gefitinib, erlotinib, and
osimertinib, were also developed to treat advanced HNSCC. Although 90% of HNSCCs
overexpress EGFR, cetuximab only has a 10–20% response rate in those patients. As of
2019, cetuximab was still the only drug of choice with proven efficacy for selected HNSCC
patients [17].

In the immuno-oncology era, the immune-checkpoint inhibitor (ICI) was introduced
in 2014 for treating HNSCC [18,19]. The ICI works on immune checkpoint molecules,
including programmed death 1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4),
T-cell immunoglobulin mucin protein 3 (TIM-3), lymphocyte activation gene 3 (LAG-
3), T cell immunoglobin and immunoreceptor tyrosine-based inhibitory motif (TIGIT),
glucocorticoid-induced tumor necrosis factor receptor (GITR), and V-domain Ig suppressor
of T-cell activation (VISTA) [20]. The US FDA has approved the anti-PD-1 agents (e.g.,
pembrolizumab and nivolumab) as monotherapies for platinum-treated patients with
recurrent or metastatic HNSCC [21]. According to the phase 3 KEYNOTE-048 study,
PD-L1 is a validated biomarker used as clinical guidance for candidate selection of pem-
brolizumab [22,23]. However, due to the complexity of immune-tumor interactions, ICI
has 20% response rate in programmed death ligand 1 (PD-L1)-expressing patients (over
50% in immunohistochemistry (IHC) staining of HNSCC) [19,23].

According to our previous proteomic study from 2010 to 2017, thymosin beta-4 X-
linked (TMSB4X) is related to tumor growth and the metastasis of HNSCC [24]. It was
also reported by the subsequent investigations that TMSB4X contributes to tumor aggres-
siveness through epithelial-mesenchymal-transition (EMT) in pancreatic [25], gastric [26],
colorectal [27], lung [28], ovarian [29], and melanoma [30] cancers. Thus, it might be
suggested that TMSB4X is a candidate for tumor type-agnostic therapy [31], as a common
biomarker of several types of cancer.

The Cancer Genome Atlas (TCGA) has clinical and genomic data of HNSCC (528 par-
ticipants), which were standardized and are available at a unified data portal, Genomic
Data Commons (GDC) of the the National Cancer Institute (NCI). The advantages of
applying the TCGA data for cancer biomarker identification include:

• To the best of our knowledge, the TCGA database is the largest collection (in terms
of both cancer types and cohort size, especially in HNSCC) of comprehensive ge-
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nomics with survival data available in the field of cancer research. The whole-genome
sequencing data were harmonized across all genome data analysis centers. Many
databases adopt the essential demographic data from TCGA, since it has comprehen-
sive physical and social features of patients, such as exposure to alcohol, asbestos,
radioactive radon, tobacco smoking, and cigarettes.

• TCGA has a remarkable advantage for computational and life scientists who study
cancer, since useful web-based tools and APIs are ready to analyze and visualize TCGA
data. It might be getting help soon from the research community for trouble-shooting
purposes.

• Many achievements in diagnosis, treatment, and prevention that relied on the TCGA
data have already been published and keep increasing in number [32].

Usually, researchers develop an in-house workflow of gene expression analysis of
TCGA data to find HNSCC biomarkers. It would be helpful to show that alterations in
gene expression correlate with phenotypes of HNSCC. Some researchers [33–39] tried
to find differentially expressed genes (DEGs) of the HNSCC samples at both genotypic
and phenotypic levels (without survival information) for biomarker discovery. Gene
expression data were downloaded from the TCGA or Gene Expression Omnibus (GEO)
databases (e.g., GSE117973 [39]; HIPO-HNC cohort has n = 87). They used the Database
for Annotation, Visualization, and Integrated Discovery (DAVID, available at https://da
vid.ncifcrf.gov/, accessed 15 November 2019) to obtain information for Gene Ontology
(GO), including biological processes, cellular components, and molecular functions. Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis was also used to annotate
the potential functions of their biomarker candidates. The pathway enrichment analysis
of DEGs was also performed by DAVID, STRING (available at https://string-db.org,
accessed 15 November 2019), and Cytoscape software [37,38]. Li [36] and his colleagues
made an R package (GDCRNATool) for the implementation of those workflows for gene
expression analyses of the TCGA. Xu and his colleagues [40] also identified their biomarkers
via DEGs analysis. The significant impacts of genes on overall survival were evaluated
with Kaplan–Meier survival curves with a log-rank test (p value < 0.01) and univariate
Cox regression. They validated the candidate genes by using the web-based tools of
Gene Expression Profiling Interactive Analysis—GEPIA—and Human Protein Atlas (HPA)
databases. GEPIA was developed, using TCGA datasets, by Zefang Tang and his colleagues
(version 1 [41], version 2 [42], and GEPIA2021 [43], available at http://gepia2021.cancer
-pku.cn/, accessed 18 July 2021). HPA [44] applied immunohistochemistry (IHC) for the
TCGA database (please see details in the Discussions section “Validation by Web-based
Tools”). Finally, their biomarkers were verified by using the gene expression profile from
the GEO and HNSCC cell lines and tissues.

Other investigators should gather genes of interest to specific cancer types. They
should upload those genes manually onto web-based tools, such as SurvExpress [45]
(available at http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp, accessed
11 August 2021), and then analyze cohorts of interest (e.g., TCGA). After downloading
the survival results, they could curate plots and tables carefully. It is not possible to scan
the whole human protein-coding genome in this way. The web-based tools might set a
cutoff at the median, 1/4 quantile, or 3/4 quantile for subsequent analyses. There are
several visualization tools and R packages which deal with cutoff determination [46], such
as Prognoscan [47], Cutoff Finder [48], Findcut [49], OptimalCutpoints [50], cutpointr
(available at https://github.com/thie1e/cutpointr, accessed 20 November 2018), and
cutoffR (available at https://cran.r-project.org/web/packages/cutoffR, accessed 27 June
2021). However, none of them could perform survival analysis in tandem with cutoff
selection and whole-genome scanning.

In summary, identifying predictive biomarkers for selecting standard-of-care or ad-
vanced systemic therapy [50] in HNSCC is crucial. Our approach describes an in-house
workflow implemented in R script, which runs on the Rstudio server. Its functions in-
clude data retrieving and pre-processing, feature selection, sliding-window cutoff selection,
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Kaplan–Meier survival analysis, Cox proportional hazard modeling, and biomarker discov-
ery. The independent HNSCC dataset (GSE65858) [51] was used to validate this strategy.
The workflow, shown in Figure 1, has scanned 20,500 human protein-coding genes of the
TCGA HNSCC cohort to yield a model with biomarker estimates using gene-expression-
based survival analysis.

➜
➜

➜
➜ Data cleaning/ 

preprocessing

Rstudio Server

Biormarker
Candidates

FirebrowseR

GSE65858

Clinical Data

Gene expression values 
(20500 genes)

TCGA
GDC

Firehose

Cutoff engine

FDR correction

Kaplan–Meier estimator

TCGA_HNSCC cohort Survival Analyses

Cox modeling

Hazard ratio/
Bonferroni 
correction

Kaplan-Meier
Cox model

Candidate selection

Figure 1. A workflow of HNSCC biomarker discovery. The workflow includes data retrieval from
the TCGA GDC data portal, data processing with merging and cleaning, and then performing the
survival analyses (within yellow square). The Cutoff engine (in R script: cutofFinder_func.HNSCC.R,
a serial cutoff for grouping patients with low or high expression of a specific gene, to yield a collection
of p values; please see Materials and Methods section for details) might calculate all possible Kaplan–
Meier p values (corrected by false discovery rate (FDR) method) to find the optimal cutoff value of
gene expression for subsequent Cox modeling. The candidate selection performs (1) dissection and
selection of candidate genes with further Bonferroni-adjusted p values and the hazard ratios of a Cox
model, based on the results from the survival analyses; (2) survival analyses of the other HNSCC
dataset (GSE65858) using Kaplan–Meier estimates (with FDR corrections) and Cox modeling. The
biomarker candidates were consensus results of TCGA and GSE65858. (HNSCC: head and neck
squamous cell carcinoma; TCGA: the Cancer Genome Atlas; RNA-Seq: RNA sequencing; GDC:
Genomic Data Commons.)

2. Results

The TCGA HNSCC cohort was used for exploration of biomarker candidates. A total
of 9416 Kaplan–Meier plots (under sliding-window cutoff selection) with associated Cox
univariate and multivariate tables were generated by Cox modeling (Figure 1) and justified
by the ranking of hazard ratios. In total, 967 out of 9416 genes were kept by criteria of
FDR-adjusted Kaplan–Meier p values (<0.05) and hazard ratios (HR) derived from Cox’s
model (Figure 2a,b, initial trial). In the next step, a stringent Bonferroni p value correction
was used to yield 20 genes (Figure 2c,d).
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HNSC Cox's Harzard Ratios (multivariate)
 versus Bonferroni p value
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HR at 1.8
HR at 0.6
p value at 0.05

Figure 2. The initial progress of candidate selection from the TCGA HNSCC cohort. The p value
of Kaplan–Meier survival was one of the selection criteria. The effect size was estimated by Cox’s
hazard ratio. Initial trial step: (a) univariate HR versus FDR-adjusted p value; (b) multivariate HR
versus FDR-adjusted p value. After stringent restriction by Bonferroni-adjusted p values and Cox’s
HR, a few top-ranked genes were acquired by (c) univariate HR versus Bonferroni-adjusted p value;
(d) multivariate HR versus Bonferroni-adjusted p value. (TCGA: the Cancer Genome Atlas; HR:
hazard ratio; FDR: false discovery rate).

CAMK2N1, CALML5, and FCGBP and 17 other genes (DKK1, STC2, PGK1, SURF4,
USP10, NDFIP1, FOXA2, STIP1, DKC1, ZNF557, ZNF266, IL19, MYO1H, EVPLL, PNMA5,
IQCN, and NPB) had significant FDR-adjusted p values (<0.0003) in the Kaplan–Meier
estimates and appropriate hazard ratios (HRs) (>1.8 or <0.6) in Cox’s model (Figure 3;
log10(0.0003) = −3.5). The volcano plot reveals that those top 20 genes (Bonferroni-
adjusted p < 0.05) form the peaks. At the same time, Cox’s HRs separate them in regard to
significant prognostic impact.

In our validation study using the GSE65858 cohort [51] (under median cutoffs),
CAMK2N1, CALML5, and FCGBP (3 out of those 20 genes discovered in the TCGA
cohort) kept ahead of the curve with their FDR-corrected p values (<0.05), and Cox’s HRs
(>1.8 or <0.6) (Supplementary Table S3). However, the significance of the other 17 genes
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was insufficient compared to that of DUSP6, MSMB, and RBM11 (Figure 4). Conversely,
there are 22 genes which have high hazard ratios (>1.8 or <0.6) in the GSE65858 cohort
(Figure 4); their hazard ratios were between 0.6 and 1.5 in the study of TCGA HNSCC
(Figure 3). Thus, there is a consensus between the TCGA and GSE65858 cohorts that
CAMK2N1, CALML5, and FCGBP are significant candidates for HNSCC biomarkers.

log10(FDR-adjusted p value) of KM estimate

Figure 3. A volcano plot of genes in survival analyses of TCGA HNSCC. This cohort was applied for
exploration of the candidate biomarkers. A total of 9416 genes had unadjusted p values of less than
0.05. CAMK2N1, CALML5, FCGBP, and 17 other genes (marked in black square) had hazard ratios
(HRs) >1.8 or <0.6. The 22 genes, listed on the side, had hazard ratios between 0.6 and 1.5. Red spots:
HR > 1.0. Green spots: HR < 1.0. (X-axis: Kaplan–Meier survival estimates, with FDR-adjusted
p values (log10 transformed); y-axis: HR of Cox proportional hazard regression model.)

Our top candidate is calcium/calmodulin dependent protein kinase II inhibitor 1
(CAMK2N1). The Kaplan–Meier curve reveals that 152 patients bearing higher expression
levels of CAMK2N1 suffered from an only 35% 5-year OS rate. In comparison, the other
262 patients with lower expression levels had better prognoses (Bonferroni-adjusted p
= 0.002) (Figure 5a). Figure 5b’s cumulative p value plot shows that the 147 uncorrected
p values (<0.05) were estimated by a serial cut from 144 to 290 persons for grouping the
cohort in our cutoff finding procedure (cutofFinder_func.R; Figure 1, cutoff engine). The
smallest p value (2.97 × 10−7), when cut at n = 262 (63.3% of total cohort 414, with the
cutoff value of 0.027 for RNA-Seq by Expectation-Maximization—RSEM), was defined as
an optimal p value. The plot in Figure 5b shows a “backlash” curve with the half of values
below 1.0 × 10−3.

Conversely, the gene most associated with better survival was calmodulin like 5
(CALML5). In Figure 5c, a Kaplan–Meier curve reveals 200 patients bearing higher expres-
sion of CALML5 had a 60% 5-year OS survival rate (Bonferroni-adjusted p = 0.039). The
sliding-window cutoff-selection-generated cumulative p value plot is in Figure 5d. This
plot reveals a “V” curve with the minimum at the middle portion. The 166 uncorrected
p values were estimated by a serial cut from 125 to 290 for grouping the cohort. The smallest
p value (5.87 × 10−6), when cut at n = 214 (51.7% of total cohort 414), was defined as an
optimal p value with a cutoff value of −0.359 for RSEM.
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The third candidate is Fc fragment of IgG binding protein (FCGBP). It was also
correlated with better survival in both the TCGA and GSE65858 cohorts. In Figure 5e, a
Kaplan–Meier curve reveals 282 patients bearing higher expression levels of FCGBP had a
60% 5-year OS survival rate (Bonferroni-adjusted p = 0.008). The sliding-window cutoff-
selection-generated cumulative p value plot is in Figure 5f. This plot has a “W-shaped”
curve with the majority of values being far below 1.0 × 10−3. The 166 uncorrected p values
were estimated by a serial cut from 125 to 290 for grouping the cohort. The smallest p value
(1.21 × 10−6), when cut at n = 132 (31.9% of total cohort 414), was defined as an optimal
p value with a cutoff value of −0.472 for RSEM.

Figure 4. Volcano plot of genes in survival analyses of GSE65858 cohort. This HNSCC cohort was
used for filtering of our candidate genes: CAMK2N1, CALML5, and FCGBP. In total, 534 genes
had FDR-adjusted p values less than 0.05 Red spots: hazard ratios are greater than 1.0; Green spots:
hazard ratios are under 1.0. The 22 genes, listed on the side, had hazard ratios >1.8 or <0.6. (X-axis:
Kaplan–Meier survival estimates, with FDR-adjusted p values, log10 transformed; y-axis: the hazard
ratio (HR) under the Cox proportional hazard regression model).



J. Pers. Med. 2021, 11, 782 8 of 25

(a)

(e) (f)

(b)

(d)

CAMK2N1

(c)
CALML5

FCGBP

*p = 1.63 × 10−5

*p = 1.97 × 10−4

*p = 4.83 × 10−5

Figure 5. Kaplan–Meier survival analyses, by cutoff finding. The Kaplan–Meier curves of
(a) CAMK2N1, (c) CALML5, and (e) FCGBP with optimal p values. The cutoffs in the cumula-
tive p value plots of (b) CAMK2N1, (d) CALML5, and (f) FCGBP, show that over 50% of those
unadjusted p values derived by the sliding-window cutoff-finding procedure are below 0.001. (* p:
p value adjusted by false discovery rate, FDR.)

After adjustments for confounders, CAMK2N1 overexpression became an indepen-
dent prognostic factor (multivariate HR 2.007 (95% CI: 1.490–2.704, p < 0.001), Table 1). The
clinical T stage (HR 1.982 (95% CI: 1.048–3.745, p = 0.035)) and surgical margin status (HR
1.631 (95% CI: 1.182–2.250, p = 0.003)) also have significant impacts on a patient’s survival.
A patient being older than 65 could worsen survival (HR 1.391 (95% CI: 1.025–1.888, p =
0.034)). The M stage should be ignored in this cohort due to only 3 out of 414 patients
having distant metastasis.
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Table 1. Univariate/multivariate Cox proportional hazard regression analyses on OS time of
CAMK2N1 gene expression in HNSCC.

Features
Univariate Multivariate

HR CI95% p Value HR CI95% p Value

Gender
Female 1 1

Male 1.157 0.843–1.587 0.367 1.076 0.767–1.510 0.671

Age at diagnosis
<=65 y 1 1

>65 y 1.329 0.990–1.784 0.058 1.391 1.025–1.888 0.034

Clinical T Status
T1 + T2 1 1

T3 + T4 1.409 1.028–1.931 0.033 1.982 1.048–3.745 0.035

Clinical N Status
N0 1 1

N1-3 1.185 0.890–1.577 0.246 1.145 0.801–1.636 0.457

Clinical M Status
M0 1 1

M1 4.097 1.009–16.644 0.049 7.314 1.590–33.631 0.011

Clinical Stage
Stage I + II 1 1

Stage III + IV 1.245 0.882–1.759 0.213 0.621 0.287–1.343 0.226

Surgical Margin status
Negative 1 1

Positive 1.591 1.155–2.191 0.004 1.631 1.182–2.250 0.003

Tobacco Exposure
Low 1 1

High 1.364 1.008–1.844 0.044 1.363 0.990–1.875 0.058

Gene Expression
Low 1 1

High 2.101 1.572–2.809 < 0.001 2.007 1.490–2.704 < 0.001
(OS: overall survival; HR: hazard ratio; CI95%: 95% confidence interval; p value significant code is denoted: red <
0.05).

In summary, those three biomarker candidates, clinical T stage, and the presence of
a surgical margin are independent prognostic factors in HNSCC. We also found those
candidates have proper effect sizes—Cox’s HR >1.8 or <0.6; Table 2. Thus, the prognostic
model with coefficients was established by the TCGA HNSCC cohort and validated by the
GSE65858 cohort.

Table 2. The top 3 genes with prognostic impacts on HNSCC.

Kaplan–Meier Survival Cox Univariate Cox Multivariate

Gene ID Gene Description FDR
p Value

Bonferroni
p Value HR * CI95% HR * CI95%

CAMK2N1
calcium/calmodulin-
dependent protein
kinase II inhibitor 1

1.63 × 10−5 0.002 2.101 1.572–2.809 2.007 1.490–2.704

CALML5 calmodulin like 5 1.97 × 10−4 0.039 0.51 0.379–0.686 0.493 0.364–0.667

FCGBP Fc fragment of
IgG binding protein 4.83 × 10−5 0.008 0.484 0.359–0.653 0.496 0.366–0.674

Selection criteria (fit all): (1) Kaplan–Meier Bonferroni-adjusted p < 0.05; (2) Cox’s univariate and multivariate HR
>= 1.8 or <= 0.6 in TCGA cohort; (3) Cox’s univariate and multivariate HR >= 1.8 or <= 0.6 in GSE65858 cohort.
* Cox’s model: p <0.001 (HR: hazard ratio; CI95%: 95% confidence interval; FDR: false discovery rate).

3. Discussion
3.1. The Three Biomarkers in Cancer
3.1.1. The Protein/Pathology Atlas

Proteomics analysis in the Human Protein Atlas project (HPA) was based on 26,941 an-
tibodies targeting 17,165 unique proteins. The HPA’s Pathology Atlas analyzed each protein
in patients using immunohistochemistry (IHC) analysis based on tissue microarrays (TMAs)
adopted from TCGA. Kaplan–Meier survival analyses were based on RNA-Seq expression
levels of human genes in HNSCC tissue and the clinical outcome.
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CAMK2N1 is on the list of unfavorable prognostic genes for HNSCC, and lung
or liver cancer from the Human Protein Atlas (HPA) (pathology atlas [44] is available
at https://www.proteinatlas.org/humanproteome/pathology/head+and+neck+cancer,
Version: 20.0 updated: 19 November 2020, accessed 27 June 2021). CALML5 and FCGBP
are on the list of favorable prognostic genes for HNSCC (available at https://www.protei
natlas.org/ENSG00000178372-CALML5/pathology; https://www.proteinatlas.org/ENS
G00000275395-FCGBP/pathology, respectively). Furthermore, CALML5 was validated by
the HNSCC cohort at mRNA and protein levels [44,52].

3.1.2. Literature Review

We searched Embase/Pubmed to find the evidence of our three biomarker candidates
in cancer research.

CAMK2N1 (calcium/calmodulin dependent protein kinase II inhibitor 1) is an endoge-
nous inhibitor of calcium/calmodulin-dependent protein kinase II, CaMKII. CaMKII is a
multi-functional kinase composed of four different chains: alpha, beta, gamma, and delta.
CAMK2A encodes the alpha chain. Although the mRNA expression of CaMKII’s endoge-
nous inhibitor CAMK2N1 inversely correlates with the severity of medullary thyroid
carcinoma [53], both CAMK2N1 (HR = 2.1) and CAMK2A (HR = 1.6) were overexpressed
in the TCGA HNSCC patientswith worse outcomes. Overexpression of CAMK2N1 is also
unfavorable in head and neck cancer, as revealed by the Human Pathology Atlas (available
at https://www.proteinatlas.org/ENSG00000162545-CAMK2N1/pathology/head+and+
neck+cancer, accessed on 10 March 2021). Another web-based tool, KM plotter [54,55],
shows that CAMK2N1 either worsens or improves survival in various cancer types.

Calmodulin-like 5 (CALML5) is overexpressed in differentiating keratinocytes [56]. In
patients with HPV-associated HNSCC, hypermethylation of the CALML5 gene is associated
with significantly reduced survival, with a hazard ratio of 7.01 (95% CI: 1.01–48.66) [57].
CALML5 expression could be a protective mechanism for patient survival. Furthermore,
CALML5 was validated by the HNSCC cohort at mRNA and protein levels [44,52].

The Fc fragment of the IgG binding protein (FcγBP, FCGBP) is expressed in the
normal thyroid and is down-regulated in papillary and follicular thyroid carcinomas [58,59].
Overexpression of FCGBP has hazard ratio of 0.306 (95% CI: 0.136–0.686) for gallbladder
cancer [60].

In conclusion, the three prognostic genes underlined have been highlighted by pub-
lished studies using the TCGA cohort, an in-house cohort, or in vitro and in vivo experi-
ments.

3.2. Feature Selection for Survival Modeling

Besides ethnicity, age, gender, TNM stage, radiation therapy, chemotherapy, and
targeted therapy, the comprehensive adversely prognostic features in HNSCC should also
include tobacco exposure, EGFR amplification, human papillomavirus (HPV) status, posi-
tive/close surgical margin (<5 mm), extra-nodal extension (ENE), lymph-vascular space
invasion (LVSI), perineural invasion (PNI), depth of invasion (DOI) (>5 mm), metastatic
lymph node density (LND) [61], and worst pattern of invasion score 5 (WPOI-5), which
is defined as tumor dispersion (1 mm apart between tumor satellites) or positive PNI/
LVSI [62]. The features of DOI, LND, and tumor dispersion are not available in the TCGA
dataset. The Brandwein–Gensler risk model (lymphocytic host response, WPOI-5, and
PNI) [63,64] has been suggested for routine pathological examinations. In previous re-
ports of HNSCC, the loco-regional failure was high when the initial frozen section had
a positive/close surgical margin, and even the final margin revision revealed a negative
effect [65]. According to Table 1, in our study, the positive surgical margin had to yield a
hazard ratio greater than 1.6 to influence a patient’s OS. It is suggested by authors [66–75]
that the reason for a positive/close surgical margin is possibly tumor aggressiveness or
dispersion (WPOI-5) instead of iatrogenic actions in surgery. The surgical margin status
was also suggested as an independent surrogate for tumor dispersion in the HNSCC study.

https://www.proteinatlas.org/humanproteome/pathology/head+and+neck+cancer
https://www.proteinatlas.org/ENSG00000178372-CALML5/pathology
https://www.proteinatlas.org/ENSG00000178372-CALML5/pathology
https://www.proteinatlas.org/ENSG00000275395-FCGBP/pathology
https://www.proteinatlas.org/ENSG00000275395-FCGBP/pathology
https://www.proteinatlas.org/ENSG00000162545-CAMK2N1/pathology/head+and+neck+cancer
https://www.proteinatlas.org/ENSG00000162545-CAMK2N1/pathology/head+and+neck+cancer
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Thus, we selected common clinicopathological features during our biomarker discovery,
including gender, age, clinical T, clinical N, clinical M, surgical margin status, and tobacco
exposure, to adjust confounders (details description at Materials and Methods section).

3.3. The Purpose of Sliding-Window Cutoff Selection

By trying to find an optimal cutpoint of that RNA expression data to maximize candi-
date mining coverage, this strategy could identify more but sometimes weak “biomarkers”.
Thus, we had to try our best to handle the effect size with Cox’s modeling. Additionally,
validation of those candidates was required by using other independent datasets.

Statistical significance (p value) is affected by sample size, error, effect size (substantive
significance) [76,77], and cutoff. The effect size is the magnitude of the difference (e.g.,
hazard ratio) between the groups being compared. The effect size is independent of the
sample size [76].

In a study with a large sample size, the difference can be noticed easily (i.e., p value
< 0.05) due to decreased standard error [76]. However, a small effect size (non-zero) is often
meaningless or implies substantive insignificance (e.g., hazard ratio between 0.8 and 1.2).
Conversely, the effect size can be large but fail to gain statistical significance if the sample
size is small. The following errors could also impact the p value:

• A random error, defined as the variability in data, is not considered a bias but rather
occurs randomly across the entire study population and can distort the measurement
process (e.g., RNA-Seq experiments). A larger sample size could reduce the random
error.

• A systematic error is a bias, a selection biases, an information bias, or a confounder. It
could deleteriously impact the statistical significance. A larger sample size could not
affect the systematic error.

While statistical significance can inform the researcher of whether an effect exists, the
p value will not directly tell one of the effect size. Thus, if there is no error in two study
groups, and the sample sizes are the same (not small), the group which has a larger effect
size will have a small p value [77]. If a skewed cutoff that splits between the two groups—
for example, into 425 versus 75—statistical significance will be gained by increasing the
effect size artificially.

There was a benefit in using the sliding-window cutoff method (the between 30%
and 70% quantile) in Kaplan–Meier analysis of the TCGA HNSCC cohort at the beginning.
We compared the results of cutoff at the optimal p value by sliding window or just at the
median of gene expression. The numbers of genes (with unadjusted p values < 0.05) were
6284 and 3118, respectively. After FDR correction, it became 967 versus 209, respectively.
The sliding-window cutoff method could catch more potential candidates which have
p values far less than 0.001 for subsequent Cox’s modeling. That is because of the properly
selected cutoff improving the statistical significance. A smaller p value might predict large
effect size (HR) associated biomarkers. Then, these preliminary candidates will have an
opportunity to be carefully selected by using FDR, stringent Bonferroni correction, their
effect sizes (Cox’s HR), and the use of another independent cohort (GSE65858) to prevent
false discovery.

We can explain the aforementioned situation by examples. When reviewing the special
cases of genes such as NDFIP1, DKC1, PNMA5, and NPB, we noticed that NDFIP1, with a
p value of 0.05 at the 50% quantile (median) cutoff, could achieve a p value of 2.62 × 10−6 at
a 70% quantile cutoff. NDFIP1 has a FDR-adjusted p value of 1.07 × 10−4 (Supplementary
Figure S1, a “S” or “W”-shaped portion of the p value plot). However, it was excluded as a
candidate by a small effect size (HR = 1.33 in GSE65858) of less than 1.8.

The other example is IL19. It has a p value plot with acute S-curve bending at the
median zone, which lets the FDR-adjusted p value have a large difference between the
50% quantile cutoff (FDR-KM p = 0.115) and an optimal 48% quantile cutoff (FDR-KM p
= 6.54 × 10−6). This optimal cutoff method could boost its statistic significance to pass
correction by both FDR and Bonferroni methods. Even IL19 became a candidate through
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its effect size (HR = 0.472 in TCGA cohort), but failed in the validation with the GSE65858
cohort (small effect size as HR = 0.630, and FDR-KM p = 0.031).

3.4. Technical Considerations

There are two essential points of biomarker discovery from survival analysis of the
TCGA HNSCC dataset.

First, since TCGA genomic data were harmonized, the pre-processing of TCGA RNA-
Seq in our workflow was done as follows:

• HNSCC samples without complete clinical information were removed;
• Null expressed genes in more than 30% of the HNSCC samples were excluded;
• The updated number of protein-coding genes in the TCGA HNSCC was 20,500.

After investigation of the mRNA expression dataset obtained through NCI’s Firehose
API, we found that the expression values of two genes (gene ID: 9906 and gene ID: 728661)
were saved together under the entity of gene symbol “SLC35E2”. The expression file of
SLC35E2 was almost double those of SLC35E1 and SLC35E3 in size. According to the
Human Gene Database (available at https://www.genecards.org/Search/Keyword?query
String=SLC35E2, accessed on 10 March 2021), SLC35E2A (Gene ID: 9906) and SLC35E2B
(Gene ID: 728661) should be the correct entities for the TCGA HNSCC dataset. SLC35E2
is the previous symbol of SLC35E2A (reference at https://www.genenames.org/data/g
ene-symbol-report/#!/hgnc_id/HGNC:20863, accessed on 10 March 2021). Thus, we
reassigned the expression values of SLC35E2A and SLC35E2B and updated the number of
protein-coding genes in this TCGA HNSCC dataset from 20,499 to 20,500.

Second, we analyzed the error log during the cutoff finding and Cox modeling. The
result shows that program could be halted under several technical situations. These
included:

• If 32.2% of events had a “one group” issue in the confusion matrix of Chi-square test in
Cox regression (coxph), due to a zero in the M (distant metastasis) patient subgroup;

• If 21.05% of errors occurred via “one group” issues in log-rank test (survdiff or
survdiff.fit function in R package “survival”) in the Kaplan–Meier estimate;

• If 0.78% had unknown reasons (so those 159 genes were excluded in our workflow).

These technical problems could not be detected prior to program running. They might
have been due to skewed distribution of the expression value or even random error derived
during the RNA sequencing procedure.

3.5. Limitations of the Study

The validation rate in the current study was 3 out of 20 (15%). The TCGA HNSCC and
GSE65858 cohorts have similar demographic features. However, the percentages of females
were 26.9% and 17.0%. Moreover, the percentages of smokers and tobacco they had were
76.9% and 82.2%, and 45.8 and 28.3 pack-years, respectively. In total, 60.3% of females were
smokers in the TCGA HNSCC; 67.3% of females were smokers in the GSE65858. The results
of the current study also show that higher tobacco exposure is an independent risk factor
of HNSCC patient survival (HR 1.364 (95% CI: 1.008–1.844, p = 0.044)). This implies that
even though gender is not a prognostic factor, the heavy female smoker might contribute
some genetic alterations to HNSCC.

American white people were 85.6% of the TCGA HNSCC cohort, and German people
were 90% of the GSE65858 cohort. Grunwald and his colleagues [78] found that oropha-
ryngeal cancer is more common in North America (51.2%) than Northern Europe (32.4%
Germany). However, we found only nine patients with cancer of the oropharynx in the
TCGA HNSCC. Of oropharyngeal SCC patients (102 samples, 37.8%), 52.2% were positive
for HPV in GSE65858. Thus, the oropharyngeal SCC was far less prevalent (1.7%) in the
TCGA cohort than in the GSE65858 cohort (37.8%). The oropharyngeal SCC should have a
different genetic background than non-oropharyngeal HNSCC [79]. This could be another

https://www.genecards.org/Search/Keyword?queryString=SLC35E2
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reason for the poor consensus across different HNSCC datasets. Dataset selection and
proper demographic matching are important in biomarker discovery.

Our approach was to build a regression model to predict a patient’s survival by
the TCGA’s gene expression. The model was validated by GSE65858 cohort. Thus, we
performed made a head-to-head comparison of Cox’s hazard ratios (5404 genes) from TCGA
HNSCC and GSE65858 datasets (Figure 6a). It showed a poor [80] Pearson’s correlation
coefficient [81] (r = 0.27). Figure 6b shows that 20 genes, including three biomarker
candidates—CAMK2N1, CALML5, and FCGBP—have a moderate [80] effect size (HR)
correlation between the two cohorts (Pearson’s r = 0.68). Overfitting of Cox’s regression
model could achieve only a moderate correlation. In such a case, an overfitted model
will only perfectly match every single gene in the TCGA, and has higher variability when
predicting what it never saw—the GSE65858 dataset. Those, as mentioned earlier, might be
the reasons why the validation rate was so low. Overfitting will limit the usefulness of the
model in its generalization. It might be controlled well by using cross-validation.
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(a) Cox’s hazard ratios from TCGA HNSCC and GSE65858 (Pear-
son’s correlation coefficient [81], r = 0.27).
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(b) Correlations of Cox’s hazard ratios of
those 20 significant genes (Pearson’s r =
0.68).

Figure 6. A head-to-head comparison of Cox’s hazard ratios from TCGA HNSCC and GSE65858 datasets. TCGA HNSCC
and GSE65858 cohorts were applied for identification and validation of the candidate biomarkers in HNSCC. (a) A total
of 5404 genes had Cox’s hazard ratios from TCGA HNSCC and GSE65858 (Pearson’s correlation, r = 0.27). CAMK2N1,
CALML5, FCGBP, and 17 other genes (marked in black) had hazard ratios (HRs) >1.8 or <0.6. Red spots: HRs > 1.0 in TCGA
HNSCC. Green spots: HRs < 1.0 in TCGA HNSCC. Sizes of spots: bigger for Kaplan–Meier p values in TCGA HNSCC.
(b) The 20 genes were extracted and shown. The hazard ratios of those genes have a moderate correlation between the
two cohorts (Pearson’s r = 0.68). (X-axis: Hazard ratios of Cox proportional hazard regression model from TCGA HNSCC;
y-axis: Those values from GSE65858; TCGA: the Cancer Genome Atlas; HNSCC: head and neck squamous cell carcinoma.)

Moreover, the head-to-head comparison of Kaplan–Meier p values (5404 and 20 genes)
from those two cohorts is also shown in Supplementary Figure S2a,b. It reveals poor
Pearson’s correlations (r = 0.01 and r = 0.19). Thus, the significance of CAMK2N1, CALML5,
and FCGBP was still sufficient compared to that of the other 17 genes in the GSE65858 study.
There were 270 participants whose data were collected in GSE65858 for our validation study.
Again, the effect size (i.e., hazard ratio) can be large but fail to gain statistical significance if
the sample size is not large enough. A high-quality HNSCC dataset (with protein-coding
gene expression and survival data, n > 500) is not easy to find in the GEO database. The
three biomarker candidates were discovered by TCGA HNSCC and then validated by the
GSE65858 dataset. More data are required for further confirmation.
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3.6. Future Directions in Translational Medicine
3.6.1. Proteomics Validation

Although we combined the power of genome-wide scanning and an optimal cutoff
finder for survival analysis, the study has some limitations. We are aware of the im-
portance of direct assessment of protein products comprising the basic functional units
in cancer cells’ biological processes. The announcement of the Cancer Proteome Atlas
(TCPA, http://tcpaportal.org, accessed on 10 March 2021) excites the cancer research
community [82,83]. Through the utility of the reverse-phase protein arrays (RPPAs) or
reverse-phase protein lysate microarray (RPMA), microarray “Western blots” in the TCPA
could help to test our hypotheses from RNA-Seq studies. However, in the TCPA database
(v3.0 [84]), there are only 237 antibodies available, not covering our candidates so far.

3.6.2. Laboratory Validation

We encourage multidisciplinary studies that use complementary computational and
experimental approaches to address challenging cancer research. Such in vitro and in
vivo validation experiments will be undertaken in our laboratory. We plan to analyze the
mRNA (e.g., qRT-PCR) and protein (e.g., Western blot) of HNSCC cell lysate to confirm the
candidate genes’ expression. The effects of overexpression and knockdown of the genes by
lentiviral clones should be observed in cell function assays (e.g., proliferation, migration,
and invasion) and mouse xenograft models (e.g., tumor growth).

Moreover, this bioinformatics paper provides targets and supports the community’s
rationale for looking into these HNSCC candidates via in vitro and in vivo validation. We
aim to promote a reproducible bioinformatics [85,86] method allowing successful repetition
and extension of analyses based on the TCGA or other in-house HNSCC datasets. Good
research reproducibility practice is necessary to allow the reuse of code and results for new
projects. It may turn out to be a time-saver in the longer run. When multiple scientists can
reproduce a result, it will also validate our initial results and readiness to progress to the
next research phase. Once our laboratory or the community confirms those candidates
as targets, compound screening [87–89] could facilitate more personalized therapy for
HNSCC patients.

3.6.3. Cancer Type-Agnostic Study

Our strategy still has the strength to explore more possible biomarkers from RNA-Seq
datasets in cancer research. In our previous work, altered glucose metabolism—the War-
burg effect [90]—promoted the progression of HNSCC, which is partially attributed to the
solute carrier family 2 member A4 (SLC2A4, or glucose transporter 4, GLUT4) and tripartite
motif-containing 24 (TRIM24) pathway [91,92]. Lactic acidosis-induced GLUT4 overexpres-
sion was also found in lung cancer cells [93]. Currently, pembrolizumab and nivolumab’s
success has been based on a common biomarker (e.g., PD-1) in several types of cancer.
It is a model of tumor type-agnostic therapy [31]. There are several common biomark-
ers of immune-checkpoint inhibitor (ICI) under evaluation, including tumor-infiltrating
lymphocytes (TIL), interferon gamma (IFN-γ), and tumor mutational burden (TMB) [23].
The other ICI, anti-LAG-3 (pelatlimab), is currently being evaluated in phase I/IIA [50]
(ClinicalTrials.gov Identifier: NCT01968109) and II-IVA [94] (NCT04080804) studies.

In line with tumor-agnostic research, we plan to explore common biomarkers crossing
TCGA diseases. However, the GDC provided standardized data frames that could not
directly fit our workflow’s scope. Before the global gene scanning process, it is neces-
sary to re-format, transpose, and merge the 528 patients’ clinical datasets and correlate
20,500 expressions of bio-specimens. This process should be carefully curated to confirm
the data integrity within the correct definition [95]. We also plan to upgrade our R script
for the cutoff engine to C++ and source it in the Rstudio server. The high performance
of C++ could speed up the critical steps in this workflow involving heavy computation
of matrix data [96]. Moreover, it will be possible to introduce the Rstudio Shiny app

http://tcpaportal.org
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(https://shiny.rstudio.com, accessed on 10 March 2021) as a web-based tool (named “pval-
ueTex”) packaged with our workflow in the future.

3.6.4. Holistic Cancer Care

There are 81 physical, pathological, and social conditions derived from participants
available for survival modeling in the TCGA, such as age, gender, residual tumor, vital
status, days-to-last-followup, cancer stage, smoking duration, exposure to alcohol, asbestos,
and radioactive radon. However, the TCGA did not collect other features related to holistic
care. When going for holistic cancer care [97,98], spiritual and emotional conditions are
equally essential, alongside physical and social status (Figure 7). Psychosocial stress is
associated with cancer incidence [98–100], metastasis [99,101–103], and poor survival [104].
These impacts might be mediated through the hypothalamic–pituitary–adrenal (HPA)
axis [105]. Holistic healthcare providers engage patients with eye contact for mind-to-
mind connection. Their empathy, sympathy, and compassion are induced by the suffering
of patients from those diseases. They try to treat patients by prescribing medicine (and
“themselves”) or performing surgery. Thus, the healing resilience of patients should be
induced by unconditional positive regard. The patients trust those who take care of
them and have the confidence to increase the capacity to recover from diseases through a
mind–brain–body connection manner (Figure 7).
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Figure 7. The concept of holistic care for HNSCC patients. Beyond carcinogenesis: In the mind–
brain–body axis, a stressful environment (giant black arrow) will trigger an emotional response. The
subconscious mind (brain) releases stress hormones and inflammation signals in response to negative
emotions. The body’s internal environment (cells) alters epigenetic control in gene regulation and
mRNA expression. Over a long time, the tissue/cells will be transformed into dysplasia and then
malignancy (e.g., HNSCC) with help from known carcinogens. Cancer care: Holistic care should
take care of cancer patients’ spiritual, emotional, physical, and socioeconomic needs. Physical care
will be carried out by medication therapy or surgery. After establishing a therapeutic relationship
(TR), the physicians’ spiritual properties (empathy, sympathy, and compassion) will engage cancer
patients and recover their self-compassion to gain resilience against the disease through their mind–
brain–body axis. Thus, we suggest that electric healthcare records (EHR) should include physical,
pathological, and psychological data, and even more spiritual information. The TCGA might collect
those "holistic features" (green dashed line) for further study of personalized medicine.

4. Materials and Methods
4.1. Patient Cohort

A large-scale cancer database, aggregating many independent features, is necessary to
facilitate the biomarker discovery. The Cancer Genome Atlas (TCGA) project [106] has been
developed since 2005 and supervised by the National Cancer Institute’s (NCI) Center for

Figure 7. The concept of holistic care for HNSCC patients. Beyond carcinogenesis: In the mind–
brain–body axis, a stressful environment (giant black arrow) will trigger an emotional response. The
subconscious mind (brain) releases stress hormones and inflammation signals in response to negative
emotions. The body’s internal environment (cells) alters epigenetic control in gene regulation and
mRNA expression. Over a long time, the tissue/cells will be transformed into dysplasia and then
malignancy (e.g., HNSCC) with help from known carcinogens. Cancer care: Holistic care should take
care of cancer patients’ spiritual, emotional, physical, and socioeconomic needs. Physical care will be
carried out by medication therapy or surgery. After establishing a therapeutic relationship (TR), the
physicians’ spiritual properties (empathy, sympathy, and compassion) will engage cancer patients and
recover their self-compassion to gain resilience against the disease through their mind–brain–body
axis. Thus, we suggest that electric healthcare records (EHR) should include physical, pathological,
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and psychological data, and even more spiritual information. The TCGA might collect those “holistic
features” (green dashed line) for further study of personalized medicine.

4. Materials and Methods
4.1. Patient Cohort

A large-scale cancer database, aggregating many independent features, is necessary to
facilitate the biomarker discovery. The Cancer Genome Atlas (TCGA) project [106] has been
developed since 2005 and supervised by the National Cancer Institute’s (NCI) Center for
Cancer Genomics and the National Human Genome Research Institute (NHGRI), funded
by the US government. TCGA represents comprehensive genomics and clinic data from
84,392 patients among 33 major cancer types (data release 27.0—29 October 2020, available
at https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics
/tcga/studied-cancers, accessed on 10 March 2021). TCGA and the genome data analysis
center (GDAC) generated and analyzed DNA (mutations, copy number variations, methy-
lation sites, simple nucleotide polymorphisms), RNA (microarray, RNA-Seq, microRNA),
and protein (reverse protein phased array) data derived from biospecimens. Sample types
available at TCGA are primary solid tumors, recurrent solid tumors, blood-derived normal
and tumor, metastatic, and solid normal tissue.

The NCI’s Genomic Data Commons (GDC, available at https://portal.gdc.cancer.
gov, accessed on 10 March 2021) receives, processes, and distributes genomic, clinical,
and biospecimen data from the TCGA database and other cancer research programs.
The clinical features have been defined by TCGA GDC data dictionary: Common Data
Element (CDE) [107]. The RNA-Seq expression data have been harmonized and re-aligned
against an official reference genome build (Genome Reference Consortium Homo sapiens
genome assembly 38, GRCh38). TCGA, GDC, and some research communities offer several
computational tools to the public for facilitating cancer research. GDC Data Portal has
the official web-based TCGA data analysis tools. Other available web-based tools have
been reviewed by Zhang et al. [108] and Matthieu Foll (availalbe at https://github.com
/IARCbioinfo/awesome-TCGA, accessed on 10 March 2021). One of the GDACs, the
Broad TCGA Data and Analyses (Broad GDAC), provides Firehose, a repository of the
TCGA public-accessible Level 3 data and Level 4 analyses. Broad GDAC Firehose is an
analytical infrastructure that analyses algorithms not performed by the GDC (e.g., GISTIC,
MutSig2CV, correlation with clinical variables, mRNA clustering). A web-based version
of Broad GDAC Firehose is Firebrowse (available at firebrowse.org, Version: 1.1.40, 13
October 2019). Broad GDAC Firebrowse provides graphical tools such as viewGene to
explore expression levels and iCoMut to explore a mutation analysis of each TCGA disease.

GDC’s application programmable interface (API) uses the Representational State
Transfer (REST) architecture and provides accessibility to external users for programmatic
access to the same functionality found through GDC Portals. Those functions include
searching, viewing, submitting, and downloading subsets of data files, metadata, and
annotations based on specific parameters. Moreover, if restricted data are requested, the
user must provide a token along with the API call. This token can be downloaded directly
from the GDC Portals. Broad GDAC Firebrowse RESTful API can be accessed using an R
package, FirebrowseR (available at https://github.com/mariodeng/FirebrowseR, accessed
on 10 March 2021) [109].

GDC is available at https://portal.gdc.cancer.gov/projects/TCGA-HNSC, accessed on
10 March 2021. TCGA offers several computational tools to the public that facilitat cancer
research. Broad genome data analysis center (GDAC) Firebrowse (firebrowse.org, version
1.1.35, 27 September 2016) is one of those tools to provide data access for each TCGA disease
through a Representational State Transfer (REST) application programmable interface (API).
The 528 TCGA HNSCC patients’ clinical information and RNA-Seq data were obtained
from the Firebrowse RESTful API with an R package, FirebrowseR (available at https:
//github.com/mariodeng/FirebrowseR, accessed on 10 March 2021) [109]. We utilized
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FirebrowseR with our analysis workflow (Figure 1, green square) to receive standardized
data frames while avoiding data re-formatting, often causing some errors. GSE65858
is a dataset we used for candidate selection in our workflow. After removing missing
data, there were 270 participants whose data were collected for our validation study.
Initially, there were 288 HNSCC participants involved in their prospective study [51]. At
the University Hospital Leipzig, Germany, these patients were diagnosed as having oral,
oropharyngeal, hypopharyngeal, or laryngeal squamous cell carcinomas (SCCs). Patients
were excluded if they had a prior history of cancer other than HNSCC within the last five
years. The 49 (17.0%) females and 239 (83.0%) males had a median age of 58 years old. A
total of 82.2% were smokers who consumed 28.3 pack-years of cigarettes. In total, 88.5%
of participants used alcoholic beverages; 84.9% with oral SCC were HPV-negative; 52.2%
with oropharyngeal SCC were positive for HPV. The cancer stage distribution among this
cohort was 19.0% early stages (I/II) and 81.3% late stages (III/IV).

Regarding the TCGA database, 528 HNSCC participants from several centers were
used in the prospective studies [110]. The 142 (26.9%) females and 386 (73.1%) males had a
median age of 61 years old. A total of 97.5% were smokers who consumed 45.8 pack-years
of cigarettes. In total, 67.6% of participants used alcoholic beverages; 82.1% of participants
with oral SCC were HPV-negative. The cancer stage distribution among this cohort was
104 (20.7%) early stages (I/II) and 424 (79.3%) late stages (III/IV).

4.1.1. RNA Sequencing Data

The number of protein-coding genes was suggested to be 20,500 [111]. The GDC
Data Portal-provided TCGA data were harmonized with re-aligned RNA sequencing data
against an official reference genome build (Genome Reference Consortium Homo sapiens
genome assembly 38, GRCh38). RNA-Seq expression level read counts produced by Illu-
mina HiSeq were normalized using the Fragments per kilobase per million reads mapped
(FPKM) method, as described in [112]. The RNA-Seq preprocessor of Broad GDAC picked
the RNA-Seq by Expectation-Maximization (RSEM) value from Illumina HiSeq/GA2 mes-
senger RNA-Seq level_3 (v2) dataset of NCI GDC. It made the messenger RNA-Seq matrix
with log2 transformed for the downstream analysis, as described in their paper [113]. We
utilized FirebrowseR’s function call, Samples.mRNASeq(cohort = “HNSC”, gene = Gene-
Name, format = “csv”), to download the RNA-Seq dataset of every HNSCC patient and to
save 20,499 data frame files, named “HNSCC.mRNA.Exp.[GeneName].Fire.Rda.” After
careful investigation of the genomics dataset, the RNA-Seq values of “solute carrier fam-
ily 35 member E2A (SLC35E2A)” and “solute carrier family 35 member E2B (SLC35E2B)”
were considered two distinct expression entities. We concluded that the number of protein-
coding genes in the TCGA dataset is 20,500. We removed null expressed genes, over 30%
of the cohort, to avoid useless results.

4.1.2. Clinical Data

We utilized FirebrowseR’s function call, Samples.Clinical(cohort = “HNSC”, format =
“csv”), to get all 81 clinical features (including pathological data, defined by TCGA GDC
data dictionary: Common Data Element (CDE) [107]) of all 528 HNSCC patients, which
were saved as one data frame file: “HNSCC.clinical.Fire.Rda” (accessed November 2019).

“HNSCC.clinical.Fire.Rda” tables each have 20,500 “HNSCC.mRNA.Exp.[GeneName].
Fire.Rda” tables were transposed and merged by their _participant_barcode (unique patient
identification, ID) to yield a data frame with 528 rows (participants) against 20,581 columns
(81 clinical features and 20,500 protein-coding RNA-Seq of cancer specimens). The clinico-
pathological features selected for our workflow included gender, age, clinical tumor size,
clinical cervical lymph node metastases, clinical distant metastasis assessment, patholog-
ical surgical margin, and tobacco exposure with their corresponding survival data. The
tumor size (T), cervical lymph node metastases (N), and distal metastasis status (M) were
classified according to the American Joint Committee on Cancer (AJCC) [62] along with he
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Union for International Cancer Control (UICC) [114] TNM system for clinical staging of
HNSCC. We made data clean by removing duplicated rows and columns.

4.2. Cutoff Finder Core Engine

To evaluate the effect of gene expression on patient survival, we used sliding-window
cutoff selection by stratifying patients with Kaplan–Meier survival analysis according to
each gene’s low/high expression. Our cutofFinder_func subroutine employs the minimum
p value approach to recognizing cutoff points in continuous gene expression measurement
for patient sub-populations. First, patients were ordered by RNA-Seq values (RSEM) of a
given gene. Next, patients were stratified at a serial cut (counted people ranked between
the 30th and 70th percentiles of the cohort; Figure 1 cutoff engine). The survival risk
differences of the two groups were estimated by log-rank test to yield around 165 Kaplan–
Meier p values for each gene. Then, the optimal cutoff of RNA-Seq giving the minimum
p value was selected by the cutofFinder_func subroutine. This iteration method could
calculate all possible cutoffs of each gene’s expression in this cohort. After each run of
the cutofFinder_func function call for an individual gene, it returned an optimal cutoff
for specific patient groups (e.g., low expression in 262 persons versus high expression in
152 persons with calcium/calmodulin dependent protein kinase II inhibitor 1; Figure 5).
The cutoff would be returned to the main program to allow downstream Cox survival
analysis. The percentile range we applied, 30% to 70%, was used to avoid a small grouping
effect [47,115]. In case there was no significant p value, a median expression of this gene
was set as its cutpoint as usual. The false discovery rate (FDR) (<0.05) correction [116]
shows which genes should be retained for subsequent univariate and multivariate analysis.
It ensures the control of type I error of multiple tested p values during our cutoff finding
procedure. Then Bonferroni adjustment of that p values was used for candidate selection.

4.3. Statistical Consideration for Survival Analysis

Our workflow has loops to call the function survival_marginSFP(GeneName) with
the given GeneName to process the survival analysis gene by gene. We dichotomized
the clinicopathological features, which included gender (male/ female), age at diagnosis
(below/beyond 65 years-old), clinical tumor size (T1-2/T3-4), clinical nodal status (nega-
tive/positive), clinical distant metastasis (negative/positive), TNM staging (early/late),
surgical margin status (negative/positive), and tobacco exposure (low/high). The patients
were grouped by an RNA-Seq value of each gene—low or high-expression according
an optimal p value obtained from the cutofFinder_func subroutine (see the section of
“Cutoff Finder Core Engine”). Pearson’s chi-square test was used for these binary vari-
ables. Kaplan–Meier survival was analyzed using the log-rank test for two groups OS
comparison.

The Cox proportional-hazards regression model [117,118] is commonly used for mod-
eling survival data. It allows analyzing survival for one or more variables and provides the
effect sizes (coefficients, i.e., hazard ratios) for them [119]. The Cox model also accounts
for confounding factors [120]. It is expressed by the hazard function denoted by h(t). The
hazard function represents the risk of a specific event (e.g., death) at time t. It can be
estimated as follows:

h(t) = h0(t)× exp(β1X1 + β2X2 + β3X3 + ... + βnXn)

where

• t represents the survival time;
• h(t) is the hazard function determined by a set of n covariates (X1...Xn)—e.g., clini-

copathological features, including age, gender, gene expression, cancer stage (tumor
size, nodal metastases, distant metastases), surgical margin, smoking, and alcohol; un-
fortunately, spiritual, emotional, and social status are not available in TCGA database;

• The coefficients (β1...βn) measure the impacts—the effect sizes of covariates;
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• The term h0 is called the baseline hazard. It corresponds to the hazard value if all the
Xi are equal to zero. The “t” in h(t) indicates the hazard may vary over time.

Thus, the biomarker discovery strategy is survival modeling through a collection of
X1...Xn features from cancer datasets.

A univariate Cox proportional regression model, using the “coxph” function in R
package “survival,” has been applied to calculate hazard ratios, 95% confidence interval
(95% CI), and significance, and to estimate the independent contribution of each clinico-
pathological feature and gene expression level to the overall survival.

In a multivariate test, those covariates used include the clinicopathological features
(gender, age at diagnosis separated by being 65 years old or not, clinical tumor size (T1 or
T2/T3 or T4), clinical nodal status (N0/N+), clinical distant metastasis (M0/M1), TNM
staging (stage 1 or 2/stage 3 or 4), surgical margin status (negative/positive), and tobacco
exposure (low/high)); and gene expression levels (low/high) defined by cutoffs. All
covariates were pooled in the hazard function h(t) to estimate their impact on the overall
survival.

Results were considered statistically significant when a two-sided p value was less
than 0.05, or a lower threshold if indicated. The false discovery rate (FDR) (<0.05) could
be used to pick up the optimal p value to ensure the control for type I error of the Kaplan–
Meier survival test during the cutoff finding procedure. There were also multiple correlated
tests of null hypotheses during our global scanning of 20,500 protein-coding genes. The
stringent Bonferroni correction could result in an adjusted p value to ensure the control for
type I error.

The resulting data, including Kaplan–Meier curves, cumulative p value plots, and Cox
regression tables, were exported to “.xlsx” and “.Rda” files (by R package “r2excel”) for
subsequent biomarker selection.

4.4. Biomarker Selection and Validation

Those genes with prognostic impacts, whose hazard ratios were >=1.8 or <=0.6 in
both Cox models (univariate and multivariate), were assigned as provisional candidates.
Bonferroni-adjusted (Kaplan–Meier) p values were used to rank candidates for the decision
(Figure 1, candidate selection).

GSE65858 [51] is a dataset we used for helping with candidate selection in our work-
flow. The Gene Expression Omnibus (GEO) database [121], founded by National Center for
Biotechnology Information (NCBI), is a public repository supporting MIAME-compliant
data, including microarray and sequence-based experiments. The GEOquery R pack-
age [122] was used to download the RNA-Seq dataset (in SOFT or MINiML format) of
a HNSCC cohort, GSE65858, from the GEO database (available at https://www.ncbi.n
lm.nih.gov/geo/geo2r/?acc=GSE65858, accessed on 10 March 2021). GSE65858 has OS,
RFS, and survival time. There were 270 HNSCC participants involved in this cohort. The
expression data were generated using the platform GPL10558 (Illumina HumanHT-12 v4.0
Expression BeadChip), which targets more than 30,330 annotated genes (47,000 probes,
derived from the NCBI Reference Sequence, release 38 on 7 November 2009). We have
performed Kaplan–Meier (with FDR-correction of p value) and Cox survival analyses with
gene expression cutoffs at their median values. The biomarker candidates were a consensus
result of TCGA and GSE65858 analyses.

5. Conclusions

Our findings suggested three biomarker candidates—CAMK2N1, CALML5, and
FCGBP—which are all heavily associated with the prognosis of OS under an optimal cutoff
with stringent Bonferroni p values and proper effect size (HR).

The microenvironment of HNSCC, influenced by the mind–brain–body axis, requires
further exploration and understanding using holistic multi-parametric approaches. Since
mindfulness meditation will be helpful in cancer healthcare, we continually educate our

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE65858
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE65858
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cancer patients that they should confess for not taking care of their bodies and spirits in
the past, and give sincere thanks for their physical body’s hard work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/jpm11080782/s1. Table S1: Overexpression of 10 genes with Cox’s hazard ratios > 1.5. Table S2:
Overexpression of 10 genes with Cox’s hazard ratios <0.6. Table S3: Three consensus biomarker
candidates. Figure S1: p value plot of the gene NDFIP1. Figure S2: Head-to-head comparison of
Kaplan–Meier estimates from TCGA HNSCC and GSE65858.
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