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Abstract: Two approaches are proposed for the synthesis of bimetallic Au/Ag nanoparticles, using
the pulsed laser ablation of a target consisting of gold and silver plates in a medium of supercritical
carbon dioxide. The differences between the two approaches related to the field of “green chemistry”
are in the use of different geometric configurations and different laser sources when carrying out
the experiments. In the first configuration, the Ag and Au targets are placed side-by-side vertically
on the side wall of a high-pressure reactor and the ablation of the target plates occurs alternately
with a stationary “wide” horizontal beam with a laser pulse repetition rate of 50 Hz. In the second
configuration, the targets are placed horizontally at the bottom of a reactor and the ablation of their
parts is carried out by scanning from above with a vertical “narrow” laser beam with a pulse repetition
rate of 60 kHz. The possibility of obtaining Ag/Au alloy nanoparticles is demonstrated using the
first configuration, while the possibility of obtaining “core–shell” bimetallic Au/Ag nanoparticles
with a gold core and a silver shell is demonstrated using the second configuration. A simple model is
proposed to explain the obtained results.

Keywords: laser ablation; supercritical fluid; supercritical carbon dioxide; plasmonic nanoparticles

1. Introduction

The recent increase in interest in the synthesis of bimetallic nanoparticles of sil-
ver and gold (Ag/Au BMNPs) is associated with their unique plasmonic and catalytic
properties [1–3]. It is possible to purposefully change their characteristics and give them
new functional properties by varying the elemental composition and morphology of such
particles [4–7]. Due to this behavior, Ag/Au BMNPs can serve as the main elements in sen-
sitive spectroscopic systems based on SERS, which can be used for detecting small amounts
of bioorganic molecules or can be used in optical systems as detectors for recording changes
in certain characteristics of liquid media, such as the refractive index [4,6].

One of the first methods for the synthesis of Ag/Au BMNPs was the chemical method,
which is implemented through the preparation of a mixture of solutions of inorganic com-
pounds of gold and silver, such as AgNO3 and HAuCl4 [8]. Recently, synthesis technologies
based on the methods of “green chemistry” have been developed. These include methods
using plant extracts as the biogenic agents, allowing Au NPs, Ag NPs, and Ag/Au BMNPs
of various types to be obtained [3,9,10]; methods of biosynthesis of functionalized nanopar-
ticles using biomolecules from microorganisms as the reactants, and capping agents of
noble metals of microorganisms [11,12].

Simultaneously with the above approaches, methods based on laser ablation in various
media have been developed. Their advantages include higher productivity and flexibility
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compared to other methods for synthesizing metal nanoparticles [5,13–17]. Currently,
many methods for the synthesis of Ag/Au BMNPs using laser ablation are already known.
For example, in some cases, the effect is achieved due to the action of laser radiation on
thin films of silver and gold [14]. In other experiments, the required concentrations of
gold and silver nanoparticles are first produced in separate volumes by laser ablation of
the corresponding massive targets, and then the mixture of colloids is subjected to laser
action [6]. Some articles [3,6,8,14] have noted the possibility of varying the molar compo-
sition of the obtained Ag/Au BMNPs by changing the content of the initial components
for synthesis. In this way, it is possible to obtain not only nanoparticles with different
plasmonic characteristics, but also with different morphologies—either the “alloy” type or
the “core–shell” type [3].

The efficiency of the ablation process, the particle size distribution, their morphology,
and other characteristics are influenced by the environment, the geometry of the experiment,
and the parameters of the laser action (wavelength; energy, duration, and frequency of
pulses; focusing parameters). In most works devoted to the formation of Au NPs, Ag
NPs, and Ag/Au NPs, ablation was carried out in liquid, mainly in water [5,8,13–15].
Vacuum [18], gas [19,20], and supercritical carbon dioxide (scCO2) [7,21] have also been
used as ablation media.

The use of a scCO2 medium for laser ablation is of interest because this medium has
a number of unique properties that affect the formation, modification, and deposition of
nanoparticles. The fundamental difference between a supercritical fluid medium and liquid
media is the absence of an overheating regime and, as a consequence, the virtual absence of
explosive boiling and the formation of vapor gas bubbles during pulsed laser heating. An
important advantage of supercritical fluids is the ability to adjust the density and a number
of other characteristics of the medium within a wide range by changing the temperature
and pressure. This allows the ablation process to be controlled by selecting the optimal
parameters of the medium, including during laser exposure [22]. The supercritical state of
CO2 is characterized by extremely low viscosity at the level of gases, and high mobility
of molecules, which allows ablation products to penetrate into hard-to-reach cavities and
pores of various materials. At the same time, scCO2 is a strong nonpolar solvent and a
cheap and environmentally friendly material, so it is widely used in the development of
new technologies in the field of “green” chemistry [23–25]. Unlike organic media, scCO2
creates practically no byproducts arising from the photodegradation of organic molecules
as a result of laser action.

This work is devoted to the development of approaches to the synthesis of Ag/Au
BMNPs using the method of laser ablation of massive targets in supercritical fluid media.
As in our first experiments on this topic [7,22], we used targets consisting of silver and gold
plates. The scCO2 medium was chosen as the working medium in which the production of
nanoparticles occurred.

We aimed to find specific experiment configurations to synthesize Ag/Au BMNPs
by pulsed laser ablation of a target, which would make it possible to implement different
morphologies of Ag/Au BMNPs. Two ablation modes were implemented with different
sources of laser radiation and optics schemes, different geometrical configurations of the
target, and different laser beam locations. In the first regime, at a peak power density of laser
pulses of ~33 GW/cm2 and a large spot size on the target surface (Ø: ~0.3 mm), scanning
by radiation over the target surface was not performed. In this case, the pulse repetition
rate was low (50 Hz), and the laser radiation was supplied to the target horizontally.
In the second regime using the same laser peak power density but a small spot size
(Ø: ~45 µm), continuous scanning was carried out over the target surface. In this case,
the pulse repetition rate was high (60 kHz), and the laser radiation was supplied to the
target vertically.
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2. Materials and Methods

Experiments on the synthesis of Ag/Au BMNPs using the pulsed laser ablation of a
double target were carried out in two configurations of the experimental setup (Figure 1),
corresponding to two different ablation modes. The facilities were based on a high-pressure
reactor (1) with a set of optical ports. The reactor had a modular design that made it
possible to implement various configurations of laser action on the target with simultaneous
diagnostics of the ongoing physical and chemical processes, using visual observation and
spectral measurement methods. The reactor was equipped with six transparent 10-mm-
thick quartz windows arranged in a hexagonal pattern in the horizontal plane, as well as
an additional window in the upper cover of the reactor. Control over the process of laser
ablation of targets in all experiments was carried out visually through the windows (15)
using a digital camera. In the first configuration, the target was fixed on the side wall of
the reactor, while in the second configuration, the target was mounted on the bottom of
the reactor.

Figure 1. Schemes of installations for the synthesis of Ag/Au BMNPs show two different models
of ablation. The schematic sections of the reactor, showing top (for configuration 1) and side views
(for configuration 2): 1—high-pressure reactor; 2—laser sources; 3—galvo scanner with F-theta
lens; 4—gold and silver targets; 5—UV and visible light sources; 6—collimator lens; 7—optical
fibers; 8—spectrometer; 9—PC; 10—heating plate; 11—ring heaters; 12—needle valves for CO2

inlet and outlet; 13—pressure and temperature sensors; 14—backlight; 15—observation window;
16—quartz lens.

To achieve the first ablation regime (configuration 1), a Lotis LS-2138TF Nd:YAG laser
(Minsk, Belarus) with an average power of PL = 11 W operating in Q-switching mode was
used as the source of laser radiation. Laser radiation (λ = 1064 nm, τ = 15 ns, Ep = 220 mJ,
f = 50 Hz) was introduced into the internal volume of the high-pressure reactor through a
side window and focused on the target using quartz lenses with a focal length of 8 cm (16).
We used non-sharp focusing of the laser radiation with a spot size on the target surface of
Ø 0.30 ± 0.02 mm. The target was gradually moving towards the focal plane of the laser
beam along the path of the beam. In this case, with this spot size at the time of the onset
of ablation, the optical breakdown of the medium occurred directly on the target surface.
The peak power density of laser pulses on the target was 33 ± 5 GW/cm2.

To implement the second ablation regime (configuration 2), we used the radiation of a
YLPP-1-150V-30 fiber laser (IPG Laser GmbH, Burbach, Germany) with an average power
of P L= 30 W. Laser radiation (λ = 1064 nm, τ = 2 ns, Ep = 0.5 mJ, f = 60 kHz) was introduced
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into the reactor through the upper window. Focusing and movement of the laser beam were
carried out using an LscanH-10 galvanic scanning system (Ateko-TM, Moscow, Russia)
with an SL-1064-50-63 F-theta lens (Ronar-Smith, Singapore). The optical system made it
possible to form a laser spot with Ø 45± 5 µm on the Au–Ag target. In the experiments, we
used targets made of gold (99.95%) and silver (99.8%) with dimensions of 10 × 5 × 1 mm3,
located side-by-side inside the reactor on a PTFE holder. The peak power density of the
laser pulses in the focusing region, as in the first regime, was 34 ± 8 GW/cm2.

In the second regime (configuration 2), the laser radiation spot was moved using a
galvanoscanner over the target surface at a speed of 100 mm/s, filling a rectangle of the
selected size with a fill density of 100 lines per mm. The dimensions of these rectangles in
the case of ablation of individual parts of the target made of gold or silver were 1 × 1 mm2,
while in the case of simultaneous ablation of two parts of the target were 1 × 5 mm2.

To record the extinction spectra in both configurations, a fiber-optic spectroscopic
system was assembled (5–9). The spectra were recorded using MAYA2000 PRO (spectral
range: 200–1100 nm) and QE65000 (350–1100 nm) (Ocean Optics, Orlando, FL, USA) fiber
spectrophotometers. Radiation from a halogen lamp and a deuterium gas discharge lamp
(5) was introduced into the volume of the high-pressure reactor using 74UV collimators
(Ocean Optics) (6) and an optical fiber (7). The radiation that passed through the reactor
volume was collected by a collimator and entered the spectrometer (8). The spectra were
recorded during the entire experiment with intervals ranging from 1 to 5 s.

The formation of Ag/Au BMNPs in both configurations consisted of successive laser
action cycles on parts of the Au and Ag targets in scCO2 (P = 200 bar, T = 50 ◦C). In config-
uration 1 (Figure 1), a sequence of three ablation cycles of the golden part of the target was
carried out as Au→ Au→ Au, then a sequence of three ablation cycles of the silver part of
the target was carried as Ag→ Ag→ Ag. The duration of each cycle was 1 min, with 1 min
intervals between cycles. In configuration 2 (Figure 1), one ablation cycle for the golden
part of the target, one cycle for the silver part of the target, then one cycle simultaneously
ablating both parts (three cycles in total) were carried out. The duration of each cycle was
10 min, with 20 min intervals between cycles.

The structure of the obtained nanoparticles was studied by transmission electron
microscopy (TEM), scanning transmission electron microscopy with a wide-angle dark
field detector (HAADF STEM), and energy-dispersive analysis (EDX) using FEI Osiris
(FEI, Lincoln, NE, USA), FEI Scios (FEI), and Phenom PROX (Thermo Fisher, Eindhoven,
Netherlands) electron microscopes. When using the TEM method, samples in the form
of suspensions in organic solvents (after pretreatment in an ultrasonic bath for 15 min)
were applied onto carbon-coated copper grids using the drop method. The collection of
nanoparticles in the form of a suspension was carried out by washing them off the walls
of the reactor with isopropyl alcohol. Measurements with an electron microscope were
carried out on either the day of synthesis or the next day.

3. Results and Discussion

The first results were obtained using a Lotis LS-2138TF laser source in configuration 1
(Figure 1), with a horizontal introduction of the beam onto the target. As a result of the laser
action, the amplitude and shape of the extinction spectra gradually changed. The spectra
were recorded continuously. Figure 2a shows the characteristic spectra obtained during the
ablation of gold (times: 70 s and 240 s) and during the subsequent transition to the ablation
of silver (times: 10 s, 80 s, and 195 s).
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Figure 2. (a) Transformation of the extinction spectra of a colloidal solution of scCO2 during suc-
cessive cycles of ablation of Au and Ag plates in configuration 1. The numbers corresponding to
the curves show the times since the beginning of the ablation of the indicated (Au or Ag) target.
(b) Variant of decomposition of the final spectrum (red line) into the sum (black dashed line) of
individual Gaussian components (1–4) and the Rayleigh scattering component (Rayleigh).

As a result of three successive gold target ablation cycles, an Au NP colloid was
formed in the reactor. This led to the appearance of a plasmon resonance (PR) band with
a maximum at the wavelength of 520 nm (Figure 2a) [22,26–28]. During the laser action
for ~1 min (“70 s Au” curve, Figure 2a), the plasmon resonance band reached intensity
saturation. At the same time, during the 1 min pause, the intensity hardly decreased,
indicating low rates of aggregation and sedimentation processes of the Au NP colloid in
scCO2. In the next stage, three consecutive cycles of laser ablation of a silver target were
carried out, involving 1 min of ablation and a 1 min pause. This led to the efficient formation
of a colloidal solution of plasmonic Ag NP. As a result, an increase in the absorption of
the medium inside the reactor was observed and a PR band appeared on the extinction
spectrum with a maximum at the wavelength of 380 nm (“240 s Au” curve, Figure 2a),
corresponding to Ag NPs with a size of 4–10 nm [7,22,26,29]. However, it should be noted
that during the pause, the intensity of this band decreased much faster than in the case of
the colloid with Au NPs. We believe that this was due to the more efficient aggregation of
small silver nanoparticles into large ones as compared to gold nanoparticles, followed by
their gravitational sedimentation to the bottom of the reactor [22]. The faster aggregation
of Ag NPs can be explained by the higher energy activation ability of silver atoms to
form chemical compounds and complexes in comparison with gold atoms [28]. At the
same time, it has been argued [3] that the gold atoms in liquids are able to participate
more efficiently in comparison with silver atoms in the processes of their self-assembly into
nanoparticles. It is likely that at the initial stage of the synthesis of such metal nanoparticles,
this process is primarily influenced by the interactions of metal atoms with molecules from
the environment.

Upon ablation of a silver target, simultaneously with an increase in the PR band with
the maximum at 380 nm, a rapid degradation of the PR band with a maximum at 520 nm
occurred, which was even previously retained during pauses. At the same time, a new
band with a maximum at 420 nm appeared on the long-wavelength wing of the PR band,
with a maximum at 380 nm. This effect was especially pronounced during pauses, when
the intensity of the component from the PR of silver dropped and another component
remained, which we believe was from Ag/Au BMNPs. In Figure 2b, the decomposition of
the final spectrum into separate components can be seen. The experimental spectrum is
shown with a black dashed line, while the sum of the five proposed components is shown
with a solid red line. It was observed that in addition to the PR bands corresponding to
Ag NPs (curve 1, maximum at 380 nm), there were Au NPs (curve 2, maximum at 550 nm)
and possibly AuNP aggregates (curve 3, maximum at 750 nm); curve 4 (maximum at
420 nm) can be attributed to Ag/Au BMNPs. Regarding differences in the positions of the
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maximum and the widths of the PR band for single Au NPs obtained in this expansion
in comparison with the results in Figure 2a, these can most likely be associated with the
manifestation of the PR band from some residual Au NP fraction (larger), which had not
yet entered the “hot zone” near the silver target.

A similar transformation of the extinction spectra was observed (Figure 3) when
using a YLM-1-150V-30 laser source in configuration 2 (Figure 1), with a vertical insertion
of the beam onto a double target of gold and silver located at the bottom of the high-
pressure reactor.

Figure 3. Transformation of the extinction spectra of a colloidal solution scCO2 during successive
cycles of ablation of the (a) gold and (b) the silver parts of the target. (c) Simultaneous ablation of
both parts in configuration 2. The numbers on the curves show the times from the beginning of
the ablation in seconds. The numbers to the right of the curves show the times in seconds since the
start of the ablation cycle. (d) Variation of the decomposition of the spectrum obtained 10 s after the
end of the last stage of ablation (red line) into the sum (black dashed line) of individual Gaussian
components (1–4) and the Rayleigh scattering component (Rayleigh).

In the first stage, an Au NP colloid was formed during the ablation of a gold target, as
in the previous case. This led to the appearance in the extinction spectrum of the colloid
of the PR band, with the maximum at 520 nm (Figure 3a). In the next stage of ablation of
the silver target, a broad band appeared with a maximum at 380 nm (Figure 3b), which
corresponded to the PR of Ag NPs with a size of 4–10 nm [22]. Note that simultaneously
to the growth of this maximum during the second stage, the amplitude of the maximum
corresponding to the PR from gold nanoparticles also increased.

We believe that this effect was due to the fact that at the location of the target at the
bottom of the reactor, the large gold nanoparticles that formed in the colloid during the
first stage of ablation were also effectively deposited onto the surface of the silver target.
Therefore, in the second stage (during the ablation of the silver target), the silver target
was actually ablated together with the surface layer consisting of Au NPs, which were
deposited onto the surface as a result of the ablation of the gold target. The presence
of this deposited Au NP film on the target plates was confirmed by visual observations
when the reactor was opened after the first cycle of the experiment. Figure 3c presents the
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extinction spectra, which were obtained in the process of ablation of gold and silver targets
simultaneously, when scanning a laser beam over the surfaces of the two parts (Au and
Ag) of the target. With a gradual increase in extinction in the entire observed wavelength
range, the shape of the curves underwent transformation, in which an absorption band
corresponding to Ag/Au BMNPs appeared against the background of PR bands from Ag
NPs and Au NPs, as well as a long-wavelength absorption band.

Figure 3d shows a variation of the decomposition of the extinction spectrum of a
colloid, obtained as a result of the simultaneous ablation of two parts of the target (Au
and Ag) in configuration 2. It was observed that in addition to the PR bands of silver
nanoparticles (curve 1, the peak with the maximum at 380 nm) and gold (curve 2, the peak
with the maximum at 520 nm), there were also long-wave absorption bands (curve 3, the
peak with the maximum at 700 nm), which can be classified as large nanoparticles and their
aggregates. Additionally, in Figure 3d, band 4 (the peak with the maximum at 450 nm)
stands out; in our opinion, it comprises Ag/Au BMNPs, but most likely is of a slightly
different type, meaning it differs from the particles obtained in configuration 1.

The large width of the obtained spectra is associated with a rather strong scattering of
NPs in terms of the composition (Ag/Au ratio), shape, and size. However, the obtained
results can be considered preliminary, which makes it possible to reveal the specifics of the
experimental parameters and the regularities for the preferential synthesis of bimetallic
NPs of a certain type.

The TEM analysis of the obtained nanoparticles using the EDX method turned out
to be informative and confirmed the stated provisions on the formation of bimetallic
nanoparticles of various types. A similar method using the EDX system for the analysis
of the compositions of composite nanoparticles was successfully used by the authors of
another study [30] in the synthesis of carbon-coated Au NPs in the process of pulsed laser
ablation of a gold target in a scCO2 medium. Figure 4 shows a TEM image of nanoparticles,
which was obtained using the EDX method during laser ablation of a double target in
configuration 1.

In the upper region of this figure, nanoparticles measuring less than 10–20 nm can be
observed, the PR bands of which are in the visible and near-UV wavelength ranges. Indeed,
the maxima of the PR bands shown in Figure 2 for NP are in the range of 380–520 nm.
The band with a maximum at 380 nm corresponds to small silver nanoparticles in scCO2.
Usually, for such particles dispersed in organic solvents, solid matrices, or water, the
maximum of the PR band is observed in the range of 410–420 nm [26,28,29,31], and the
short-wavelength shift for such a PR arises from other dielectric properties of the scCO2
medium. It is likely that a certain shift in the PR band for small Au NPs will also occur when
they are placed in a supercritical medium. In our situation, the maximum of the PR band
for such particles based on Figure 2 is in the region of 520 nm, while for similar particles
in organic or aqueous media, the maximum is at 540 nm [27,31]. According to [3], with a
homogeneous distribution of Au and Au atoms during the formation of bimetallics of the
“alloy” type, the maximum of the PR band smoothly shifts to the short-wavelength region
from the position at 540 nm (at 100 mol % Au), with an increase in the molar content of the
silver atoms contained within. The appearance in the PR spectrum of a component with
a maximum at 420 nm (see Figure 2b) may well correspond to the synthesis of bimetallic
nanoparticles of the “alloy” type, whereby the content of silver atoms, taking into account
the above considerations, should be in the range of 60–80 mol %. The observed color gamut,
which corresponds to the mixed elemental composition of the Ag/Au BMNPs, one part of
which is indicated by an arrow, also does not contradict the reasoning given here.
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Figure 4. TEM images of nanoparticles obtained using the EDX method. The arrow indicates
one of the largest Ag/Au-BMNP-type “alloys”, measuring up to 40 nm in size. Nanoparticles
were synthesized in the setup of configuration 1, using a low-frequency laser source with a high
pulse energy.

Figure 5 shows TEM images of nanoparticles that appeared during the ablation of
a double target in configuration 2. In this figure, using the EDX technique, two particles
can be distinguished, which can be attributed to the bimetallics. Figure 5b shows the
profiles of the intensity distribution of pixels corresponding to Ag and Au elements from
two nanoparticles from Figure 5a. Comparison with the corresponding distribution for a
model nanoparticle with a core–shell structure (Figure 5b, top) shows that the two isolated
nanoparticles also have a core–shell structure. It can be observed that these Ag/Au BMNPs
are composed of a gold core and a silver shell. The core and cladding diameters are 17 ± 1
and 19 ± 1 nm for the larger Au/Ag BMNPs and 13 ± 1 and 15 ± 1 nm for the smaller
ones, respectively.

In these experimental studies, we used two configurations of installations (Figure 1),
allowing two different ablation regimes at the same peak power densities (~33 GW/cm2).

In the first configuration (Figure 1), laser action with a low pulse repetition rate
(f = 50 Hz) was carried out horizontally without moving the laser spot over the target
surface. As a result of the ablation, a crater with a diameter of 300 µm formed on the target.
When implementing this regime, it was planned that the synthesis of Ag/Au BMNPs
would mainly occur during the action of a laser pulse in a sufficiently wide laser beam
(Figure 6). In the case of large laser spots, the ejection of the silver target material occurred
mainly perpendicular to its surface towards the beam. As shown in [32], with increases in
the size of the plasma source over 20 µm, its density on the optical axis gradually increased.
The formation of a flux of atoms, ions, and electrons directed perpendicular to the target
surface was also facilitated by the formation of a crater on the surface of the silver target.
Such a directed flux of particles from the target led to numerous optical breakdowns in the
region of the laser beam (Figure 6). A visual confirmation of this effect was the observed
bright laser track in the scCO2 medium in the first configuration of the experiment. Such a
breakdown was accompanied by a sharp increase in temperature throughout the entire
region and the formation of an ion atom plasma with Ag and Au. Further self-assembly
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of these particles led to the predominant formation of Au/Ag BMNPs of the “alloy” type,
which were recorded using TEM (see Figure 4).

Figure 5. (a) TEM images of Au/Ag “core–shell” BMNPs, demonstrated using the EDX technique.
Nanoparticles were obtained by laser synthesis in configuration N2. (b) Top: A cross-sectional image
of a nanoparticle model with a core–shell structure and the pixel intensity profile of the elements
from the core and shell for the corresponding EDX TEM image. Arrows show the direction of the
flow of electrons (e-) during image acquisition. Bottom: Pixel intensity profiles for Au and Ag for
TEM images of two nanoparticles.

Figure 6. Model representation of the processes occurring during the ablation of a silver target in two different con-
figuration setups (Figure 1) and leading to the synthesis of Au/Ag BMNP “alloy” (configuration 1) and “core–shell”
(configuration 2) types.

In the second configuration (Figures 1 and 6), laser action with a pulse frequency
of 60 kHz was carried out vertically. In this case, the spot size on the target surface
was relatively small (Ø: 20 µm) and constantly moved over the target surface. With this
configuration, during the ablation of the gold target (at the first stage), a layer of Au
NPs was deposited on the surface of the silver part of the docked target due to the effect
of gravitational sedimentation. In this case, with further ablation of the silver target,
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the removed target material interacted not only with the colloid but also with the gold
nanoparticles on its surface. It should also be taken into account that due to the small size
of the laser spot on the target and the absence of a crater comparable in area to the spot size,
the substance in this case was carried into the colloid at a wide solid angle [32]; thus, when
this configuration was implemented, the synthesis of Ag/Au BMNPs mainly occurred
not in a relatively narrow laser beam but in a sufficiently large volume of the colloid into
which the target material was ejected (Figure 6). In this volume, the deposition of Ag ions
and atoms on the surfaces of Au NPs contained in scCO2 took place with the formation of
Au/Ag BMNPs of the “core–shell” type (see Figure 5). It is noted that in this configuration,
due to the wide scattering angle of the silver target material, breakdown events occurred
only in the immediate vicinity of the target surface at a relatively small volume, as was
observed visually during the experiment. Therefore, the probability of the formation of
Au/Ag BMNPs of the “alloy” type in configuration 2 was several orders of magnitude
lower than in configuration 1.

The mechanisms of the formation of small bimetallic nanoparticles in the scCO2 colloid
in the two presented configurations were different. These different mechanisms led to the
predominant formation of Au/Ag BMNPs of the “alloy” type (Figure 4) in configuration 1
and Au/Ag BMNPs of the “core–shell” type in configuration 2.

In configuration 1 (Figure 6), Au/Ag BMNPs of the “alloy” type (Figure 4) were
synthesized in scCO2 from a cloud of Ag and Au ions and atoms in a wide laser beam. The
formation of this cloud occurred as a result of numerous breakdown events caused by the
interaction of a laser pulse with a strongly directed flux of particles from an Ag plate flying
towards it. In configuration 2 (Figure 6), Au/Ag BMNPs of the “core–shell” type (Figure 5)
were synthesized, mostly from a cloud of Ag ions and atoms and Au NPs in a wide region
formed by a weakly directed flow of particles from an Ag plate [33–35].

In general, the formation of bimetallic nanoparticles in scCO2 occurred as a result of (1)
the self-assembly of atoms, (2) the aggregation (or coalescence) of nanoparticles and atoms,
or (3) autocatalytic growth [36]. Some of these structures in the process of enlargement can
form Ag or Au nanoparticles. The others can be transformed into bimetallic nanoparticles
of the “core–shell” type [3,4,6,35] (Figure 5) or form nanoparticles of the “alloy” type mixed
from Au and Ag atoms (Figure 4). It should be noted that the proposed simple model
shows possible ways of obtaining NPs with different Ag/Au ratios. For example, if it is
necessary to obtain gold nanoparticles of the core–shell type with a thinner silver layer
on the surface of the gold core, configuration 2 will reduce the laser intensity or the silver
ablation time.

Due to the vortex and convection flows arising from pulsed laser heating, the formed
nanoparticles are scattered throughout the reactor volume and enter the observation zone,
causing the appearance of characteristic plasmon resonance absorption bands. As noted
in our first experiment [7], as well as in other papers on this topic [4,5,33], the PR bands
for Au/Ag BMNPs are located in the interval between the known PR bands of pure silver
and gold. Our explanation for the mechanism of the predominant formation of bimetallic
nanoparticles of different types in two configurations does not contradict the considerations
expressed in a previous [3], where the authors argue that the formation of Ag/Au BMNPs
of one type or another largely depends on the ratio of silver and gold atoms in the reaction
zone; with a significant excess of gold atoms in a liquid medium, these primarily combine
with each other due to higher rates of movement in this environment in comparison with
silver atoms. Indeed, in our situation, in the presence of an Au NP layer formed on the
surface of a silver target in a scCO2 medium, this phenomenon is possible.

It is important to note that the proposed specific approaches to the implementation of
Au/Ag BMNP synthesis using a supercritical fluid medium belong to the field of “green
chemistry”. First of all, scCO2 is usually used as a substitute for organic solvents, which
allows one to get rid of large volumes of liquid waste. In addition, scCO2 can be converted
into a gaseous state during the synthesis process, which makes it possible to implement a
closed production cycle without the emission of pollutants.
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4. Conclusions

Two different modes of laser action on a target consisting of two plates of Au and
Ag in supercritical carbon dioxide in two different configurations were considered. The
configuration for the experiment and the mode of laser action—with the same peak power
density for the laser pulses (~33 GW/cm2)—played fundamentally important roles in the
production of bimetallic Au/Ag nanoparticles of both the “alloy” and “core–shell” types
(with a gold core and silver cladding).

In configuration 1, when the double target was located vertically on the side wall
of the chamber and its components were ablated alternately by a stationary wide beam
of a low-frequency laser with a high pulse energy, Au/Ag BMNPs of the “alloy” type
were predominantly formed. In the case of configuration 2, in which the double target
was located horizontally at the bottom of the chamber and the ablation of its components
occurred alternately by scanning a narrow beam of a high-frequency laser, Au/Ag BMNPs
of the “core–shell” type were predominantly formed. A simple model was proposed that
explains the predominant formation of the two types of nanoparticles (core–shell type or
alloy type) with different experiment configurations and laser action parameters.
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