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SUMMARY

Classification and characterization of neuronal types are critical for understanding their 

function and dysfunction. Neuronal classification schemes typically rely on measurements of 

electrophysiological, morphological, and molecular features, but aligning such datasets has been 

challenging. Here, we present a unified classification of mouse retinal ganglion cells (RGCs), 

the sole retinal output neurons. We use visually evoked responses to classify 1,859 mouse 

RGCs into 42 types. We also obtain morphological or transcriptomic data from subsets and use 

these measurements to align the functional classification to publicly available morphological and 

transcriptomic datasets. We create an online database that allows users to browse or download 

the data and to classify RGCs from their light responses using a machine learning algorithm. 

This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their 

projections in the brain, and establishes a framework for future efforts in neuronal classification 

and open data distribution.

Graphical abstract

In brief
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Function, morphology, and gene expression are the most common criteria used to classify neurons. 

Goetz et al. use all three criteria to create a unified classification of mouse retinal ganglion cells 

and build an interactive online resource for exploring the data.

INTRODUCTION

A major goal in biology is the establishment of a comprehensive atlas of cell types. Many 

large-scale efforts are underway to classify cells in different tissues (BRAIN Initiative Cell 

Census Network, 2021; Hodge et al., 2019; Regev et al., 2017; Wilbrey-Clark et al., 2020; 

Yuste et al., 2020). In the central nervous system (CNS), classification efforts have relied 

mainly on three types of information: functional, morphological, and molecular. Functional 

classification involves the physiological properties of neurons, typically measured by 

electrophysiological recordings. Morphological classification uses the dendritic and axonal 

structures of neurons, measured by light or electron microscopic (EM) methods. Molecular 

classification was initially based on immunohistochemical or in situ hybridization, but 

has more recently relied on gene expression patterns (transcriptomes) assessed by high-

throughput single-cell RNA sequencing and spatial transcriptomics (Close et al., 2021; Yuste 

et al., 2020). It has become increasingly clear that different classification methods offer 

complementary information and that a comprehensive classification of cell types needs to 

unify all three modalities (BRAIN Initiative Cell Census Network, 2021; Scala et al., 2020; 

Zeng and Sanes, 2017).

The mammalian retina is especially well suited to provide a template for integrating 

functional, morphological, and molecular classification for three reasons. First, many retinal 

cell types exhibit regular spacing, called a mosaic, which ensures smooth and complete 

sampling of visual space (Bleckert et al., 2014; Kay et al., 2012; Reese and Keeley, 

2015; Rockhill et al., 2000; Rousso et al., 2016; Wässle et al., 1981). This property 

means that experimentalists can sample from a sub-region of the retina and be assured 

that they will find cells of each type. Moreover, mosaics establish an independent metric 

to assess whether a set of cells comprises an authentic type. Second, because the retina 

responds to light ex vivo, functional measurements of retinal neurons include both intrinsic 

biophysical properties and response properties to visual stimuli. Light responses depend on 

the entire upstream synaptic network, creating a rich dataset. Finally, our knowledge of the 

morphology of retinal neurons, particularly in the mouse, is unparalleled among tissues of 

the mammalian CNS (Bae et al., 2018; Hoon et al., 2014; Sanes and Masland, 2015).

Here, we present a unified functional, morphological, and genetic classification of mouse 

retinal ganglion cells (RGCs), the output cells of the retina. We collected detailed functional 

data from 1,859 RGCs and also obtained morphological or transcriptomic data from subsets 

of these cells. We then used these doubly characterized cells to align the functional 

classification with publicly available large-scale datasets of RGC morphology (381 RGCs 

reconstructed from EM sections; Bae et al., 2018) and gene expression (35,699 single-RGC 

transcriptomes; Tran et al., 2019), thereby generating a unified atlas. Comparison of the 

three datasets reveals that close relationships between cell types identified by one criterion 

sometimes predicts close relationships by other criteria.
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Finally, we provide two tools that make the data useful to the community and suggest 

formats for crossmodal analyses of other populations. First, we devised a machine 

learning classifier that allows researchers to infer an RGC’s functional type from a 

small and standardized set of spike measurements. Second, we curated the data in the 

form of a continuously updated, open-access library (rgctypes.org.) where researchers can 

browse single-cell- or cell-type-level data and download functional, morphological, and 

transcriptomic datasets.

RESULTS

RGCs have traditionally been classified by physiological, morphological, and molecular 

criteria. Recent studies have used high-throughput methods to categorize mouse RGCs at 

large scale using all three criteria: optical imaging of visually evoked responses (Baden et 

al., 2016); reconstruction from serial EM sections (Bae et al., 2018); and transcriptomic 

analysis of single RGCs (Tran et al., 2019). Our goal was to unify these dimensions into 

a single schema that was as complete as possible in representing all known RGC types 

in the mouse. We made our measurements in one cell at a time, allowing us to perform 

online functional classification followed by recovery of the same cells for morphological or 

transcriptomic measurements.

Functional classification of RGCs

We began with physiological characterization, using a rapid and standardized light stimulus 

protocol for functional measurements. Experiments were performed in dark-adapted ex vivo 
preparations of the mouse retina where capacitive spikes from RGCs were recorded with 

cell-attached electrodes. Standard light stimuli presented to every RGC were rod-saturating 

(~200 isomerizations/rod/s) spots (λ= 450 nm) from darkness with diameters ranging from 

30 to 1,200 µm, centered on the receptive field (RF) of each individual cell. We presented 

additional stimuli to subsets of RGCs to test for specific forms of feature selectivity. 

Moving bars were used to test for direction selectivity (DS), flashed bars, and drifting 

gratings for orientation selectivity (OS), and contrast series for contrast suppression (Figure 

S1). Background luminance values of 1,000 R*/rod/s were used for drifting gratings, and 

contrast series experiments were presented for less than 6 min per cell; response changes for 

subsequent measurements from darkness were negligible (data not shown).

Our standard stimulus paradigm differed from the full-field “checkerboard” white noise 

and “chirp” stimuli used in previous studies (Baden et al., 2016; Farrow and Masland, 

2011; Jouty et al., 2018). Three considerations drove our stimulus choice. First, maintenance 

of a consistent light-adaptation state was essential because many aspects of RGC light 

responses change with luminance and with light adaptation (Tikidji-Hamburyan et al., 2015; 

Wienbar and Schwartz, 2018). High background light is unavoidable in functional two-

photon imaging experiments due to excitation from the laser, limiting the period of stable 

light responses, especially in preparations lacking the retinal pigment epithelium (Euler 

et al., 2019). The use of patch electrodes allowed us to make measurements in darkness. 

Second, precise localization of stimuli with respect to the RF center cannot be achieved 

with full-field stimuli but turned out to be critical as shown below. Indeed, many RGCs that 
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respond well to small stimuli in their RF center fail to respond to any full-field stimulus 

(Jacoby and Schwartz, 2017; Zhang et al., 2012). Finally, to facilitate standardization in the 

field, we wanted our stimulus to be simple and rapid and to correspond to those commonly 

used by others. For example, many previous studies have used RF-centered spots of different 

sizes, enabling retrospective comparisons (Jacoby and Schwartz, 2017; Johnson et al., 2018; 

Krieger et al., 2017; Marco et al., 2013; Rousso et al., 2016).

We assigned RGCs to 42 functional types by hand based on our iteratively updated 

understanding of their response patterns. Thirty-four of these types were assigned based 

only on the responses to flashed spots, while the additional eight types were subdivided by 

direction or orientation preference. Thus, while our classification is not free from human 

bias, two pieces of evidence, detailed below, strengthen our confidence that it represents an 

accurate typology: (1) cells that we placed in the same functional group typically had strong 

morphological and molecular similarities and (2) a cross-validated algorithm successfully 

classified functional RGC types, including those with “external” classification data on which 

the algorithm was never trained. We organized the RGC types into eight functional groups: 

ON sustained, OFF sustained, ON transient, OFF transient, ON OS, DS, ON-OFF small RF, 

and suppressed-by-contrast (SbC)/other. These groups were chosen as a starting point based 

on previous work; a quantitative measure of functional relatedness is presented below.

In most recordings (1,246/1,859 cells), retinal orientation and cell locations were noted 

to determine whether classification varied based on retinal position. Response patterns 

within some RGC types have been shown to vary as a function of retinal position in 

photopic conditions (Joesch and Meister, 2016; Warwick et al., 2018), likely because of a 

pronounced cone opsin gradient along the dorsoventral axis (Nadal-Nicolás et al., 2020). 

In our dark-adapted preparation, however, where much of the light response was initiated 

in rods (Grimes et al., 2014), response variation across retinal position was minimal. We 

found no significant relationship between retinal position and any of the six response metrics 

we tested (see STAR Methods). The responses of OFF transient alpha RGCs, which had 

previously been shown to depend on dorsoventral position in high luminance (Warwick et 

al., 2018) showed no position dependence under our conditions (data not shown).

Most functional RGC types were relatively uniformly distributed across retinal locations 

(Figure S2). A shuffle test revealed two RGC types with significant positional biases (Table 

S1). F-mini-ON RGCs were found in greater proportion in the ventral retina; however, we 

specifically targeted them in that region based on a previous report of their prevalence there 

in a transgenic line (Rousso et al., 2016). PixON RGCs were found in greater proportion in 

the dorsal retina which, to the best of our knowledge, does not represent sampling bias and 

has not been reported previously. Several other RGC position distributions showed trending 

biases that failed to meet the Bonferroni correction for multiple comparisons. These include 

the known prevalence of ON alpha RGCs in the temporal retina (Bleckert et al., 2014), and 

the previously unreported prevalence of UHD RGCs in the nasal retina.

Data from 37 RGC types are presented in three ways in Figure 1 (only 37 of the 42 types are 

illustrated because DS RGCs with different directional preferences did not differ from each 

other in their responses to light spots). We first measured the response polarity and kinetics 
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of light responses with a 200 µm light spot centered on the RF (marked “a” in the ON 

alpha RGC panel). This allowed us to assign cells according to response polarity (ON, OFF, 

ON-OFF, or SbC) and as having sustained or transient responses to luminance changes. 

Second, to assess how each RGC type’s response varied with stimulus size, we measured 

the total ON and OFF spike responses for spots of 12 sizes from well below the RF center 

diameter of the smallest RGC (30 µm) to a size that reached the far RF surround (1,200 µm) 

(marked “b” in the ON alpha RGC panel). This information was critical in separating many 

types. For example, despite similar responses to the 200 µm spots, ON-OFF DS, HD1, HD2, 

and UHD all had different response profiles of their ON and OFF responses across spot 

size. For some RGC types, even the overall polarity of the light response depended on spot 

size. For example, HD2 RGCs are ON-OFF for small spots and ON for large spots (Jacoby 

and Schwartz, 2017), and the ON small OFF large RGC switches polarity entirely with spot 

size as its name suggests. Finally, we combined information about response amplitude and 

kinetics as a function of spot size into a single plot using a heatmap of firing rate over time 

for each spot size (marked “c” in the ON alpha RGC panel). Functional heatmaps of the 

variability in these responses within each functional group are presented in Figure S3 and 

distributions of six common response metrics for each RGC type are shown in Figure S4.

Functional relatedness of RGC types

To visualize the relationships between functional RGC types, we used Uniform Manifold 

Approximation and Projection (UMAP) (Becht et al., 2018; McInnes et al., 2018) (Figure 2). 

The UMAP algorithm assigned each cell to a point in 2D space based only on its response 

to spots of varying size (see data in Figure 1) with closely related cells projecting to nearby 

locations in this space. We did not include the moving bar or drifting gratings responses 

as input to the UMAP algorithm since they were not measured for every RGC. Therefore, 

DS RGCs with different direction preferences and OS RGCs with different orientation 

preferences were grouped together in this representation. Most RGC types formed clear 

clusters in UMAP space with a few exceptions, typically for types that were sampled 

sparsely in our dataset (Figure 2A).

To assess the clustering of each of our defined functional types in this UMAP space, we 

subsequently clustered points in this 2D space with DBSCAN (Ester et al., 1996). F scores, 

which measure the overlap between our 34 type labels and the 33 clusters identified by 

DBSCAN are shown in Figure 2B. These scores represent the degree of functional similarity 

(for this stimulus paradigm) within our assigned types relative to the differences between 

types. The types with lowest F scores (10 types <0.75) likely contain the majority of our 

labeling errors. There are also RGC types in this group (e.g., M1 and ON bursty RGCs) for 

which additional lines of evidence suggest that our labels are correct (see morphological and 

molecular data in Figures 4 and 5), but for which the average spike rates for flashed spots 

alone are not sufficient for highly reliable functional classification. The average F score, 

weighted by the number of cells of each type in the dataset, was 0.89.

Automated functional classification

We implemented a machine learning classifier to assign RGCs to types based on a feature set 

comprising spike responses to spots of varying size. Since the responses to moving bars and 
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drifting gratings were not included in the feature set, we collapsed DS and OS cells across 

direction and orientation, respectively. Our dataset of 1,859 RGCs across 34 types was split 

into a training set (n = 883), a calibration set (n = 500), and a test set for model evaluation (n 

= 476). Details of data split and classifier architecture are provided in STAR Methods.

Following training, the performance of the classifier was evaluated on the test set (Figure 

3). For each cell, the classifier outputs the probability of membership in each RGC type. 

Thus, the algorithm provides both a “best guess” and a confidence rating for each prediction. 

An advantage of probabilistic scoring is that the classifier predictions can easily be updated 

to include complementary sources of information (e.g., previous probabilities based on 

stratification depth in the inner plexiform layer [IPL] or labeling in a transgenic line) 

via Bayes’ rule (MacKay and Mac, 2003). Without thresholding the probability scores, 

classification accuracy was 59% overall (with chance being 1/34 = 2.9%; Figures 3B and 

3D). The correct RGC type was among the top three choices of the classifier 75% of the 

time (Figure 3A, inset), suggesting that additional information (functional, structural, or 

molecular), could be used to refine its predictions.

To gain some measure of the degree to which RGC types classified by flashed spots 

correspond to those identified by other criteria, we used five types of “external” validation 

data that were not available to the classifier: (1) an image of the cell’s morphology, (2) 

fluorescent labeling in one of several transgenic lines in which small subsets of RGCs are 

labeled (see STAR Methods), (3) synaptic currents in voltage-clamp whose profile match 

those in our published work on particular RGC types (Cooler and Schwartz, 2020; Jacoby 

and Schwartz, 2017; Jacoby et al., 2015; Mani and Schwartz, 2017; Nath and Schwartz, 

2016, 2017), (4) large soma size noted at the time of recording (for the three alpha RGC 

types), and (5) DS or OS as measured by moving bars and/or drifting gratings (see Figure 

S1). A total of 634 of the RGCs in our dataset (34%) were validated by one or more of these 

external data types (Table S2). Classifier performance was slightly better for the validated 

cells in our test set (65% correct, n = 221 cells) than for the unvalidated cells (59% correct, n 

= 255 cells).

Classification accuracy varied widely across RGC types, with 9 types having 0% sensitivity 

and the other 24 having a median accuracy of 71% (Figure 3B). Overall accuracy scaled 

linearly with the unclassified fraction as we increased the classification margin, i.e., 

minimum probability score at which cells are assigned a type label (Figure 3A). Cells with 

maximal class probabilities below the classification margin are considered “unclassified.” 

Increasing the classification margin to 0.205 achieved an accuracy of 80% across the whole 

dataset, with 49% of cells unclassified (Figure 3E). The most significant limitation of our 

classifier was the size of the training set (Figure 3C). Thus, we expect classifier performance 

to improve steadily as we continue to collect more data, particularly from rare RGC types. 

Updated results, newly trained versions, and tutorials for formatting data and running it 

through the classifier will continue to be made available at rgctypes.org..

Alignment of functional and morphological classification

After we recorded visually evoked responses from RGCs, we filled some of them with 

either Alexa Fluor 488 for live imaging or with Neurobiotin for post-hoc imaging. A total 
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of 136 of these images could be effectively computationally flattened and registered to the 

choline acetyltransferase (ChAT) bands; ChAT is an established marker for the dendrites of 

starburst amacrine cells, which stratify in stereotypical, narrow strata (Sümbül et al., 2014). 

This alignment allowed quantitative measurements of en face morphology and stratification 

patterns within the IPL (Figure 4).

Stratification profiles for each functionally defined RGC type are shown in Figure 4A along 

with those of our suggested match in the Eyewire museum (Bae et al., 2018). Stratification 

similarity between each of our types and each type in the Eyewire museum is shown 

as cosine overlap in Figure 4C. While stratification profile was an important factor in 

matching our types to those in the Eyewire museum, it was not the only factor. Along with 

stratification location and thickness, Figure 4B also depicts the dendritic field diameter and 

density of each stratum as well as the soma size for each RGC type, as measured en face. 

Example traced images of each type are shown in Figure 4D, and a supplemental dataset 

contains all of the traced cells in en face and side views along with those of our suggested 

Eyewire match (see the key resources table in the STAR Methods).

We combined all of our morphological measurements and used UMAP to project the data 

for all 136 cells into 2D. While this dataset was not large enough for clustering into ~40 

types to be feasible, we measured distances in this space to capture the morphological 

similarity among cells that we independently grouped together by their light responses 

(Figure S5). For 30 of the 32 types represented in this dataset (those with 2 or more 

members), the mean pairwise morphological distance for cells of the same functional 

type was less than the mean pairwise morphological distance in the entire dataset. The 

compactness of this morphological representation for RGCs of the same functional type 

varied by RGC type; 10 types were more than 10-fold more compact in this space than the 

mean.

Alignment of functional and transcriptomic classification

Recent large-scale investigations of single-cell transcriptomes in the retina have identified 

~45 molecularly distinct types of postnatal mouse RGCs, comparable with the number 

of RGC types identified through physiological and morphological analyses (Rheaume et 

al., 2018; Tran et al., 2019). While some clusters could be matched 1:1 with previously 

known types based on well-established molecular markers (Sanes and Masland, 2015), 

approximately 40% of clusters remained unmatched. Moreover, these methods used 

dissociated tissue, precluding direct harmonization of gene expression with function.

To relate functional to molecular criteria, we used a variant of the Patch-seq technique 

(Cadwell et al., 2016) in which RGCs were first classified based on their cell-attached 

light responses and then the cytoplasm was collected for RNA sequencing by aspirating the 

soma with a clean pipette (see STAR Methods). We obtained 103 high-quality single-RGC 

transcriptomes (>2,000 genes/cell). We used gradient boosted decision trees (Chen and 

Guestrin, 2016) to match each of our transcriptomes to a cluster in the published adult RGC 

dataset (Tran et al., 2019) (see STAR Methods). Many of our functionally identified cells 

matched the transcriptomic clusters with high concordance (Figure 5A), providing putative 

matches to previously unknown clusters. For example, the three types of ON DS sus cells 
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all aligned to C10 (a previously uncharacterized cluster), OFF tr SmRF aligned with C21, 

corresponding to T-RGC S2 (Liu et al., 2018) and ON delayed (Mani and Schwartz, 2017), 

previously observed in CCK-ires-Cre mice (Jacoby and Schwartz, 2018; Tien et al., 2015) 

aligned with a cluster (C14), which was distinguished by the expression of the neuropeptide 

Cck.

T5-RGCs share a functional and morphological profile

Alignment of our physiologically characterized types to transcriptomically defined RGC 

groups (Tran et al., 2019) enables a deeper analysis of the relationships between gene 

expression of RGCs and their function and morphology. One example is provided by the 

gene Tusc5 (also known as Trarg1), which we identified as a key marker of a group of 

nine mostly unidentified transcriptomic clusters termed T5 RGCs (Tran et al., 2019). Most 

of these RGCs are labeled by the transgene TYW3, which exhibits insertion-site-dependent 

expression (Laboulaye et al., 2018).

Transcriptomic clusters corresponding to the T5 RGCs are labeled by green arrowheads in 

Figure 5A. Six of these clusters are matched to RGC types in our dataset, so we examined 

whether these types share functional or morphological characteristics. All six T5 RGC 

types lie at the intersection of two functional characteristics, transience and strong surround 

suppression, and one morphological characteristic, stratification between the ChAT bands 

(Figure 5B). Other subclasses of RGCs can be queried in this way, with increasing power as 

additional data are added to rgctypes.org..

The question of completeness

One way to estimate the completeness of our classification is to record nearly all the RGCs 

in a small region of the retina and count how many can be assigned to one of our types. 

We performed such an experiment and then stained the tissue with the pan-RGC marker 

gamma-synuclein (Surgucheva et al., 2008) to confirm RGC identity post-hoc (Figure S6). 

We recorded 55 spiking cells and 25 cells for which we could not elicit spikes with our test 

stimuli. Of the 55 spiking cells, 48 were successfully identified in the fixed tissue. In the 

live tissue we had labeled 42 of these cells as RGCs matching one of our types and 6 as 

spiking amacrine cells. All 48 of these identifications were verified by the gamma-synuclein 

staining (42/42 gamma-synuclein-positive RGCs and 6/6 gamma-synuclein-negative spiking 

amacrine cells).

Of the 25 cells for which we could not elicit spikes, 22 were identified in the fixed tissue: 

10 were gamma-synuclein negative, presumably non-spiking amacrine cells, and 12 were 

gamma-synuclein positive, presumably RGCs that we failed to identify. Thus, we identified 

78% (42/54) of the putative RGCs in this sample. While somewhat less than our estimate 

of 89% coverage of the types in the Eyewire museum, it is a conservative estimate because 

some of the non-responding RGCs were likely damaged during removal of the inner limiting 

membrane or by the recording procedure and did not spike (e.g., because the axon initial 

segment was destroyed) but survived enough structurally for gamma-synuclein staining.
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Relatedness of functional, morphological, and transcriptomic space

The main goal of our study was to directly relate physiological, structural, and molecular 

definitions of cell type. Our suggested alignments between these three modalities are shown 

in Figure 6A. Functional types are colored by their F scores from Figure 3, and the data 

used to infer the alignment are shown in Figures 4 and 5. With this alignment data in 

hand, we were able to address an additional question: to what extent do relationships 

among types established in one modality (e.g., function) predict those in another modality 

(e.g., morphology)? Importantly, this is not a test of the quality of our alignment between 

modalities. Functionally similar RGC types might differ substantially in morphology and/or 

gene expression, and the degree to which local neighborhoods are similar across modalities 

might vary for each RGC type.

To investigate the questions of crossmodality neighborhood similarity, we constructed a 

UMAP embedding of the stratification profiles of each cell in the Eyewire museum (Bae 

et al., 2018) (Figure 6B) and another UMAP embedding of gene expression from the 

mouse RGC transcriptomic atlas (Figure 6C) (replotted from Tran et al., 2019). To measure 

neighborhood similarity across the three UMAP spaces (the functional space from Figure 

2A and the stratification and gene expression spaces in Figures 6B and 6C), we tested 

whether the nearest neighbors in a reference modality were also grouped nearby in another 

modality.

For each RGC type, we computed the fractional overlap among the identities of its nearest 

neighbors in the reference embedding to that in the other two embeddings. We repeated 

this analysis for neighborhood sizes from 2 to 12 nearest neighbors and grouped the results 

into the “local” and “global” neighborhoods. To establish statistical significance on this 

fractional overlap measure, we used the bootstrap approach. We randomly shuffled type 

identities in each of the maps and recomputed the fractional overlap. Repeating this process 

1,000 times yielded an empirical null distribution. Fractional overlap values obtained from 

the real data are reported as Z scores relative to this null distribution, with positive values 

indicating greater overlap in the real data than in the null distribution (Figures 6D–6F).

Overall, similarity between modalities was modest; crossmodality overlap for many RGC 

types was within 1 SD of the null distribution (shaded regions in Figures 6D–6F). 

Several RGC types did show strong local neighborhood similarity between functional and 

morphological (IPL stratification) embeddings (Figure 6D), and one type (OFF OS; 2aw; C5 

and C9) showed a strong correspondence between its local neighborhoods in stratification 

and gene expression space. Global neighborhood alignments had similar overall trends but 

a somewhat different set of RGCs tended to be more crossmodally aligned globally than 

locally.

Integrated web-based RGC compendium

Finally, we created a resource so that labs around the world can come to a consensus on the 

classification of mouse RGCs. To that end, we have developed a website, rgctypes.org. 

(Figure 7), with a direct pipeline to our database of functional and morphological 

measurements. Following a curation step and type assignment, every RGC recorded in the 
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Schwartz lab will automatically update to rgctypes.org.. Other researchers are invited to 

submit data for integration as well. Cells can also be reassigned to different types if evidence 

supports a different assignment. Full datasets are available for download immediately, 

regardless of publication status. We have also provided a downloadable version of our 

automated classifier and instructions on how to prepare a data file to obtain a type prediction 

and confidence score.

DISCUSSION

We present a resource of physiological, morphological, and transcriptomic data aimed at 

establishing a comprehensive typology of mouse RGCs. A summary of our classification 

and its alignment with previous RGC classifications is provided in Table S3. As multi-modal 

neuronal classification efforts continue to be a major focus across many labs (BRAIN 

Initiative Cell Census Network, 2021), we first consider what lessons we have learned from 

this approach in our dataset that might apply to other regions of the CNS before discussing 

what our findings have revealed about the retina.

RGCs have a distinct advantage for studies of typology since they form mosaics to tile 

visual space. Several lines of evidence have now converged on a number of types near 45 

in the mouse (Baden et al., 2016; Bae et al., 2018; Tran et al., 2019), and we find 42 types 

with an estimated coverage of 89%. Each type has functional characteristics that we used 

to distinguish it from others (Figure 1) and, with few exceptions, these differences were 

captured by supervised dimensionality reduction of the spike responses to a simple stimulus 

(Figure 2). Success in clustering responses, however, does not automatically translate into 

success for an automated classification algorithm (Figure 3). In clustering, there is typically 

no external ground truth data to assess the validity of the clusters as cell types. We also 

lacked an absolute ground truth, but we used external validation data not available to our 

classifier to label one-third of our cells (Table S2) and found performance to be similar 

(or slightly better) than on our unvalidated type labels. When external validation data are 

available, future studies of cell typology should report the performance of a cross-validated 

classifier in addition to measures of cluster separability.

As more studies employ multiple modalities, such as function, morphology, and gene 

expression, to classify neurons, comparisons of the same cells between modalities will 

become more frequent. Gene expression impacts both morphology and function, and 

stratification within the IPL is an important factor in determining the synaptic inputs 

of RGCs. Thus, one might have expected an even stronger correspondence between the 

positions of RGC types across modalities (Figures 6D–6F). It is worth noting that such 

an analysis inevitably simplifies across the large possible space of each modality by 

dimensionality reduction both at the level of feature selection (a single stimulus type, 

IPL stratification alone for morphology, gene selection for transcriptomics) and at the 

level of the UMAP algorithm (down to two dimensions for each modality). For example, 

specific single genes might be very important for IPL lamination (Krishnaswamy et al., 

2015; Liu et al., 2018) yet might fail to group types in transcriptomic space. The high 

dimensionality required to fully specify a cell type in any single modality might mean that 
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new distance metrics will be needed to study crossmodal relationships between cell types if 

such relationships turn out to be important principles of brain architecture or development.

Method for functional classification

We recorded from RGCs one at a time, which allowed us to center stimuli on the RF of each 

cell. This undeniably limits throughput. On the other hand, when activities of many RGCs 

are recorded simultaneously—for example, by calcium imaging or with multielectrode 

arrays—it is not feasible to center stimuli on individual RGCs, so these studies have used a 

combination of full-field modulation, large moving objects or gratings, and spatiotemporal 

white noise. These stimulus choices come with a significant cost. Many RGC types, 

including some of the most numerous types, respond poorly or not at all to full-field stimuli 

or spatiotemporal white noise (Jacoby and Schwartz, 2017; Zhang et al., 2012). Other types 

respond both to small (RF centered) and large stimuli, but basic response properties depend 

on spot size. For example, the ON small OFF large RGC would be classified as an OFF 

cell for full-field stimulation but responds as an ON cell for small spots in its RF center. 

Surround suppression differentially affects both the total spike count and response kinetics 

in most RGC types (Figure 1) (Wienbar and Schwartz, 2018), providing information that we 

found necessary to separate otherwise functionally similar types.

Comparisons with previously defined RGC types

Our 42 RGC types appear to include all 28 types previously identified functionally 

(referenced in Table S3 and at rgctypes.org.) as well as 14 types that have not, to our 

knowledge, been defined previously. Remarkably, most of these types can be distinguished 

based on their response patterns to spots of varying size. The total is close to previous 

estimates (Baden et al., 2016; Bae et al., 2018; Rheaume et al., 2018; Tran et al., 2019), 

supporting the view that mouse RGC classification is approaching completion. Many of 

the previously unnamed types had certainly been encountered in previous studies, but we 

list them as such here based on our belief that they had not been identified separately as 

distinct functional types (e.g., multiple types had been grouped into “ON transient” and 

“OFF transient” categories). The types we named include several sets of functionally similar 

RGCs (ON tr MeRF/ON tr SmRF/ON tr EW6t, OFF tr MeRF/OFF tr SmRF, OFF med 

sus/OFF sus EW1no/OFF sus EW3o), all of which match 1:1 to morphological types and 

many to transcriptomic types.

Why did the retina evolve entire populations of RGCs that vary only subtly in function? Of 

many possible answers, we believe the most likely is that functionally similar types would 

reveal profound differences under stimulus conditions beyond those in our simple battery. 

A striking example is Eyewire type 25. This type is abundant (5.8% of the population), 

and forms a convincing and statistically validated dendritic mosaic (Bae et al., 2018), yet 

we were unable to find its match in thousands of recordings. A natural hypothesis is that 

this RGC type does not respond to our standard test stimuli, so it was consistently passed 

over. Supporting this idea, the calcium responses for type 25 in the Eyewire museum are 

weak (~1% ΔF/F with low signal-to-noise ratio as opposed to some RGC types that reached 

20% ΔF/F). Similarly, we failed to find a clear “trigger feature” for several RGC types (e.g., 

ON bursty, motion sensor, sSbC EW27). Responses of these cells to flashed spots were 

Goetz et al. Page 12

Cell Rep. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rgctypes.org/


inconsistent. For simplicity and reproducibility, our study omitted the vast space of light 

stimuli that may have differentiated these cell types, including high luminance, variations in 

color, and complex forms of motion.

DS and OS RGCs represent a substantial fraction of the RGCs in the mouse retina 

(14/42; 33% of types). We identified ON-OFF DS RGCs preferring all four cardinal 

directions (dorsal, ventral, nasal, temporal); ON DS sustained types preferring three different 

directions, and one ON DS transient type encountered infrequently and with a wide 

distribution of preferred directions (Figure S7). While there is broad agreement that there 

are four ON-OFF DS RGC types in the mouse, there is not as strong a consensus about 

ON DS RGCs. Some studies have reported three types (Estevez et al., 2013) while another 

reported four (Sabbah et al., 2017). It remains unclear whether this discrepancy is due to 

one of the ON DS RGC types being transient and the other three being sustained. One study 

reported a functionally and morphologically distinct ON DS RGC that projects to superior 

colliculus (SC) and not to the medial terminal nucleus (MTN) or nucleus of the optic tract 

of the accessory optic system (Gauvain and Murphy, 2015). This SC-projecting ON DS 

RGC had transient responses and more balanced ON and OFF dendritic strata than the 

MTN-projecting types, consistent with type 7o in the Eyewire museum. While the previous 

study on these cells did not report the distribution of their preferred directions (Gauvain 

and Murphy, 2015), calcium responses for Eyewire type 7o consistently preferred a nearly 

nasal direction on the retina (Bae et al., 2018). Our sample of ON DS sustained RGCs had 

a distribution of preferred directions with three clusters, separated by ~120°, but the sparsely 

sampled ON DS transient RGCs had inconsistent direction preference (Figure S7), and we 

have so far been unable to reconstruct its morphology. Thus, we have provisionally assigned 

the ON DS trans RGC to Eyewire type 7o, but it is one of the matches in which we have the 

least confidence. A more focused study on ON DS RGCs will be needed to resolve this final 

issue in the classification of DS RGC types.

OS RGCs, described long ago in other species (Levick, 1967; Maturana and Frenk, 1963), 

were only recently identified in the mouse (Nath and Schwartz, 2016, 2017). OFF OS RGCs 

were separated into horizontal- and vertical-preferring types based on their physiology, and 

the vertical-preferring type tended to have ventrally directed dendrites, while horizontally 

preferring cells had a less consistent asymmetry (Nath and Schwartz, 2017). The Eyewire 

data did not have a corresponding type, consisting only of cells with strong ventrally 

directed dendrites, although they note that type “2aw,” with its similar range in dendritic 

asymmetry, has a much higher coverage factor than the other types and likely corresponds 

to at least two RGC types that were not separable based on morphology alone (Bae et al., 

2018). Given these facts and the corresponding stratification patterns between these types, 

we are confident in the categorization of both OFFhOS and OFFvOS RGCs as Eyewire type 

2aw. ON OS RGCs were also classified into horizontal- and vertical-preferring types when 

they were reported in mouse (Nath and Schwartz, 2016), but here we further subdivide each 

group into separate “Small RF” and “Large RF” types based on the spot size to which they 

respond optimally and their degree of surround suppression. All four ON OS RGC types are 

among the largest in the retina in terms of dendritic span, so their morphology is captured 

incompletely in the Eyewire dataset. Nonetheless, we have been able to assign each of these 

functional OS RGC types to its most likely matching morphological type.
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We identified three RGC types as SbC, and a fourth, the ON delayed RGC, has been 

classified as an SbC RGC under some conditions (Jacoby and Schwartz, 2018; Tien et al., 

2015). The RGC type that we originally identified as the sustained SbC (Jacoby et al., 

2015) has now been split into two types (EW27 and EW28) based on both physiological 

and morphological criteria. The bursty SbC RGC is distinguished from the sustained SbC 

types by its much higher baseline firing rate, more transient suppression, and monostratified 

morphology (Wienbar and Schwartz, 2022). Overall, our data underscore the fact that, like 

the other three polarities (ON, OFF, and ON-OFF), SbC is a response class composed of 

multiple RGC types (Jacoby and Schwartz, 2018).

Relationships between morphology, function, and gene expression

Having matched functional, morphological, and transcriptomic information for most RGC 

types, we were able to assess the relationships among these properties. Disappointingly, 

proximity of types as assessed by any single criterion failed to strongly predict proximity 

by either of the other two criteria (Figures 6D–6F. For transcriptomic relationships, one 

possibility is that genes expressed during development, when morphology and connectivity 

are being established, will need to be taken into account. On the other hand, the comparison 

between morphology and function was valuable in highlighting three unexpected trends. 

First, there are many exceptions to the rule that RGCs with dendrites in the outer half of the 

IPL have OFF responses. The M1 ipRGC was a well-known exception because it receives 

ectopic synapses from ON bipolar cells in the outer IPL (Dumitrescu et al., 2009), but it is 

far from the only exception to this rule. All four ON OS RGC types, the ON delayed, the 

M6, and both sSbC types have OFF dendrites but lack OFF spike responses. In addition, the 

OFF OS RGCs and the F-mini-ON RGC receive OFF input via gap junctions but lack OFF 

bipolar cell input under any stimulus condition we have tested (Cooler and Schwartz, 2020; 

Nath and Schwartz, 2017). An important caveat is that stimuli beyond our test set could 

reveal OFF responses, perhaps in bright conditions (Pearson and Kerschensteiner, 2015; 

Tikidji-Hamburyan et al., 2015).

Second, the dendritic area of an RGC has often been associated with the size of its RF 

center. While this association has a strong basis in the anatomy of the vertical excitatory 

pathways of the retina, there are a number of exceptions in our data set. For example, Small 

RF and Large RF ON OS RGC types do not differ appreciably in dendritic area, and M6 

RGCs have smaller RFs than ON delayed RGCs despite substantially larger dendritic area. 

Differential influences of inhibition and disinhibition likely explain some of these effects 

(Mani and Schwartz, 2017; Wienbar and Schwartz, 2018).

Finally, RGCs with dendrites near the inner and outer margins of the IPL are typically 

assumed to have more sustained light responses while those stratifying near the middle 

of the IPL are assumed to be more transient (Awatramani and Slaughter, 2000; Roska 

and Werblin, 2001). This association has gained support from large-scale measurements 

of the kinetics of glutamate release from bipolar cells throughout the IPL (Franke et al., 

2017; Marvin et al., 2013). While our data generally fit this trend, there were two notable 

exceptions. The M6 RGC is transient despite stratification at both margins of the IPL, and 
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the LED RGC is sustained despite stratification near the middle of the IPL (Jacoby and 

Schwartz, 2017).

The literature linking gene expression, in particular RGC types to their morphology and 

function, has been fragmentary because the lack of known matches has prevented a 

wide view. We found that expression of the gene Tusc5 is strongly associated with a 

particular physiological profile (transient light responses and strong surround suppression) 

and a morphological profile (stratification between the ChAT bands) (Figure 5B). As more 

information about each of the RGC types becomes available, including their projection 

patterns in the brain, we expect more insights into the molecular determinants of RGC 

wiring patterns both within the retina and to the brain. Future studies may also link 

biophysical properties of RGCs to the expression of ion channels.

Web-based resource

Standardization in the definitions of RGC types among different research groups is essential 

to support studies on retinal computation, circuit connectivity, and disease pathology. In 

addition, there is rapidly expanding interest in the projection patterns of different RGC types 

throughout the brain (Dhande et al., 2015; Johnson et al., 2021; Martersteck et al., 2017), 

which similarly relies on standardized type definitions. For these reasons, we created an 

open online resource at rgctypes.org. where users can search and download full datasets, 

use our classification algorithm, and contribute their own data to this effort. By unifying the 

separate functional, morphological, and molecular RGC classification schemas, this resource 

will allow researchers to connect data across experimental modalities.

Limitations of the study

Several limitations of our dataset suggest directions for future work. First, our stimuli were 

limited to a single wavelength distribution, a small range of scotopic to mesopic luminance, 

and a simple set of artificial patterns (spots, gratings, and moving bars). These stimulus 

choices meant that we could not explore how RGC responses differed over the parameters of 

luminance or wavelength. More generally, RGCs evolved not for selectivity to the artificial 

parameterized stimuli we presented but to detect behaviorally relevant features of natural 

scenes. Second, while centering the stimulus for each RGC was important for measuring the 

spatial features of its response, this step complicates the recovery of locally complete RGC 

mosaics. Therefore, a future step in RGC typology alignment will be needed to match our 

types with those in large-scale recordings using either calcium imaging or multi-electrode 

arrays. We hope to collaborate with other labs performing large-scale RGC recordings 

with some version of a sparse noise stimulus to validate the robustness of our functional 

classification across labs and preparations. Finally, our morphological alignment to the 

Eyewire dataset was not validated by a classification algorithm. The limited number of cells 

in both datasets and their methodological differences made such a morphology classifier 

impractical, but with additional data an RGC morphology classifier is a goal (Laturnus and 

Berens, 2021). Since our functional classification algorithm produces a posterior probability 

for each class, functional and morphological information could be incorporated seamlessly 

into a single prediction. Similarly, our improving understanding of the gene expression 
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profiles of each RGC type could enable more accurate composite predictions from the 

expression of a few key genes plus functional and/or morphological data.

STAR☆METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Gregory Schwartz 

(greg.schwartz@northwestern.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Functional and transcriptomic data from this study are available at rgctypes.org. 

and will be continuously updated. Morphological data and any additional raw 

data will be shared by the lead contact upon request.

• Tracings of all RGCs included in the morphology study are available at 

Mendeley Data (https://doi.org/10.17632/8f435gyybb.1)

• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Wild-type mice (C57/Bl6 - JAX 000664) of either sex were housed and 

cared for at the Northwestern University Northwestern University Center for Comparative 

Medicine. They were housed with siblings in groups up to 4, fed normal mouse chow and 

maintained on a 12:12 h light/dark cycle. Mice were dark-adapted overnight and sacrificed at 

4 to 12 weeks of age according to standards provided by Northwestern University Center for 

Comparative Medicine and approved by the Institutional Animal Care and Use Committee 

(IACUC). 4 transgenic lines were used to target subsets of RGCs. All other mice were WT.

PV-Cre (JAX #008069) x Ai14 (JAX #007908): 4 animals.

Opn4-GFP (Generous gift from lab of Tiffany Schmidt, Northwestern University): 2 

animals.

TYW3-GFP (Lab of author J. Sanes): 9 animals.

JAMB-eYFP (Lab of author J. Sanes): 3 animals.

METHOD DETAILS

Ex vivo retina preparation—Retinal tissue was isolated under infrared illumination (900 

nm) with the aid of night-vision goggles and IR dissection scope attachments (BE Meyers). 

Retinal orientation was identified using scleral landmarks (Wei et al., 2010), and preserved 
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using relieving cuts in cardinal directions, with the largest cut at the ventral retina. Retinas 

were mounted on 12mm poly-D-lysine coated glass affixed to a recording dish with grease, 

with the ganglion cell layer up. Oxygenation was maintained by superfusing the dish with 

carbogenated Ames medium (US Biological, A1372–25) warmed to 32°C. Our dataset 

included 1859 recorded RGCs from 551 eyes of 544 animals.

Visual stimuli—RGC types were identified via cell-attached capacitive spike train 

responses to light stimuli as previously described (Jacoby and Schwartz, 2017; Jacoby et 

al., 2015; Mani and Schwartz, 2017; Nath and Schwartz, 2016, 2017). Briefly, stimuli were 

presented using a custom designed light-projector (DLP LightCrafter; Texas Instruments) at 

a frame rate of 60 Hz. Spatial stimuli patterns were generated on a 912 × 1140-pixel digital 

projector using blue (450nm) LEDs focused on the photoreceptor layer. Neutral density 

filters (Thorlabs) were used to attenuate the light intensity of stimuli to 200 rhodopsin 

isomerizations per rod per second (R*/rod/s) from darkness.

The receptive field (RF) centers of individual RGCs were determined by monitoring their 

relative light responses to horizontal and vertical bars (200 × 40 µm, or 100 × 40 µm in 

the case of cells with high surround suppression) flashed at 30 µm intervals at 11 locations 

along each axis. Subsequent stimuli were presented at the RF center. For generic light steps, 

a spot of 200 µm diameter was presented for 1 s, with cell-attached responses recorded 

for at least 0.5 s pre-stimulus and 1s post-stimulus. For spots of multiple sizes, spots with 

diameters from 30 to 1200 µm (on a logarithmic scale) were presented in pseudorandom 

order, with similarly timed epochs. Direction preference of direction-selective (DS) RGCs 

was determined by moving bar stimuli, consisting of a rectangular bar (600 × 200 µm) 

passing through the receptive field center at 1000 µm/s (ON-OFF DS RGCs) or 500 µm/s 

(ON DS RGCs). Flashed bar stimuli for testing orientation selectivity were 800 × 50 µm 

and presented at 12 different orientations (Nath and Schwartz, 2016). Drifting gratings and 

contrast series were presented from a background luminance of 1000 R*/rod/s following 

protocols from previous studies (Jacoby et al., 2015; Nath and Schwartz, 2017).

Imaging—A subset of recorded RGCs were injected with Neurobiotin (Vector 

Laboratories, SP-1150, ~3% w/v and ~280 mOsm in potassium aspartate internal solution) 

using patch pipettes. Retinas were then fixed in 4% paraformaldehyde for 15 min at 25°C, 

washed three times with PBS, and incubated for 1 h in blocking solution (1× PBS with 

3% normal donkey serum, 0.05% sodium azide, 0.5% Triton X-100) including streptavidin 

conjugated to a fluorophore (Alexa Fluor 488 or Alexa Fluor 568). Next, retinas were 

incubated again in blocking solution with primary antibody against choline acetyltransferase 

(ChAT; Millipore, AB144P, goat anti-ChAT, 1:1000) for 5 nights at 4°C. Retinas were then 

rinsed in PBS three times at no less than 1 h per wash before incubation overnight at 4°C 

with streptavidin (Jackson, 016-600-084) and secondary antibody (Donkey anti-Goat 647, 

Fisher, A11055). Retinas were then rinsed again in PBS three times at no less than 1 h per 

wash before mounting on slides with Fluoromount.

RGCs filled with AlexaFluor were imaged immediately using two-photon microscopy 

(920 nm, MaiTai HP; SpectraPhysics) under a 60× water-immersion objective (Olympus 

LUMPLan FLN 60×/1.00 numerical aperture). A 520–540 nm band-pass filter was used 
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to collect emission. After immunohistochemistry, confocal imaging was performed at the 

Center for Advanced Microscopy at North-western University Feinberg School of Medicine 

generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie 

Comprehensive Cancer Center. Dendrites were traced in Fiji using the SNT plugin (Arshadi 

et al., 2021).

Single-cell transcriptomics

Library generation: Following physiological recording, a subset of RGCs was isolated for 

single-cell transcriptome sequencing. First, the area surrounding cells of interest was cleaned 

of nearby cells and visible debris by aspiration through a large (3–4um inner diameter) 

patch pipette. Cells were then aspirated using a freshly flame-pulled patch pipette (2.5 

inner diameter) ansd placed into a 5 µL of lysis Buffer TCL (Qiagen, 1031576) + 1% 

2-mercaptoethanol (Millipore-Sigma, 63689) before being flash-frozen on dry ice.

We generated RNA-Seq libraries using a modified Smart-seq2 method (Picelli et al., 2014) 

with the following minor changes: Before reverse transcription, RNA was purified using 

2.2× SPRI-beads (Beckman Coulter, A3987) followed by 3 wash steps with 80% EtOH, 

elution in 4 µL of RT primer mix and denatured at 72°C for 3 min. Six µl of the first-strand 

reaction mix, containing 0.1 µL SuperScript II reverse transcriptase (200 U/µL, Invitrogen), 

0.25 µL RNAse inhibitor (40 U/µL, Clontech), 2 µL Superscript II First-Strand Buffer (5×, 

Invitrogen), 0.1 µL MgCl2 (100 mM, Sigma), 0.1 µL TSO (100 µM) and 3.45 µL Trehalose 

(1M), were added to each sample. Reverse transcription was carried out at 50°C for 90 

min followed by inactivation at 85°C for 5 min. After PCR preamplification, product was 

purified using a 0.8× of AMPsure XP beads (Beckman Coulter), with the final elution in 

12 µL of EB solution (Qiagen). For tagmentation the Nextera DNA Sample Preparation kit 

(FC-131-1096, Illumina) was used and final PCR was performed as follows: 72°C 3 min, 

95°C 30 s, then 12 cycles of (95°C 10 s, 55°C 30 s, 72°C 1 min), 72°C 5min. Purification 

was done with a 0.9× of AMPure XP beads. Libraries were diluted to a final concentration 

of 2 nM, pooled and sequenced on Next-Seq(Mid), 75bp paired end.

Alignment and quantification of scRNA-cell transcriptomic libraries: Gene expression 

levels were quantified using RNA-seq by Expectation Maximization (RSEM) (Li and 

Dewey, 2011). Under the hood, Bowtie 2 (Langmead and Salzberg, 2012) was used to map 

paired-end reads to a mouse transcriptome index (mm10/GRCm38 UCSC build). RSeQC 

(Wang et al., 2012) was used to quantify quality metrics for the alignment results. We only 

considered cells where the read alignment rate to the genome and transcriptome exceeded 

85% and 35% respectively, and the total number of transcriptome-mapped reads was less 

than 350,000. RSEM yielded an expression matrix (genes x samples) of transcript per 

million counts (TPM), which were log-transformed after the addition of 1 to avoid zeros. 

Overall 103 RGCs, each of which carried a functional type label, were selected for further 

analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Functional response metrics—We measured 6 standard response metrics from the 

flashed spots data. Distributions for each metric for each RGC type are shown in Figure S4.
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Baseline firing rate: Mean firing rate in darkness before spot presentation across all trials.

Peak firing rate: Highest firing rate (baseline subtracted) achieved in a 10 ms bin at light 

onset or offset across all spot sizes.

Peak response latency: Time from light onset or offset until the peak firing rate.

Response duration: Time from peak firing rate until firing rate drops below baseline +10 

percent.

Suppression index: First we determined the dominant polarity for the cell by whether the 

maximum ON or OFF response (in total spike count from baseline) was larger across 

spot sizes. For the dominant polarity, the suppression index was the ratio of the difference 

between this maximum response and the response to the largest (1200 µm) spot divided by 

the sum of these two quantities.

ON:OFF index: Maximum ON response across spot sizes (spike count from baseline) minus 

the maximum OFF response divided by the sum of these two quantities.

Automated classification—A classifier was trained to recognize RGC types based on 

cell-attached recordings of responses to spots of multiple sizes. RGC type labels were 

assigned manually by two of the authors (JG and GWS), and cells were further labeled 

as externally validated or unvalidated by GWS based on the presence of identifying data 

not available to the classifier, including morphological, transcriptomic, whole-cell, and 

physiological (response to moving bars or drifting gratings) data. Types with 5 or fewer 

examples were excluded from training, and OS and DS cells were condensed across 

orientation/direction based on the similarity of their light responses to spots of multiple 

sizes.

Cells were randomly assigned to a testing set (~25% of cells) and a training set, which was 

further subdivided into a training set for a base classifier (~50% of cells) and a calibration 

set (~25% of cells). The scheme favored assignment of validated cells to the calibration set 

and unvalidated cells to the training set for the base classifier. The classifier implements 

a semi-supervised learning model: a base classifier learns to recognize features of the 

probability distribution of RGC light responses that are useful for predicting the manual 

labels, subject to labeling error; this knowledge is “transferred” by the calibrator to reweight 

the base model’s predictions in order to better predict the labels which are influenced by 

external validation. Thus we minimize error propagation while maintaining a large enough 

training set to form robust predictions about RGC type.

The multi-class classification problem was broken down into a series of binary ones using 

the error-correcting output code (ECOC) scheme, such that a series of classifiers each learns 

to discern different combinations of RGC types. Each binary learner in the ECOC scheme 

was trained using Ada-boosted decision trees (Hastie et al., 2009) with initial weights set to 

enforce a uniform prior probability of each RGC type.
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Individual trees were trained by performing elastic net logistic regression on a random 

subset of firing rates from peristimulus time histogram (PSTH) vs. spot size for feature 

reduction and choosing the threshold that minimized class uncertainty (Friedman et al., 

2010; Schneider et al., 2015). Since not all PSTHs were recorded over the same time 

and spot size ranges, we imputed missing data using a nearest neighbor approach. Poorly 

sampled points were penalized in both random selection and regression: for time points 

the penalty was inversely proportional to their frequency of occurrence across cells (since 

all PSTHs were binned with the same Dt); for spot sizes we aimed to account for the 

nonlinearity of responses in the penalty with the following formula:

penalty−1 s ∝ max log MSE ⋅ + − log MSE s +,

where MSE is the mean across cells of the squared error between the chosen spot size, s, and 

the nearest recorded spot size, and (•) + denotes positive rectification.

To implement the calibrator, the calibration fold was used to train an isotonic regression 

model that transformed each binary learner score into a probability, again enforcing a 

uniform prior using sample weighting (Zadrozny and Elkan, 2002). The probabilities from 

each binary learner were then coupled to obtain a probability for each class (Zadrozny, 

2002).

We used three-fold cross validation to train a Bayesian optimization model for 

hyperparameter tuning. The table below lists the hyperparameters we optimized and their 

final values. The classifier is available for use at rgctypes.org., and the link to the source 

code is in the Key Resources Table.

Morphology analysis—Dendrite skeleton images were flattened using a custom 

MATLAB tool based on the method in (Sümbül et al., 2014) and available at the link 

provided in the Key resources table. In cases where we had ChAT staining, the ChAT bands 

were used as the reference surfaces. In cases where ChAT staining was not available, we 

used a smoothed version of each (hand-selected) stratum as reference surfaces and used 

soma position to register to IPL depth. In addition to the stratification profile, we computed 

10 additional metrics from each arbor skeleton. All of these metrics were combined for the 

unsupervised clustering analyzed in Figure S5.

Area. Area of the polygon connecting the tips of the dendrites in each stratum.

Convexity Index. Convex hull area around each stratum divided by the polygon area.

Total length. Linear length of dendritic tree.

Arbor density. Linear length divided by area for each stratum.

Arbor complexity. Number of branches divided by total length.

Soma size. Diameter of soma at its largest axial cross section.
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Branch length. Distribution of lengths of all branches of the dendritic tree.

Branch angle. Distribution of angles at branch points in the arbor.

Tortuosity. Distribution of path length divided by Euclidean distance between endpoints for 

each branch.

Depth range. Distribution of range in depth in the IPL spanned by each branch.

Matching gene-expression clusters to cell types—To map each of the 103 RGC 

transcriptomes to a molecular cluster in Tran et al. (2019) we used the XGboost algorithm 

(Chen and Guestrin, 2016), as implemented in the R package xgboost. Briefly, we trained 

and validated an xgboost multi-class classifier on the atlas of 35,699 RGCs subdivided into 

45 molecularly distinct groups (C1-C45). Around 50% of the data was used for training and 

the remaining 50% was held out and used for validation. We optimized hyperparameters 

(e.g. tree depth, number of features, class-specific weights) to achieve a validation set 

accuracy of >90% across each of the 45 transcriptomic classes. This trained classifier was 

then used to assign a cluster label for each of the 105 transcriptomes profiled in this study. 

We assigned a transcriptomic label to each RGC if a minimum of 15% of trees in the 

forest voted on the majority decision. This choice of voting margin was >6× higher than the 

random threshold of 2.3%, based on the fact that there are 45 classes. The correspondences 

between functional and transcriptomic labels were visualized as confusion matrices.

UMAP and cross-modality neighborhood comparisons—The functional input data 

to the UMAP algorithm was a linearized version of the full matrix of the PSTH for each cell 

across spot sizes (as in Figure 1). We used a MATLAB implementation of UMAP (https://

www.mathworks.com/matlabcentral/fileexchange/71902) supervised by the RGC type labels 

for the dataset of 1859 cells. The input to the UMAP algorithm for morphology was the 

unnormalized stratification profile for each RGC from the Eyewire museum (381 cells) 

supervised by the labels in the museum. Although no attempt was made to capture details 

of the en face morphological characteristics of each cell, the unnormalized stratification 

data allowed the algorithm to use information about total dendritic length. The input to 

the UMAP algorithm for transcriptomic space was a vector of gene expression values for 

RGC-type-selective genes from the published dataset (~35,699 cells) as described in (Tran et 

al., 2019).

We measured similarities between the three UMAP spaces (function, morphology, and 

genetics) by comparing nearest neighbors between spaces. For each RGC type in which we 

established a match between the two spaces being compared, we measured the fractional 

overlap between the nearest neighbors in the first space and those in the second space 

(matching types/neighborhood size). The analysis was repeated for neighborhood sizes 

from 2–12. To assess the statistics of the measured overlap values, we created a bootstrap 

distribution by randomly shuffling the cluster identities in one of the spaces. Data in Figures 

6D–6F are z scores with respect to this bootstrap distribution which was Gaussian.
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Highlights

• Function, morphology, and gene expression jointly specify retinal ganglion 

cell type

• 42 classified types in mice comprise 89% of the total population

• Online resource at rgctypes.org to explore and download the data
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Figure 1. Functional diversity of mouse RGCs
Each panel (separated by purple lines) contains three graphs showing the light response of 

an RGC type to flashed spots of light (200 R*/rod/s) from darkness. The top left graph 

(marked “c” in ON alpha panel) is a heatmap of average firing rate over time (x axis) for 

spots from 30–1,200 µm (y axis). Dashed lines show the time of spot onset and offset. The 

top right graph (marked “b” in the ON alpha panel) shows the total spike count during 

flash onset (cyan) and offset (black) for each spot size. The solid lines indicate mean across 

cells and the shaded regions indicate standard deviation (SD). The bottom graph (marked 

“a” in the ON alpha panel) shows peristimulus time histogram plots averaging the response 

of each cell type to 200 µm spots, indicated in upper plots by red dotted lines. Scale bars 

in the upper left region are shared across all graphs. Separate scale bars for the y axis 

of the PSTH plots are provided within each boxed group of cells and apply within that 

box. Abbreviations for cell types: sus, sustained; tr, transient; med, medium; EW, Eyewire 
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(named based on the Eyewire museum); OS, orientation-selective; h, horizontal; v, vertical; 

DS, direction-selective; SmRF, small receptive field; MeRF, medium receptive field; LgRF, 

large receptive field; HD, high definition; UHD, ultrahigh definition; LED, local edge 

detector; (b,s)SbC, (bursty, sustained) suppressed-by-contrast.
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Figure 2. Visualization of functional relationships among RGCs
(A) UMAP projection of 1,859 RGCs labeled by assigned functional type. Insets show 

magnified views of boxed regions.

(B) F score for each RGC type, the harmonic mean of the precision (fraction of a given 

cluster representing a single-labeled type) and recall (fraction of our labeled cells of a given 

type in a single cluster) of its identification within a single DBSCAN cluster.
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Figure 3. Functional classification from spot responses
(A) Overall model accuracy (y axis) as a function of the fraction of unclassified cells in the 

test cells (x axis), which increases with the classification margin. The dashed line represents 

the expected accuracy of a random classifier. Inset: fraction of instances when the correct 

choice was present among the top 1–10 probability scores in the classifier output.

(B) Fraction of test cells of each type classified correctly versus the number of cells of that 

type in the training set. Histogram at the right shows the distribution of classifier accuracy 

across RGC types.

(C) Accuracy of classification for each RGC type versus its F score from (B).

(D) Confusion matrix (row normalized) for the classifier with no explicit classification 

margin set. Dotted lines separate RGC groups as in Figure 2.
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(E) Confusion matrix (row normalized) for the classifier with a classification margin 

of 0.205. The fraction of unclassified cells of each type is shown in the first column. 

Remaining entries in the matrix only consider classified cells.
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Figure 4. Morphological diversity of mouse RGCs
(A) Stratification profile of each RGC type along the depth of the IPL from its outer (left) 

to inner (right) limits. Dashed lines indicate ChAT bands. Profiles include individual cells 

(thin gray lines), the mean (thick black line), and SD (gray shading), as well as the presumed 

matching type(s) in the Eyewire museum (shades of red).

(B) Summary plot of the morphology of each RGC type. Colored rectangles depict the mean 

and full-width-at-half-maximum of each dendritic stratum within the IPL (vertical scale) and 

the equivalent diameter (according to its diameter) of the stratum in the plane of the IPL 

(horizontal scale). Stata are colored by arbor density. Somas are drawn as circles relative to 

their diameter on a separate horizontal scale, as indicated.

(C) Mean overlap between the stratification profile of each measured cell and each template 

from the Eyewire museum as cosine similarity.

Goetz et al. Page 33

Cell Rep. Author manuscript; available in PMC 2022 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Gallery of en face skeleton example images of each RGC type colored by IPL depth. 

Full galleries of all skeleton images and those in the Eyewire museum can be found at 

rgctypes.org..
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Figure 5. Matches between functional types and transcriptomic clusters
(A) Heatmap showing correspondence between functional types (rows) and transcriptomic 

clusters reported in Tran et al. (2019) (columns). Matches used in subsequent analyses are 

indicated by an “X.” Color scale indicates the number of patch sequencing cells matched 

to each cluster. See STAR Methods for matching procedure. Green arrowheads indicate T5 

RGCs as described in Tran et al. (2019).

(B) Venn diagram of RGC types, including one morphological characteristic (stratification 

between the ChAT bands) and two functional characteristics (transience and surround 

suppression). Green text denotes cell types matched to transcriptomic clusters identified 

as T5 RGCs, characterized by the specific expression of gene Tusc5/Trarg1 in Tran et al. 

(2019).
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Figure 6. Correspondence between RGC relatedness in functional, morphological, and 
transcriptomic space
(A) UMAP embedding of RGC morphology constructed from the stratification profiles in 

the Eyewire museum (Bae et al., 2018). Inset shows boxed region at higher magnification.

(B) UMAP embedding of RGC gene expression from Tran et al. (2019). Cluster labels 

removed for clarity.

(C) Alignments between the three classification schemes that we used for subsequent 

analysis. Lines connect putative corresponding RGC types in each classification schema.

(D) List of RGC types ranked by the z-normalized fractional overlap between functional 

and stratification embeddings. Shaded region indicates 1 SD around the expectation from 

the null distribution. Top: local neighborhood (2–4) neighbors. Bottom: global neighborhood 

(5–12 neighbors).
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(E and F) Same as (D) but showing alignment between functional and morphological space 

(E) or morphological and gene expression space (F). Local neighborhood for (E and F) is 

2–3 neighbors and global neighborhood is 4–8 neighbors.
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Figure 7. Screenshots from rgctypes.org.
(A) Landing page for the HD1 RGC.

(B) Table of RGC types.

(C) Data download area.

(D) Expanded, interactive graph of HD1 RGC light responses.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Streptavidin-488 Thermo Scientific S32354

Streptavidin-568 Thermo Scientific S11226

Goat anti-ChAT Millipore AB144P, RRID AB_2079751

Streptavidin-647 Jackson Immuno 016–600-084

Donkey anti-Goat 647 Fisher A11055

Chemicals, peptides, and recombinant proteins

Neurobiotin Vector Laboratories SP-1150

TCL Buffer Qiagen 1031576

Recombinant Ribonuclease 
Inhibitor

Takara Bio 2313A

Advantage ® UltraPure PCR 
Deoxynucleotide Mix (10mM)

Clontech/Takara 639125

KAPA HiFi HotStart PCR 
ReadyMix

KAPA Biosystems KK2602

Maxima H-minus RT Thermo Fischer EP0752

SPRI SELECT Reagent Beckman-Coulter B23318

Trehalouse Life Sciences Technologies TS1M-100

Critical commercial assays

Nextera XT DNA Library 
Preparation Kit (96 samples)

Illumina Inc FC-131-1096

Deposited data

Traced RGCs This paper Mendeley Data. https://doi.org/
10.17632/8f435gyybb.1

Experimental models: Organisms/strains

C57/Bl6 mice Jackson Labs 000664, RRID IMSR_JAX:000664

PV-Cre Jackson Labs 008069

Ai14 Jackson Labs #007908

Opn4-GFP Tiffany Schmidt N/A

TYW3-GFP Joshua Sanes N/A

JAMB-eYFP Joshua Sanes N/A

Oligonucleotides

Reverse Transcription DNA 
oligonucleotide primer (RNase-
free, 10 µM)

IDT; Custom made: 5′-
AAGCAGTGGTATCAACGCAGAGTACT(30)VN-3′

N/A

SMARTER TSO (with LNA, 10 
µM))

Exiqon; Custom made: 
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G

N/A

PCR oligonucleotide primer (10 
µM)

IDT; Custom made: 5′-AAGCAGTGGTATCAACGCAGAGT-3′ N/A

Software and algorithms

MATLAB Mathworks R2021A

ImageJ/FIJI NIH Version: 1.53
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REAGENT or RESOURCE SOURCE IDENTIFIER

Symphony Data Acquisition 
System

Mark Cafaro Version: 2

Symphony Analysis and other 
custom analysis scripts

MATLAB https://doi.org/10.5281/
zenodo.6423526

DataJoint physiology analysis 
code

MATLAB https://doi.org/10.5281/
zenodo.6544673

RGC Classifier This paper https://doi.org/10.5281/
zenodo.6578626

RGC Morphology Analyzer This paper https://doi.org/10.5281/
zenodo.6578530

UMAP McInnes et al., 2018 (algorithm); https://www.mathworks.com/
matlabcentral/fileexchange/71902 (MATLAB implementation)

Version: 3.01

Igor Pro Wavemetrics Version: 8.04

R 3.6.2 http://www.r-project.org/ The R foundation

RStudio −2021.09.0 http://www.rstudio.com RStudio

Bowtie v2.4.4 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml Bowtie2

RSEM v1.3.2 https://github.com/deweylab/RSEM RSEM
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