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1  | BACKGROUND

Malaria remains an intractable global public health problem with an 
estimated 228 million cases and 405 000 deaths in 2018 alone.1 A 
vast majority of these deaths occur in sub-Saharan Africa, where 
malaria is associated with a 24% prevalence and 94% of the malar-
ia-associated deaths globally.1,2 Recent advances in malaria control 
including improved diagnostic approaches, artemisinin-combination 

treatments (ACTs), intermittent preventive treatment (IPT) in preg-
nancy and vector control saw a 48% decrease in mortality rates be-
tween 2000 and 2015.1 Whilst these strategies have unquestionably 
contributed to reduction in incidence and mortality rates, an effec-
tive vaccine would provide the ultimate solution to malaria elimina-
tion and should be an urgent public health priority.

Malaria biology is complex. Our understanding of the pre-eryth-
rocytic (PE) stage infections is based on model systems with 
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Abstract
Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold 
standard' for malaria vaccine development. Despite practical challenges in trans-
lating these whole sporozoite vaccines to large-scale intervention programmes, 
they have provided an excellent platform to dissect the immune responses to ma-
laria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic 
forms. Investigations in rodent models have provided insights that led to the clinical 
translation of various vaccine candidates—including RTS,S/AS01, the most advanced 
candidate currently in a trial implementation programme in three African countries. 
With advances in immunology, transcriptomics and proteomics, and application of 
lessons from past failures, an effective, long-lasting and wide-scale malaria PE vac-
cine remains feasible. This review underscores the progress in PE vaccine develop-
ment, focusing on our understanding of host-parasite immunological crosstalk in the 
tissue environments of the skin and the liver. We highlight possible gaps in the cur-
rent knowledge of PE immunity that can impact future malaria vaccine development 
efforts.
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Plasmodium berghei (Pb) and P.  yoelii (Py), with limited information 
on P. falciparum (Pf). The PE stage begins when an infected female 
Anopheles mosquito inoculates a few (typically <100) infective spo-
rozoites into the host skin.3,4 Quantitative studies with Pb and Py 
indicate that a large proportion (~60%) lose motility and remain lo-
calized at the site of inoculation where they can develop into skin 
exoerythrocytic forms (EEF) and initiate an immune response.5-8 
Some sporozoites 'trickle out' of the skin into the blood (~25%) and 
the lymphatic drainage (~15%).6,9 Most of the sporozoites that enter 
the bloodstream reach and invade the liver, where they traverse 
through several hepatocytes in a transient vacuole. The sporozoites 
then invade a final hepatocyte and form parasitophorous vacuoles 

(PV), where the liver EEFs develop.6,10 The circumsporozoite pro-
tein (CSP), which is the major antigen on the sporozoite surface, and 
thrombospondin-related anonymous protein (TRAP), a micronemal 
protein, are thought to facilitate invasion into the hepatocytes.11,12 
In the liver, the parasites undergo asexual development for a num-
ber of days depending on the Plasmodium species (ie 7-10 days for 
human malaria vs 42-44 hours for Pb infection in mice), pre-existing 
immunity and concomitant malaria prophylaxis.13 They differentiate 
into multinucleated schizonts that form thousands of merozoites via 
nuclear division. In the late stages of development, the PV mem-
brane is lysed, and the merozoites become packaged together inside 
merosomes.14,15 These merosomes egress out of the liver, circulate 

F I G U R E  1   The malaria life cycle. An infected mosquito deposits motile infective sporozoites into the dermis of a susceptible host. Some 
sporozoites migrate to the liver, where they invade hepatocytes, multiply asexually to produce thousands of merozoites which egress in 
merosomes and rupture inside microvasculature of lungs. The merozoites invade the red blood cells (RBC), and undergo multiple cycles 
of ring, trophozoite and schizont stages, to initiate the clinical phase of the disease. Some parasites differentiate into male and female 
gametocytes, which are taken up mosquitoes during their next blood meal. Different immune cells interact with the malaria sporozoites 
during its journey from the skin to the liver and may be exploited in the development of an effective and long-lasting vaccine. NK denotes 
natural killer cells
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through the heart and reach the lung microvasculature where mero-
zoites are released to invade erythrocytes.16 This initiates blood-
stage cycle of development amongst ring, trophozoite and schizont 
forms (Figure 1). Exponential expansion of the parasite during the 
blood-stage stage and concomitant immune responses result in ma-
laria-related symptoms (as reviewed elsewhere).17

The PE stages form a bottleneck for the malaria parasite and 
can be targeted in developing an effective malaria vaccine. Once 
thought to be immunologically quiescent, accumulating evidence 
shows that the PE stages provoke immune responses.8,18-21 The spo-
rozoites are exposed to antibodies in the bloodstream and in the skin 
and hepatic extracellular fluids. It is only during the PE stages where 

Plasmodium parasites invade nucleated cells of humans and rodent 
models, which can present parasite antigens via major histocompati-
bility complex (MHC) I. This gives a wide array of innate and adaptive 
immune effector mechanisms that can be exploited in developing an 
effective malaria vaccine. A vaccine targeting the clinically 'silent' PE 
stages will not only block symptomatic blood-stage infections and 
associated complications, but it would also halt further transmission 
of the parasite. Nonetheless, the host-parasite crosstalk during the 
PE stages is intricate and remains inadequately studied. In this re-
view, we systematically explore the current knowledge on vaccine 
development and immune responses to malaria PE stages, and high-
light some of the existing gaps.

TA B L E  1   The status of current malaria pre-erythrocytic stage vaccine candidates (adapted from the World Health Organization tables of 
malaria vaccine projects globally—'Rainbow Tables')172

Project Registration no. Sponsor Vaccine type Country Phase
Start 
Date Ref

Whole Sporozoite

PfSPZ NCT02215707 Sanaria Inc RAS USA I 2014 51

PfSPZ NCT02627456 Sanaria Inc RAS Mali II 2016

PfSPZ NCT02613520 Sanaria Inc RAS Tanzania I 2015 27,173

PfRAS NCT01994525 USAMRDC RAS USA I 2013

PfSPZ-CVac NCT02115516 Sanaria Inc CPS (SPZ-CQ) Germany I 2014 54

PfGAP3KO NCT03168854 NIAID GAP USA I 2017

PfSPZ NCT02663700 NIAID RAS Burkina Faso, USA I 2016

PfSPZ-CVac NCT02773979 NIAID CPS (SPZ-CQ) USA I 2016

Sub-unit

RTS,S/AS01E NCT02374450 GSK CSP Kenya, Burkina Faso, 
Ghana

IV 2015 174

RTS,S/AS01 fractional 
dose

NCT01857869 GSK CSP Kenya, Gambia, 
Burkina Faso

II 2013 61

R21/AS01B NCT02600975 University of 
Oxford

CSP United Kingdom I 2015

R21/Matrix – M1 NCT02925403 University of 
Oxford

CSP Burkina Faso I 2016

R21/ME-TRAP NCT02905019 University of 
Oxford

CSP/TRAP United Kingdom II 2016 175

CS-Vac NCT01450280 University of 
Oxford

CSP Ireland I 2011 65

PfCelTOS FMP012/
AS01B

NCT02174978 USAMRMC CelTOS USA I 2014

ChAd63/MVA 
ME-TRAP

NCT01635647 University of 
Oxford

ME-TRAP Burkina Faso, Kenya, 
Gambia

II 2012 72-74

ChAd63/MVA ME-
TRAP + Matrix M™

NCT01663512 University of 
Oxford

ME-TRAP United Kingdom I 2012 176

Adjuv R21 (RTS,S 
biosimilar) with TRAP 
combined

NCT02905019 University 
Oxford

ME-TRAP + CSP United Kingdom, 
Germany

II 2016

Note: RAS denotes radiation-attenuated sporozoites.
Abbreviations: Adjuv, adjuvant; CelTOS, cell-traversal protein for ookinetes and sporozoites; ChAd, chimpanzee adenovirus; CPS, chemoprophylaxis 
following sporozoite infection; CQ, chloroquine; CSP, circumsporozoite protein; GAP, genetically attenuated parasites; GSK, GlaxoSmithKline; KO, 
knockout; MVA, modified vaccinia Ankara; NIAID, National Institute of Allergy and Infectious Diseases; Pf, Plasmodium falciparum; SPZ, sporozoites; 
TRAP, thrombospondin-related anonymous protein; USAMRDC, United States Army Medical Research and Development Command.
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2  | PROGRESS WITH MAL ARIA PRE-
ERY THROCY TIC STAGE VACCINES

2.1 | Whole sporozoite vaccines

Seminal studies in the late 1960s on mice immunized with radia-
tion-attenuated sporozoites (RAS) demonstrated sterile immune 
protection against malaria reinfections.22,23 The sterile protection 
was later observed in nonhuman primates and challenge human 
malaria infection (CHMI) trials with efficacy levels of >80%.24-27 
RAS are currently in clinical trials across the world (Table 1). Due 
to the development of sterile immunity, RAS became the 'gold 
standard' for a malaria vaccine development. Nonetheless, trans-
lation of RAS to a wide-scale applicable human vaccine remains 
challenging. Extremely large numbers of dissected parasites (up 
to 6.75 × 105 given at five doses or 9 × 105 given at three doses), 
which are delivered intravenously, are required to induce sterile 
immunity.28,29 Increasing the dose to 1.8 × 106 parasites greatly 
reduces vaccine efficacy. The sterile immunity induced by RAS is 
not long-lasting, but the durability of protection can be extended 
by booster immunizations.26

During the past two decades, there has been a renaissance of 
approaches to develop whole sporozoite vaccines. Pre-clinical ev-
idence suggests that invasion and development in the liver are re-
quired for sterile PE immunity.30,31 RAS vaccines successfully invade 
the liver, but their development is arrested early in EEF development. 
Administration of sporozoites followed by antimalarial chemoprophy-
laxis with chloroquine or mefloquine (CPS vaccines), which acts on 
blood stage but not liver-stage parasites, yields comparable efficacy 
levels to RAS and confers protection against PE stages in both ro-
dent models and humans.32-36 CPS vaccines may provide more robust 
immunity as the sporozoites undergo complete liver-stage develop-
ment. Alternative CPS approaches involve using antibiotics, such as 
clindamycin and azithromycin, which allow full parasite development 
in the liver, but lead to delayed death in the resulting merozoites.37 
In rodent models, CPS vaccines have been shown to induce robust, 
long-lived immunity that not only protects against PE stages, but 
also against blood stages.38,39 This apparent cross-stage immunity 
induced by CPS vaccines needs to be further explored.

Genetically attenuated parasite (GAP) vaccines rely on targeted 
gene deletion technology that arrests the development of sporo-
zoites at either early- or late-stage EEFs. Studies initially targeted 
the attenuation of the upregulated in infective sporozoite (uis) genes, 
which attenuates sporozoite development in the early stages.40,41 Pb 
parasite lines with uis3− and uis4− knockout genes arrest their de-
velopment after completion of sporozoite development in the early 
EEF stages.42 Studies using Pb found a stage-specific durable sterile 
protection against reinfection after immunization with three doses of 
uis3– sporozoites.41 GAP vaccines targetting other Plasmodium genes 
have produced varied results (as reviewed by Kreutzfeld et al43). 
A clinical trial using PfGAP lacking two genes (p36− p52−) reported 
favourable anti-sporozoite immune responses.44 The triple gene 
knockout (PfGAP3KO: p36− p52− sap1−) PfGAP was reported to fully 

attenuate sporozoite development in the early liver stages in in vitro 
and humanized mice studies.45,46 PfGAP3KO was reported to be safe 
and immunogenic in human volunteers after 150-200 mosquito bites, 
but is yet to complete clinical trials.47 Other GAP vaccine develop-
ment efforts include targeting the late EEF stages, such as deletion of 
fabb/f, PlasMei2, and liver-specific protein 2 (LISP2) genes.31,48 GAP 
vaccines targeting the late EEF stages may be efficacious at lower 
doses, induce a larger breadth of immune responses and protect 
against blood-stage infections.49 PfSPZ-GA1 vaccine, a Pf identical 
double knockout (b9− slarp−), which attenuate early in EEF develop-
ment, presented safety profile and elicited immune responses.50 The 
pre-clinical findings of PfSPZ-GA1 are promising, as they have shown 
optimal immunogenicity and some indication of protection.

Sterile and cryopreserved sporozoite vaccines (PfSPZ), injected 
intravenously, conferred up to 100% sterile protection after CHMI 
with homologous strains, and ~80% protection against heterolo-
gous strains.51-54 A comparable outcome is obtained with CPS vac-
cines (using chloroquine as the antimalarial drug) where only modest 
protection was obtained with heterologous challenge.55 A challenge 
for whole sporozoite vaccines is to increase the diversity of strains 
represented in the vaccine. Of particular interest, the inoculation of 
PfSPZ intradermally, mimicking the natural route of sporozoite infec-
tion, was not protective.54 Additionally, PfSPZ efficacy was greatly 
reduced in a setting of seasonal transmission, showing about 30% 
protection at 6 months in Mali adults.56 The low efficacy has been 
associated with hypo-responsiveness to PfSPZ in malaria-exposed 
adults. A study on adult males from Equatorial Guinea reported 
lower antibody responses to PfSPZ compared to US adults receiving 
a similar dosage regimen.57 Additional studies are required on dosage 
optimization for participants in malaria-endemic areas,29 and partic-
ularly for children who are most affected by severe malarial disease 
in sub-Saharan Africa. The need for liquid nitrogen storage to main-
tain PfSPZ vaccines may be a logistical challenge in malaria-endemic 
areas. Future efforts should focus on developing a thermal-stable 
PfSPZ vaccine, which can reduce delivery challenges to remote areas.

2.2 | Sub-unit vaccines

Sporozoites are covered with a dense coat, and CSP—a 40-66 kDa 
protein, with ~40 NANP repeats in the central region of PfCSP — is 
the major surface protein.58 Inadvertently, many approaches have 
been explored to target and improve immune responses to CSP. 
RTS,S/AS01 (MosquirixTM), the most advanced malaria vaccine to 
date, contains a section of the CSP central repeat region (18 NANP 
repeats with B-cell epitopes) and C-terminal (with T-cell epitopes). 
In a large phase III study involving 15 459 infants (6-12 weeks old) 
and young children (5-17  months old) at 11 sites, RTS,S showed 
moderate vaccine-induced protection at 18 months (26% and 45%, 
respectively) which waned on follow-up.59 In subjects receiving a 
booster at 20 months, the vaccine efficacy was ~36% in children (vs 
28% in controls without the booster) and ~25% in infants (vs 18% 
in controls) at the end of a 48-month study period.60 Fractional 
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dosing of the third dose may increase the vaccine efficacy up to 
~86%,61 but this remains to be seen in endemic areas where ef-
ficacy in adult declined with an increase in malaria transmission.62 
After a positive review by the European Medicines Agency, RTS,S 
was recently rolled out for implementation in three African coun-
tries (Malawi, Kenya and Ghana).63 Assuring earlier concerns that 
CSP diversity may impact vaccine efficiency, it is noteworthy that 
in the above large phase III trials, <10% of the parasites corre-
sponded the CSP alleles used in the RTS,S.64

Prime-boost viral vectored delivery platforms using chimpan-
zee adenoviruses (eg ChAd63) prime and a modified vaccinia strain 
Ankara (MVA) have been explored as alternative approaches to im-
prove the efficacy of CSP-based vaccines. ChAd63-MVA CSP vac-
cine candidate induced high levels of antigen-specific antibodies and 
T-cell responses.65 Nevertheless, its efficacy in a CHMI trial was poor, 
protecting only 1/15 subjects.66 In vitro and rodent studies have sug-
gested that CSP is dispensable in achieving sterile immunity and low 
levels of anti-CSP antibodies may aid in sporozoite invasion.58,67,68 
Other studies reported that the CSP repeat region, but not the 
C-terminal domain, induced antibody-dependent phagocytic activity 
that was protective against infection.69 Thus, the modest protection 
induced by CSP-based vaccines, as compared to the sterile immunity 
observed in RAS, calls for exploration of alternative adjuvants, anti-
gens and/or CSP epitopes as vaccine targets and increased focus on 
antibody functionality rather than quantity.

The genome of Pf reference strain 3D7 contains ~5400 genes.70 
Some of these genes encode for proteins that are essential for cell 
traversal (sporozoite microneme protein essential for cell traversal 
[SPECT], phospholipase [PL], cell-traversal protein for ookine-
tes and sporozoites [CelTOS], gamete egress and sporozoite tra-
versal protein [GEST] and perforin-like protein [PLP1 also known 
as SPECT2]); liver invasion (TRAP and apical membrane antigen 
[AMA] 1) and hepatic development (liver surface antigens [LSA1, 
LSA2 and LSA3] and sporozoite threonine and asparagine-rich 
protein [STRAP]). Most of these proteins have the potential of be-
coming vaccine targets, but only a few are in current clinical trials 
(Table  1). ChAd63-MVA ME-TRAP, which primarily targets TRAP 
but also contains multiple epitopes of CSP, LSA1, LSA3, STARP, 
EXP1, has been reported to have high immunogenicity and safety 
levels in human studies even when administered concurrently with 
the expanded program on immunization.71-74 Combination vaccines 
of ME-TRAP and CSP have so far yielded varying results depending 
on vaccine regimen and routes of administration.75-77

3  | IMMUNE RESPONSES TO MAL ARIA 
PRE-ERY THROCY TIC STAGES IN THE SKIN 
AND THE LIVER

3.1 | Innate host responses in the skin and the liver

The skin is the first defence layer against the malaria parasites. Apart 
from being a physical barrier, the skin harbours a diverse range of 

phenotypically and functionally distinct dendritic cells (DCs) and 
macrophages that interact with sporozoites, as described in mouse 
malarias (Figure 1).5,6 The contribution of these cells is challenging 
to study in humans considering the 'silent' clinical nature of malaria 
PE stages. Neutrophils and monocytes infiltrate the site of sporo-
zoite inoculation, and mast cells have been reported to induce DCs 
and T-cell recruitment.78,79 Remarkably, a rodent study reported that 
neutrophils and monocytes may not be critical in the development 
of sterile immunity.78 Further work is needed to dissect the roles of 
neutrophils and monocytes in PE stage immunity.

Whilst the liver is known to be an autonomous and competent 
priming site for naïve CD8+ T cells,80 the role of hepatocytes and 
other liver cells in antigen presentation during PE stages remain 
poorly understood. Liver cells including hepatocytes, liver sinusoi-
dal endothelial cells, Kupffer cells, hepatic DCs and hepatic stellate 
cells interact with the parasite during the liver invasion process (as 
reviewed by Hafalla et al81). Rodent studies have shown that CD11c+ 
DCs found in the spleen, liver and liver-draining lymph nodes are 
required to present antigens to CD8+ T cells, and their depletion 
abrogates CD8+ T-cell responses.5,82-84 It is thought that these 
DCs directly present sporozoite antigens to CD8+ T cells through 
antigen cross-presentation.5,8,83 Blocking the ability of the DCs to 
cross-present antigens represses CD8+ T-cell responses.85,86 CD4+ T 
cells play a role in 'licensing' these antigen-presenting DCs.83,87 How 
antigens that are expressed exclusively during EEF development 
prime CD8+ T-cell responses remains inadequately characterized. 
Recent studies have implicated a subset of liver-infiltrating mono-
cyte-derived CD11c+ cells, which acquire rodent parasites after par-
asite invasion but before merozoite release.82 Consistent with the 
presentation of sporozoite-derived antigens, these monocyte-de-
rived CD11c+ cells were found to prime CD8+ T-cell responses in the 
liver-draining lymph nodes.

Infected hepatocytes can become 'stressed' (express heat shock 
proteins) and/or apoptotic.21 This induces inflammatory responses 
and recruitment of effector immune cells to the site of EEF infec-
tion. Plasmodial dsRNA accessing hepatocytic cytosol induces re-
lease of type I interferons (IFN-α and IFN-β) that recruit natural killer 
(NK) and CD3+CD49b+ natural killer T (NKT) cells.88,89 NK cells are 
a highly enriched effector cell population that respond to invading 
sporozoites, as they account for up to 50% of liver-resident lympho-
cytes.90 NK and NKT cells are potent producers of IFN-γ,18,20 which 
activates the nitric oxide pathway in macrophages.18,91 In RTS,S 
CHMI studies, concentrations of serum IFN-γ and transcriptional sig-
natures related to IFN-γ production were linked to protection from 
infection.92,93 It is also conceivable that NK and NKT cells participate 
in IFN-γ-independent killing of infected hepatocytes. Recently, se-
rological profiling studies suggested that NK cells may inhibit spo-
rozoite invasion through antibody-mediated interactions.94 On the 
other hand, NKT cells may be dispensable in the development of 
sterile immunity.95

Nutritional immunity may play a role in protection against 
Plasmodium infections. In endemic settings, children with iron de-
ficiency are protected against malaria.96,97 The hepatic hormone 
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hepcidin has been reported to increase across the malaria season 
in these settings.98,99 Hepcidin restricts iron availability in the liver 
hence denying Plasmodium parasites a vital nutrient, and may pro-
tect against secondary liver-stage infections.100 Supplementing 
children with iron in a malaria-endemic region was associated with 
increased malaria incidences and mortality.101 Accordingly, targeting 
the nutritional requirements of the parasite is an alternative innate 
response to malaria infections.

3.2 | Antibody responses, including targeting the 
parasites whilst in the skin

Antibodies are correlates of protection for most approved vaccines 
in clinical use. Their effector pathways include neutralization of 
pathogens, antibody-dependent cytotoxicity, antibody-dependent 
complement deposition and antibody-dependent phagocytosis. 
Mechanistically, humoral responses begin when a naïve B-cell en-
counters an antigen at the interface of the T and B regions of sec-
ondary lymphoid organs. Depending on the existing signals, these 
antigenically stimulated B cells may undergo (a) rapid proliferation 
in the extrafollicular foci to produce short-lived isotype-switched 
antibody-secreting plasmablasts (SLPCs), (b) interact with CD4+ T 
follicular helper (TFH) cells in a germinal-centre (GC)—dependent or 
GC-independent process to produce long-lived memory cells or (c) 
an anergic response. The B cells that interact with TFH-dependent 
differentiate into long-lived plasma cells (LLPC) or circulating mem-
ory B cells (MBCs) (as reviewed by Nutt et al102). LLPCs migrate to 
the bone marrow and continuously secrete neutralizing antibodies, 
whilst MBCs form a ready-to-respond antigen-specific B-cell pool.

Early malaria vaccine studies reported increased production of 
anti-CSP antibodies in response to RAS, and these antibodies are 
associated with protection against reinfection.18,22,24,103 In field and 
CHMI studies, antibody responses to other PE antigens such as LSA-
1, TRAP and STARP have also been reported104-106 and protected 
individuals may have higher antibody titres.105-107 Passive transfer of 
monoclonal anti-sporozoite antibodies delayed patency of Pb infec-
tion in mice.108 The effector activity of these antibodies may include 
blocking sporozoite motility, dermal exit and subsequent invasion 
of hepatocytes.78,109 Antibodies may remove the surface coat pro-
tein of sporozoites in the skin and expose the parasites to their own 
pore-forming proteins.110 Beyond inhibiting sporozoite mobility, 
antibodies also aid in sporozoite destruction through activation of 
the complement system, phagocytosis and Fc-mediated innate cell 
functions.94,111-113

Various field studies have reported that high antibody levels 
against sporozoites are required for effective and long-term pro-
tection.105,114,115 RTS,S vaccines induce high anti-PfCSP antibod-
ies titres with moderate CD4+ T-cell responses,116-118 yet none of 
them have been recognized as an unequivocal correlate of protec-
tion. It remains poorly understood if protection against sporozoites 
is dependent on immunoglobulin sub-class, but high levels of anti-
gen-specific IgG3 and IgG1 in participants receiving RTS,S have been 

observed.111,119 Although individuals with higher antibodies against 
sporozoite antigens have better protection against infection,105-107 
antibody titres have generally performed poorly as correlates of 
protection in malaria vaccine studies.94,120 The modest efficacy of 
RTS,S in endemic regions suggests that the functionality and avidity 
of the antibodies, rather than the antibody titres, is a better correlate 
of immune protection to malaria.94,113 In recent serological profiling 
studies, the functionality of antibodies was reported to be a better 
predictor of protection.94 These antibodies were reported to induce 
NK cell effector functions, including activation and phagocytosis.

The hurdle with malaria infections is the inability to generate 
long-lasting protective immunity. This is compounded by the lack 
of appropriate surrogates of protection in field and CHMI studies. 
Malaria-specific MBCs are elicited at levels comparable to conven-
tional licensed vaccines121 and can persist in naturally infected and 
travellers to endemic regions.122 Like antibodies, malaria MBCs 
appear to increase with age and exposure.123 Studies have demon-
strated that Pf-specific MBCs target PE stage antigens, and existing 
antibodies to CSP, LSA-1 and TRAP may protect against clinical ma-
laria in an endemic setting.105,124 Current literature does not indicate 
the magnitude of humoral reaction to other malaria PE antigens or if 
PE-specific MBCs are linked to protective immunity.

How antibody and MBC responses are regulated during ma-
laria infections is poorly defined. TH1 responses have also been 
implicated in the regulation and function of MBCs after malaria 
infections in humans and mice.125-127 These studies reported that 
TH1-polarized PD-1+CXCR5+CXCR3+ TFH cells are preferentially 
elevated during malaria infections and may play a role in impaired 
GC responses. How these responses influence LLPC and MBC re-
sponses to PE stages remain poorly characterized. Recently, a group 
of atypical MBCs (CD19+CD21−CD27−) expressing high levels of 
FcRL5 has been suggested to play a role in the incomplete anti-Plas-
modium immunity.128,129 Whether or not atypical MBCs are induced 
during PE stage natural and vaccine responses remains to be de-
scribed. However, the dynamics behind the MBC development and 
the roles of atypical MBCs in de novo malaria infections remain an 
open question.

3.3 | CD4+ T-cell effector mechanisms

CD4+ T cells have multiple effector functions ranging from regula-
tion of immune responses and activation of CD 8+ T cells, B cells, 
innate immune cells and other nonimmune cells.130 CD4+ T cells play 
a critical role in response to malaria PE stages and maintenance of 
immunity both independently and in conjunction with other cells.131-

133 In model studies, CD4+ T cells were reported to confer protec-
tion against Pb and Py in β2-microglobulin knockout mice (CD8+  
T cells deficient) immunized with RAS,131 probably through direct 
killing of infected hepatocytes.134 Field and CHMI studies have also 
reported high CD4+ T-cell numbers after RTS,S or whole sporozoite 
infection,35,116,135 including high serum levels of CD4+ T cell–associ-
ated cytokines (IFN-γ, tumour necrosis factor [TNF] and IL-2).32,136 
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In modelling and CPS vaccine studies, T cells133 and IFN-γ92,93 have 
been reported as correlates of immune protection against malaria 
infection. Detailed investigations are required to determine the lon-
gevity of CD4+ T cells in response to PE stages and their ability to 
serve as surrogates of immune protection.

The functional roles of CD4+ T cells are not limited to direct activ-
ity. As discussed before, CD4+ T cells may be involved in the licens-
ing of the antigen-presenting DCs that prime effector CD8+ T cells. 
The cytokines generally produced by CD4+ T cells may influence 
other immune cells involved in response to malaria and development 
of immunity. IL-4–producing CD4+ T cells sustain and expand the 
effector and memory Py-specific CD8+ T-cell pool.87,137,138 In the ab-
sence of CD4+ T cells, the sporozoite-specific memory CD8+ T cells 
fail to protect against challenge infections in mice.137 Some of the 
cytokines produced by CD4+ T cells, such as IFN-γ, IL-4, IL-5 and IL-
10, enable B cells to undergo immunoglobulin class-switching.102 A 
subset of CD4+ T cells, FOXP3+ regulatory T cells (TREGs), has been 
associated with poor development of CPS vaccine-induced immu-
nity.139 A recent study implicated a subset of TFH CD4+ T cells in the 
poor response of participants receiving RTS,S and ME-TRAP com-
binations.77 Nonetheless, further studies are required to elucidate 
induction, regulation, maintenance and tissue requirements of CD4+ 
T cells in malaria PE stage immunity.

3.4 | CD8+ T-cell effector mechanisms, including 
liver-resident memory CD8+ T cells

CD8+ T cells are the primary effector cells against PE stages as seen 
in rodent, non-human primate and human studies.140-144 As observed 
in Py, the responses by CD8+ T cells begin after they are primed by 
mature CD11c+ DCs in the skin-draining lymph nodes.8 Naïve CD8+ 
T cells do not exert antiparasitic activity, unless previously primed by 
antigen-presenting cells.145 The CD8+ T cells with cognate receptors 
to the antigens presented by the DCs will differentiate to short-lived 
effector cells (SLEC) or memory precursor effector cells (MPEC) de-
pending on the local cytokine environment and transcriptional fac-
tor profile.146-148 Activated CD8+ T then undergo clonal expansion, 
which requires the presence of IL-2/IL-4 produced by CD4+ T cells.87 
The numbers of CD8+ T cells have been shown to increase rapidly 
after sporozoite inoculation.86,145,149,150 The activation and prolif-
eration of naïve CD8+ T cells are dose-dependent, and a successful 
response requires viable sporozoites.5,53,151 The SLEC migrate to the 
liver to exert their effector properties whilst MPEC further differen-
tiate to memory cells.152,153

CD8+ T cells confer sterile immunity against Pb-independent of 
B cells or CD4+ T cells.18 In rodent and nonhuman primate models, 
depletion of CD8+ T cells abrogates sterile immunity after RAS im-
munization, whilst their restoration reinstates the protection.140,143 
However, the effector mechanisms of these malaria PE-specific 
CD8+ T cells are not well characterized. In vivo imaging studies re-
port that CD8+ T cells recognize cognate epitopes on the infected 
hepatocyte MHC-I and cluster around these cells.154 Murine and 

vaccine studies have reported elevated CD8+ T-cell effector medi-
ators including cytokines (IFN-γ and TNF) and/or proteins involved 
in contact-mediated cytotoxicity (perforin, TRAIL, FAS ligand and 
granzyme).18,35,134,151,155 Surprisingly, CD8+ T cells lacking perfo-
rin, FAS ligand and perforin can still eliminate Py- and Pb-infected 
hepatocytes.156,157

Malaria memory T cells are involved in patrolling, surveillance and 
rapid recruitment to the site of infection.34,155,158 This enables a fast, 
effective, specific and durable protection against subsequent malaria 
infections. Pre-clinical and CHMI trials have shown induction and 
persistence of Pf-specific CD4+159,160 and CD8+ T cells.144 In Pb and 
Py, CD8+ T memory cells have been described as CXCR3hiCXCR6hi 
CD62L–CD69+ liver-resident (TRM), CXCR3loCXCR6lo CD44+CD62L–

CD122– circulating effector (TEM), and CD44+CD62L+CD122+ central 
memory (TCM) cells,157,161,162 and their effector immune responses 
are species-specific.157 Nonetheless, the epitope signatures and cor-
relates of CD8+ T memory cell protection are yet to be characterized.

Majority of the circulating CD8+ T memory cells in mouse studies 
are TEM but a small proportion of TCM has also been observed.150,162 
A large population of TEM cells is required for effective and long-
term protection.150,163 Whilst TEM rapidly induce effector functions, 
TCM has been shown to respond to malaria challenge with delay and 
short-lived IFN-γ responses.145,162 TRM, on the other hand, are the 
non-circulating phenotype. TRM cells have reduced expression of 
sphingosine 1 phosphate (S1P) receptor and CCR7, and have been 
associated with protection to sporozoite reinfection.161 In vitro stud-
ies suggest that the patrolling and effector activity of Plasmodium-
specific TRM is dependent upon LFA1-ICAM1 interactions.164 
Consequently, TRM cells important in first-line responses including 
being able to recruit other cells despite the reduced ability to recir-
culate. Current efforts are underway to harness these TRM for im-
proved vaccines against PE stages.

3.5 | Perspectives on immune responses to 
PE stages

Naturally acquired immunity in endemic areas is short-lived and non-
sterilizing, and wanes over time without repetitive exposures. This 
suggests a defect in the development of immunological memory 
after natural malaria infections. The exact reason for this impaired 
immune memory has not been adequately described. Indeed, the 
induction, maintenance and regulation of effector and memory 
responses have emerged as crucial stumbling blocks in malaria PE 
stage vaccine development.

It is widely appreciated that an effective and long-lasting 
malaria vaccine will need to induce robust antibody and T-cell 
responses. This may require further investigations on the specific-
ities and correlates of immune protection induced by vaccine and 
CHMI trials, as well how to maintain large frequencies of effector 
and memory responses. Studies from animal models and humans 
reiterate the need for extremely high titres of functional antibod-
ies and elevated frequencies of CD8+ T cells for sterile protective 
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immunity.105,114,115,150,163 There is paucity of data on the quantity of 
CD4+ T cells required to induce sterile immunity. More work is also 
needed to understand how trained immunity of innate cells, which 
has recently been described,165,166 may contribute to immune pro-
tection in PE stages. Various adjuvants including alum, ASO1 and 
viral vectors have been employed as immunostimulants and/or de-
livery systems for the existing vaccine candidates.167 Adjuvants have 
the potential to induce and maintain large numbers of effector and 
memory immune cells, and the appropriate choice or combination of 
adjuvants may be the key to unlocking a malaria vaccine that confers 
sterile and long-lasting protection.

Very little is known regarding the regulation of immune responses to 
PE stages—the possible roles for regulatory T cells, cytokines and TH1/TFH 
have been thoroughly explored in malaria blood stages.168 Additionally, 
malaria blood-stage infections have been reported to downregulate PE 
stage immunity.169,170 Checkpoint blockade has been explored in cancer 
and malaria blood-stage research,171 and it is possible that some answers 
to the regulation of frequencies of anti-PE stage immune responses lie 
here. The contribution of inhibitory and other regulatory proteins, and 
their tissue-specific regulation, has not been widely studied in the con-
text of malaria PE stages, but it is plausible that they are involved in a 
complex web of factors influencing protection against malaria.

4  | CONCLUSION

Delivery of an efficient and long-lasting vaccine protection remains 
an ambitious goal that requires sustained efforts of all stakeholders. 
Gaps in the existing parasite-host immunological crosstalk in both 
the skin and the liver during malaria PE stages need to be addressed 
first. Quantification and characterization of immune mechanisms 
have only started to emerge recently despite decades of research 
into an efficient malaria vaccine. Nonetheless, the identification of 
correlates of protection and protective malaria PE stage epitopes re-
main a work in progress. In the current review, we highlighted how 
protection to malaria sporozoites may rely on a fine, yet to be ad-
equately described, balance between innate and adaptive immune 
responses. Utilizing advances in other fields such as systems biol-
ogy and bioinformatics can inform the study of more immunological 
processes, which have proven challenging to study in the setting of a 
natural infection. Alternative efforts should include targeting novel 
sporozoite proteins, a multi-stage and multi-antigen vaccine, or a 'nu-
tritional' vaccine that targets metabolic requirements of sporozoites.
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