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Abstract. Four isoforms of the human fibroblast 
growth factor 2 (FGF-2), with different intracellular lo- 
calizations and distinct effects on cell phenotype, result 
from alternative initiations of translation at three CUG 
and one AUG start codons. We showed here by West- 
ern immunoblotting and immunoprecipitation that the 
CUG-initiated forms of FGF-2 were synthesized in 
transformed cells, whereas "normal" cells almost exclu- 
sively produced the AUG-initiated form. CUG-initi- 
ated FGF-2 was induced in primary skin fibroblasts in 
response to heat shock and oxidative stress. In trans- 
formed cells and in stressed fibroblasts, CUG expres- 
sion was dependent on cis-elements within the 5' region 
of FGF-2 mRNA and was not correlated to mRNA 
level, indicating a translational regulation. UV cross- 
linking experiments revealed that CUG expression was 

linked to the binding of several cellular proteins to 
FGF-2 mRNA 5' region. Since translation of FGF-2 
mRNA was previously shown to occur by internal ribo- 
some entry, a nonclassical mechanism already de- 
scribed for picornaviruses, the cross-linking patterns of 
FGF-2 and picornavirus mRNAs were compared. 
Comigration of several proteins, including a p60, was 
observed. However, this p60 was shown to be different 
from the p57/PTB internal entry factor, suggesting a 
specificity towards FGF-2 mRNA. We report here a 
process of translational activation of the FGF-2 CUG- 
initiated forms in direct relation with trans-acting fac- 
tors specific to transformed and stressed cells. These 
data favor a critical role of CUG-initiated FGF-2 in cell 
transformation and in the stress response. 

F 
IBROBLAST growth factor 2 (FGF-2), also known as 

basic fibroblast growth factor, belongs to a family 
of nine genes encoding cytokines involved in the 

control of cell proliferation and differentiation. As a po- 
tent mitogen for a variety of cells including endothelial 
cells and fibroblasts, it displays multiple biological roles. 
FGF-2 is involved in the development of the nervous sys- 
tem (Wagner, 1991), displays angiogenic activities impli- 
cated in wound-healing and tumor-neovascularization 
processes (Rifkin and Moscatelli, 1989; Kandel et al., 1991; 
Yanagisawa-Miwa et al., 1992), and also has a potential 
oncogenic effect (Couderc et al., 1991; Quarto et al., 1991). 
This factor is synthesized by a large number of cell types 
and exists as four isoforms resulting from alternative initi- 
ations of translation at three CUG and one AUG start 
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codons of the FGF-2 mRNA (Florkiewicz and Sommer, 
1989; Prats et al., 1989). 

The process of alternative initiation of translation has a 
crucial role in the localization and function of FGF-2. The 
CUG-initiated forms of 21, 22, and 24 kD contain a nu- 
clear localization sequence (Bugler et al., 1991) and are 
mostly recovered in the nucleus (Renko et al., 1990). In 
contrast, the AUG-initiated form of 18 kD is mostly cyto- 
solic (Brigstock et al., 1991; Bugler et al., 1991). In addi- 
tion to their distinct localizations, the FGF-2 isoforms 
show radically different features; constitutive expression 
of the AUG-initiated form leads to transformation of 
adult bovine aortic endothelial and NIH 3T3 ceils, 
whereas expression of the CUG-initiated forms leads to 
immortalization of adult bovine aortic endothial cells and 
confers a unique phenotype to NIH 3T3 cells (Couderc et 
al., 1991; Quarto et al., 1991). In contrast to the CUG-initi- 
ated isoforms, the AUG-initiated FGF-2 is able to stimulate 
cell migration (Mignatti et al., 1991) and to down-regulate its 
own receptor (Bikfalvi et al., 1995). The mechanism of ac- 
tion of these isoforms is different. The AUG-initiated 
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form, which is secreted despite the absence of a signal se- 
quence and via a pathway independent of the endoplasmic 
reticulum-Golgi complex, has an autocrine or paracrine 
effect mediated by interactions with the plasma FGF-2 
membrane receptors (Bikfalvi et al., 1995; Mignatti et al., 
1992). The nuclear CUG-initiated forms are not released 
from the cell and have an intracrine effect independent of 
the cell surface receptors (Bikfalvi et al., 1995). 

The multiple roles carried out by FGF-2 require a strong 
and subtle control of its synthesis. Expression of the FGF-2 
gene is transcriptionally regulated by interleukin 1, tumor 
growth factor 13, and tumor suppressor p53 (Gay and Win- 
kles, 1991; Pertovaara et al., 1993; Ueba et al., 1994). Tran- 
scriptional regulation cannot account for differential ex- 
pression of FGF-2 isoforms, however. Furthermore, the 
structure of the FGF-2 mRNA suggests the existence of 
posttranslational controls; several species of FGF-2 mes- 
senger RNAs have been described that differ in the length 
of their 3' untranslated regions (Bensaid, 1989; Weich, 
1990). 90% of the longest and most abundant FGF-2 
mRNA, which is 6774-nucleotide (nt)l-long, corresponds 
to untranslated regions (Prats et al., 1989). The 318-nt-long 
5' untranslated region (UTR), the 165-nt-long alternatively 
translated region (ATR, between the initiation codons), 
and the 5823-nt-long 3' UTR can be expected to contain 
regulatory elements. FGF-2 expression is translationally 
controlled by five cis-acting elements of the RNA leader 
sequence (Prats et al., 1992). One of these regulatory ele- 
ments, located in the 5' UTR between nt 192 and 256 from 
the RNA 5' end, acts as a strong inhibitor of global FGF-2 
mRNA translation in wheat germ extract, but not in rabbit 
reticulocyte lysate or in transfected COS-7 cells. Such ob- 
servations suggest the involvement of regulatory trans-act- 
ing factors specific to different cell systems. 

We have recently reported that the mechanism of trans- 
lation initiation of the FGF-2 mRNA differs from the clas- 
sical model (Vagner et al., 1995a). The cap-dependent 
scanning model predicts that the ribosome binds at the 
capped mRNA 5' end and scans the RNA molecule until it 
recognizes a start codon (Kozak, 1978; Sonenberg, 1988). 
In contrast, translation of the FGF-2 mRNA occurs inde- 
pendently of the cap through an internal ribosome entry 
process. Internal initiation requires a c/s-acting element, 
the internal ribosome entry site (IRES), localized up- 
stream of the first CUG codon. Interestingly, the location 
of the IRES coincides with that of the trans-controlled ele- 
ment cited above (Prats et al., 1992). Such an unusual 
mechanism, originally described for picornaviruses (Jang 
et al., 1988; Pelletier and Sonenberg, 1988), has been de- 
tected in hepatitis C virus (Tsukiyama-Kohara et al., 1992), 
in a retrovirus, the murine leukemia virus (Berlioz and 
Darlix, 1995; Vagner et al., 1995b), as well as in a few cel- 
lular mRNAs with long 5' untranslated regions (Jackson, 
1991; Macejak and Sarnow, 1991; Oh et al., 1992; Vagner 
et al., 1995a). Cellular trans-acting factors are necessary 
for the function of viral IRES's (Borman et al., 1993; 

1. Abbreviat ions  used in this paper. ATR and UTR, alternatively trans- 
lated and untranslated regions; EMCV, encephalomyocarditis virus; 
IRES, internal ribosome entry site; nt, nucleotide; PTB, pyrimidine tract- 
binding protein; RPEH, retinal pigmentary epithelial ceils; rt, room tem- 
perature; RT-PCR, reverse transcriptase-polymerase chain reaction. 

Hellen et al., 1993; Meerovitch et al., 1993; Borovjagin et al., 
1994). 

These different observations suggest the existence of 
cellular trans-acting factors implicated in the translational 
control of FGF-2 expression. In this report, we showed 
that FGF-2 expression in different cell types displayed 
very distinct profiles of the four isoforms, supporting the 
hypothesis of a trans-regulation. Translation of CUG-, but 
not of AUG-initiated isoforms, was activated in trans- 
formed and stressed cells. This process, dependent on the 
FGF-2 mRNA 5' region, was directly related to the RNA 
binding of cellular factors. Comparison with picornavirus 
IRES-binding proteins suggested that some of these fac- 
tors could be internal entry factors. However, we provide 
evidence that this translational control does not involve 
the p57/pyrimidine tract-binding protein (PTB) known as 
a picornavirus internal entry factor (Hellen et al., 1993), 
suggesting the implication of trans-acting factors specific 
to FGF-2 mRNA. 

Materials and Methods 

Cell Types 
Normal cells: Human skin fibroblasts were obtained from the Laboratory 
of Human Skin Cultivation (C.H.U. Rangueil, Toulouse, France and from 
the Laboratory of Pediatric Endocrinology, C.H.U. Purpan, Toulouse, 
France). They were between the first and fourth passage. Human retinal 
pigmentary epithelial cells (RPEH) were a gift of M. Gu~dn and J. Plouet 
(CNRS Toulouse, France). Human aortic endothelial cells, sampled dur- 
ing renal transplantation in a comatose patient, in accordance with the 
French legislation, were a gift of B. Malavaux (Department of Urology, 
C.H.U. Purpan, Toulouse, France). Adult bovine aortic endothelial cells 
were already described (Couderc et al., 1991). 

Cell lines were obtained from American Type Culture Collection 
(Rockville, MD): SK-Hep-1 is a human liver adenocarcinoma (American 
Type Culture Collection: No. HTB 52), HeLa epithelial cells from a hu- 
man uterus carcinoma (No. CCL2), A-431 human epidermoid carcinoma 
(No. CRL 1555), MIA PaCa-2 human pancreas carcinoma (No. CRL 
1420), CAPAN-1 and BxPC-3 human pancreas adenocarcinoma (Nos. 
HTB 79 and CRL 1687), HT-29 colon adenocarcinoma (No. HTB 38), 
MCF-7 human breast adenocarcinoma (No. HTB 22), and COS-7 simian 
kidney cells transformed by SV-40 large T antigen (No. CRL 1654). 

Plasmid Construction 
The plasmid pFS used to synthesize the internal standard RNA was con- 
structed as follows: a DNA fragment was synthesized using the template 
pKS-CAT (CAT coding sequence subcloned in the HindIII-BamHI 
sites of the vector pBluescript KS [Stratagene, La Jolla, CA]), and the 5' 
primer 5 ' -AATAAGCTI'GCCACTTCAAGGACCCCAAGGCTAAG- 
GAAGCTAAA-3'  and the 3' primer 5'-GGGTCAGCTCTTAGCAGA- 
CAqTGGTAAAAAGGCCGTAATA-3' .  The 5' primer hybridizes to nt 
- 1  to -15 preceding the CAT AUG start codon (bold) and has a tail cor- 
responding to nt 554-573 of FGF-2 eDNA with a 5' HindIII site. The 3' 
primer hybridizes to nt 119-134 downstream from the CAT AUG (bold), 
and its tail is complementary to nt 931-951 of FGF-2 eDNA, with a 5' half 
SmaI site (GGG). The 200-nt-long PCR fragment was cloned into the 
HindIII-SmaI sites of the vector pBluescript KS, resulting in the plasmid 
pFS (for FGF standard). 

In Vitro Transcription 
The transcription templates corresponded to various linearized DNAs. 
pFS linearized by XbaI allowed synthesis of the internal standard RNA 
for reverse transcriptase-polymerase chain reaction (RT-PCR). pFC1 lin- 
earized by NarI (position 539) allowed synthesis of the 5' region (UTR + 
ATR) of FGF-2 mRNA (Prats et al., 1992), pTM1 linearized by EcoRI al- 
lowed synthesis of the encephalomyocarditis virus (EMCV) RNA fragment 
261-837 (Jang and Wimmer, 1990), pJ 10-611 linearized by BamHI al- 
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lowed synthesis of the complete untranslated region of human rhinovirus 
(HRV-2; see Borman et al., 1993), and pSCT CAT linearized by Bglll al- 
lowed synthesis of CAT RNA (Vagner et al., 1995a). These RNAs, la- 
beled or unlabeled, were used either as probes or as competitors, respec- 
tively. RNAs were generated in vitro by T7 or T3 RNA polymerase and 
quantitated as previously (Vagner et al., 1995b). RNA labeling was per- 
formed in 50 I~1 with 100 ixCi of ot[32p]CTP (without unlabeled CI'P). 

Cell Transf ection 
The different cell types were transfected by using either DEAE dextran as 
described previously (Vagner et al., 1995a), Lipofectin according to manu- 
facturer's instructions (Life Technologies, Inc., Grand Island, NY), or 
electroporation. For the lipofectin method, 5 t~g of plasmid pFC1 was in- 
cubated with lipofectin (50 ixl) in a final volume of 0.5 ml of DME without 
serum for 15 min at room temperature (rt) and then added to serum de- 
pleted medium in a 9-cm dish containing exponentially growing cells. 
Electroporation was performed with a gene pulser (960 ~F capacitance, 
260V, BioRad Labs, Hercules, CA) using 2 × 106 cells mixed in 0.4 ml 
with 20 I~g of plasmid. With the three transfection methods, cell lysates 
were prepared 48 h later for Western immunoblotting analysis. 

Western Immunoblotting 
The cell monolayers (1-5 × 106 cells) were scraped in a subconfluent 
state. Total proteins were prepared, quantified, and analyzed by Western 
immunoblotting (20 l~g of proteins from each cell lysate) as previously de- 
scribed (Vagner et al., 1995a). CAT and FGF-2 proteins were immunode- 
tected using rabbit polyclonal anti-CAT antibodies prepared in our labo- 
ratory (1/20,000 dilution) and anti-FGF-2 antibodies (Oncogene Science, 
Inc., Manhasset, NY; 1/200 dilution), respectively. 

35S Labeling and lmmunoprecipitation 
Cell cultures were incubated with 100 ~Ci/ml of [35S]methionine and 
[35S]cysteine (Trans3SS-label; ICN Biomedicals, Inc., Costa Mesa, CA) for 
60 rain. Cells were then harvested by scraping. Cell extracts were prepared 
by lysis in a PBS/NP-40 buffer containing PBS, pH 7.4, 50 mM NaF, 2 mM 
EDTA, 2 mM EGTA, 0.05% NP-40, 1 mM PMSF, 2 i~g/ml aprotinin 
(Sigma Chemical Co., St. Louis, MO), and 2 p,g/ml leupeptin (Sigma 
Chemical Co.), followed by sonification for 20 s. Immunoprecipitation of 
the 35S-labeled proteins was performed with magnetic beads (DYNAL 
France s.a., Compitgne, France), according to manufacturer's instructions. 
Briefly, 100 ~g of total proteins (400 tzl) was precleared for 45 min at rt 
with 50 ixl of magnetic beads coupled with anti-mouse IgG (Dynabeads 
M-450; DYNAL, Inc.) and then incubated for 45 min at rt with 50 ~1 of 
Dynabeads M-450 coupled with anti-FGF-2 antibody (Ab-3; Oncogene 
Science, Inc.). The beads were washed six times in a Hepes/NP-40 buffer 
(15 mM Hepes, pH 7.4, 150 mM NaC1, 1 mM EDTA, 1% NP-40). The 
samples were then recovered in SDS-sample buffer, denatured at 95°C for 
5 min, and analyzed by 12.5% PAGE after bead removal. The gel was 
fixed, dried, and autoradiographed. 

The cross-linked proteins were immunoprecipitated with pansorbin: 
10 p.l of the cross-linked 32p-labeled sample (see below) was diluted to 150 p.l 
in the PBS/NP-40 buffer described above and precleared by incubation 
with 50 ixl of pansorbin for 10 min at rt. The supernatant was incubated 
for 30 min at rt with 5 pd of anti-PTB antibody (kindly provided by J.G. 
Patton, Vanderbilt University, Nashville, TN; see Patton et al., 1991) and 
then for 30 min at rt with 50 Ixl of pansorbin. After five washes in the 
Hepes/NP-40 buffer, the samples were analyzed by 10% PAGE as above. 

Cell RNA Purification 
The cell monolayers (5 × 106 cells) were scraped in a subconfluent state. 
Total cellular RNA was prepared from the cell pellets by the Trizol 
method (Life Technologies, Inc.) as previously described (Vagner et al., 
1995a). RNA was quantitated by measuring the absorbance at 260 nm and 
checked for integrity by electrophoresis on agarose gel and ethidium bro- 
mide staining. 

RNA Quanttfication by RT-PCR 
The cDNAs were synthesized using the Superscript TM preamplification 
system from Life Technologies, Inc., according to the manufacturer's in- 
structions. The reverse transcription reaction was carried out using i ttg of 

total RNA and 50 ng of random hexamers in a final volume of 20 pfl. For 
FGF-2 mRNA quantification, variable amounts of internal standard RNA 
synthesized from the FC plasmid were added to the reactions (see Fig. 3). 

The PCR was performed with the 5' primer 5 ' -GCCACTI 'CAAG- 
GAT/cCCCAAG-3 ' and the 3' primer 5 ' -TCAGCTCTI 'AGCAGACAT- 
TGG-3',  hybridizing to regions 554-573 and 931-951 of FGF-2 eDNA, re- 
spectively. The 5' primer degeneration corresponds to a divergence 
between the human and bovine sequences. The two primers hybridize in 
two different exons, ruling out contamination of the PCR reactions by the 
genomic sequence. The PCR reactions were carried out using 0.5 U of 
Goldstar Taq DNA polymerase (Eurogentee France s.a., Angers, France), 
in a final volume of 50 I~1, using variable m o u n t s  of eDNA (1 i~1 or less). 
The reaction was done on a TrioThermoblock apparatus (Eurogentee) in 
the following conditions: 94°C for 3 rain and then 30 cycles of 940C for 30 
s, 63°C for 1 rain, 72°C for 1 min, and finally 72°C for 5 min. Amplification 
results (1/5 of the reactions) were analyzed on 6% polyacrylamide gels 
(Tris Borate/EDTA), followed by ethidium bromide staining. The inten- 
sity of the ethidium bromide luminescence was measured by image acqui- 
sition on a UV max apparatus (Fisher Scientific OSI, Elancourt, France) 
followed by an image treatment with NIH Image software, in conditions 
where the intensity of fluorescence was linear (Nakayama et al., 1992). 

UV Cross-linking Assays 
S10 cytoplasmic extracts from the various cell types were prepared as al- 
ready described after a PBS wash (Vagner et al., 1995b). HeLa S100 ex- 
tracts were prepared by centrifugation of the HeLa S10 at 100,000 g for 1 h. 
HeLa ribosome salt wash was prepared from the S100 as previously de- 
scribed (Meerovitch et al., 1989). 1 × 10 ~ cpm (UV cross-linking) of 32p. 
labeled RNA was incubated with 10 I~g of S10 extract and UV irradiated as 
previously (Vagner et al., 1995b). For competition experiments, cold com- 
petitor RNAs or homoribopolymers (Boehringer Mannheim France s.a., 
Meylan, France) were preincubated with the S10 extract for 15 min at 
30°C. The 32P-labeled RNA was then added and the mixture was further 
incubated at 30°C for 15 min to allow complex formation before UV irra- 
diation. The samples were then treated with 2.5 U of RNase A and 10 U of 
RNase T1 (Sigma Chemical Co.) at 37°C for 30 min and, when indicated, 
with Proteinase K (Sigma Chemical Co.) at 37°C for 20 min at a final con- 
centration of 1 mg/ml, before 10% PAGE analysis and autoradiography. 

Results 

Specific Expression of FGF-2 Isoforms in Various 
Cell Types 

Expression of the four FGF-2 isoforms in different human 
cell types was analyzed by Western immunoblotting. As 
shown in Fig. 1, A and B, three distinct patterns of expres- 
sion were detected. In a first group of cells including nor- 
mal cells like skin fibroblasts, RPEH grown in primary cul- 
ture, or aortic endothelial cells picked up in situ, large 
amounts of the 18-kD AUG-initiated form were present, 
whereas the CUG-initiated forms were barely detectable 
(lanes 1-3). in a second group comprising transformed cell 
lines such as uterus carcinoma HeLa cells, liver adenocar- 
cinoma SK-Hep-1, epidermoid carcinoma A-431, and pan- 
creas carcinoma MIA PaCa-2, the four isoforms were visi- 
ble, with a major band corresponding to the CUG2- 
initiated form (lanes 4-7). The third group, another set of 
transformed cell lines including breast adenocarcinoma 
MCF-7, colon adenocarcinoma HT-29, or pancreas adeno- 
carcinoma CAPAN-1, showed only one band, migrating as 
the CUG3-initated FGF-2 (lanes 8-10). 

These data clearly indicated that the four FGF-2 isoforms 
were differentially expressed in different cell types. Inter- 
estingly, the CUG-initiated forms could only be detected 
in transformed cell lines, whereas three normal cell types 
expressed large amounts of 18-kD AUG-initiated FGF-2. 

To check these different expression patterns at the level 
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Figure 1. Endogenous FGF-2 analysis by Western immunoblot- 
ting. (A) Western immunoblotting. 20 ~g of cell extracts from dif- 
ferent cell types in a subconfluent state was analyzed by PAGE 
and transferred to nitrocellulose (see Materials and Methods). 
Immunoblotting was performed with anti-FGF-2 antibodies and 
chemiluminescence revelation, immediately followed by autoradi- 
ography for 2 h. The name of each cell type is indicated on the 
top of the corresponding lane. Migration of the size standards 
and of the FGF-2 isoforms is indicated. (B) Scanning of the West- 
ern immunoblot on a Biocom apparatus. The scan values corre- 
sponding to each FGF-2 isoform are represented by histograms, 
under the corresponding lane of A. 

of protein synthesis, the proteins in SK-Hep-1 cells and in 
skin fibroblasts were de novo-labeled with [35S]methionine 
and [35S]cysteine. COS-7 cells transfected by a plasmid ex- 
pressing all FGF-2 isoforms were used as a FGF-2 size 
control (Florkiewicz et al., 1991; Vagner et al., 1995a; Fig. 2, 
lane 2). FGF-2 synthesis was analyzed by immunoprecipi- 
tation with anti-FGF-2 antibody. The results allowed us to 
detect all isoforms in SK-Hep-1 (Fig. 2, lane 3) and only 
the AUG-initiated form in skin fibroblasts (lane 4), con- 
firming the data obtained by Western immunoblotting and 
suggesting that the different FGF-2 expression in the vari- 
ous cell types were resulting from a translational regula- 
tion mechanism. 

Absence of Correlation between FGF-2 mRNA Level 
and CUG-initiated Form Expression 

FGF-2 expression in different cell types was analyzed at 
the RNA level using the method of RT-PCR. RNA was 
quantitated from purified total RNA by using an internal 
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Figure 2. De novo biosyn- 
thesis of FGF-2 isoforms. 
COS-7 cells were transfected 
by 2 i~g/ml of plasmid pSCT- 
FGF (Vagner et al., 1995a) 
expressing the four FGF-2 
isoforms, using the DEAE 
dextran method. 48 h after 
transfection, cells were 35S- 
labeled and the cell extracts 
immunoprecipitated with 

anti-FGF-2 antibody, as described in Materials and Methods. 
Lane 1, nontransfected COS; lane 2, transfected COS. The same 
labeling was performed with untransfected SK-Hep-1 cells (lane 3) 
and skin fibroblasts (lane 4). Proteins were fraetionated by 12% 
SDS-PAGE and revealed by autoradiography. The migration of 
the different FGF isoforms is indicated (CUG1, CUG2/3, and 
AUG), as well as the size standards. 

RNA standard synthesized in vitro (Fig. 3). This proce- 
dure included several steps shown in Fig. 3, A and B, for 
skin fibroblast RNA (Wang et al., 1989). First, an approxi- 
mate quantitation was performed by adding growing 
amounts of competitor internal RNA standard (not 
shown). Then the RT was performed using an RNA stan- 
dard amount corresponding to the approximate number of 
FGF-2 mRNA molecules determined in the first experi- 
ment, and PCR amplification was carried out with serial 1:3 
dilutions of the RT product containing both the FGF-2 
and internal standard cDNAs (Fig. 3 A). A straight line 
was obtained from these different points, giving a precise 
quantitation of the FGF-2 mRNA (Fig. 3 B). This experi- 
ment was performed for most cell types shown in Fig. 1, 
and also for monkey COS-7 cells, whose FGF-2 isoforms 
expression profile corresponded to the second group 
(Vagner et al., 1995a; Fig. 2). The final values are repre- 
sented by histogram (Fig. 3 C). 

These results showed that two normal cell types, RPEH 
and skin fibroblasts, contained the highest levels of FGF-2 
mRNA, with repective values of 9.1 × 104 and 4.8 × 104 
molecules/ng of total RNA. SK-Hep-1 was the only trans- 
formed cell line presenting a high level of this mRNA (3.8 
× 104 molecules/ng), whereas the other transformed cell 
lines expressed it very poorly (1.3 × 104-3.0 x 102 mole- 
cules/rig). This study showed that the AUG-initiated FGF-2 
expression was approximately related to the mRNA levels 
in the different cell types. However, we found no correlation 
between FGF-2 mRNA levels and expression of the CUG- 
initiated FGF-2 isoforms. These data favor a mechanism of 
translational activation or derepression of CUGs expression. 

The 5' Region of FGF-2 mRNA Is 
Sufficient for the Cell.specific Control of 
Alternative Translation Initiation 

To see whether the different patterns of FGF-2 expression 
shown in Fig. 2 resulted from a translational control, we 
transfected skin fibroblasts, HeLa, and SK-Hep-1 cells with 
a chimeric DNA in which the 5' region of FGF-2 mRNA 
sequence has been fused to the CAT-coding sequence and 
which encodes four F G F - C A T  isoforms from the four 
FGF-2 initiation codons (Prats et al., 1992, Fig. 4 A). The 
proteins expressed by the three cell types were detected by 
Western immunoblotting using an anti-CAT serum (Fig. 4 B). 
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Figure 3. Quantitative RT- 
PCR analysis of FGF-2 
mRNA in different cell 
types. (A) Ethidium bro- 
mide staining of RT-PCR 
products from human skin fi- 
broblast total RNA. Reverse 
transcription and polymerase 
chain reaction were per- 
formed in the conditions de- 
scribed in Materials and 
Methods. Before carrying 
out the quantitative RT-PCR 
(Wang et al., 1989), we deter- 
mined the amount of internal 
standard RNA to add in the 
reaction that must be dose to 
the amount of FGF-2 
mRNA. An approximate 
quantification was done by 
competititive RT-PCR using 
1 I~g of total cell RNA and 1: 
5 serial dilutions of the inter- 
hal standard RNA (6.2 x 
109-6.2 x 104 molecules, not 
shown), giving the approxi- 
mate value of 3.1 x 107 mole- 
cules (equal intensity of the 
two bands). Then, for the 
quantitative RT-PCR experi- 
ment, reverse transcription 
was done in 20 p.1 with 1 I~g 
of total RNA and 3.1 × 107 
molecules of internal stan- 
dard RNA. 1:3 serial dilu- 
tions of the obtained cDNA 

(starting from 3 p.1 of the RT reaction, lane 4) were amplified by PCR and analyzed on 6% TBE polyacrylamide gels (lanes 4-10). 
Lanes 1 and 2 correspond to reverse transcription with 1 p.g of fibroblast RNA alone, or with 3.1 × 107 molecules of internal standard 
alone, respectively, followed by PCR with 1 ixl/20 of each cDNA sample. Lane 3 corresponds to the PCR negative control without 
cDNA, lane M to the DNA ladder (Life Technologies, Inc.). The bands corresponding to endogenous FGF-2 and to internal standard 
are indicated by arrows. (B) The fluorescence of the bands shown in A was scanned (see Materials and Methods). The variable tem- 
plate concentrations of internal standard FC RNA and skin fibroblast total RNA were plotted against the fluorescence intensity of the 
PCR products. The dotted line with an arrow at the end indicates the number of molecules contained in I ng of total RNA. (C) The pro- 
cedures described in A and B were used to quantitate the FGF-2 mRNA in different human cell types, as well as in simian COS-7 cells. 
For each cell type, 1 p.g of total RNA was used, in presence of internal standard amounts determined by competitive RT-PCR (see A). 
The numbers of internal standard molecules added were: 12.4 x 107 for RPEH, 3.1 × 107 for skin fibroblasts, 6.2 × 106 for HeLa, 6.2 × 
107 for SK-Hep, 6.2 x 106 for MIA PaCa-2, 6.2 x 106 for MCF-7, 6.2 x 105 for CAPAN-1, and 5.0 x 106 for COS-7. The quantitative 
RT-PCR was reproduced four to seven times for each cell type. The average values obtained from fluorescence intensity measurements 
detailed in B are represented by histograms. 

The same expression profile was observed for the F G F -  
C A T  proteins as for the endogenous FGF-2. We could 
only detect AUG-ini t ia ted F G F - C A T  in transfected skin 
fibroblasts (Fig. 4 B, lane 2), whereas all four isoforms 
were synthesized in transfected HeLa  or SK-Hepl  cells 
(lanes 4 and 6). These data dear ly  indicate that the 5' re- 
gion of  FGF-2 m R N A  contains the c/s-acting elements 
necessary for the cell-type specific control of  alternative 
translation initiation. 

CUG-initiated FGF-2 Is TranslationaUy Induced by 
Stress in Human Skin Fibroblasts 

We have previously shown that the 5' untranslated region 
of FGF-2 m R N A  contains an IRES localized upstream 

from the C U G  codons (Vagner et al., 1995a). The results 
obtained in Fig. 4 suggested that the selection of  the initia- 
tion codons could involve this IRES and thus occur by in- 
ternal r ibosome entry. To address this question, we sub- 
jected human skin fibroblasts to a heat shock treatment 
previously shown to abolish the cap-dependent  translation 
(Panniers et al., 1985). 

Skin fibroblasts were heat shock treated at 45°C for in- 
creasing periods of  15-60 min. The endogenous FGF-2 
present in the cells was then analyzed by Western immu- 
noblotting (Fig. 5 A), and the level of  FGF-2 m R N A  
checked by quantitative RT-PCR (Fig. 5 B). The results 
clearly showed that heat shock induced the synthesis of 
the CUG-init iated forms. This effect was time dependent,  
being detected after 15 rain and more  pronounced after 60 
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Figure 4. Transfection of different cell types by an FGF-CAT 
chimeric contruct. (A) Schema of the FGF-CAT chimeric RNA 
expressed by the plasmid pFC1 used for transfection. This con- 
struct contains the entire 5' leader of FGF-2 mRNA and is able 
to express the four FGF-CAT isoforms from the four FGF-2 
start codons, under the control of the complete FGF-2 mRNA 5' 
UTR (Prats et al., 1992; Vagner et al., 1995a). (B) Human skin fi- 
broblasts, HeLa, and SK-Hep-1 cells were transiently transfected 
by the chimeric plasmid pFC1 using lipofectin. 48 h after transfec- 
tion, the cell proteins were analyzed by PAGE and Western im- 
munoblotting using anti-CAT antibody. The migration of the dif- 
ferent FGF-CAT isoforms is indicated (CUG1, CUG2/3, and 
A UG), as well as the size standards. The name of the cell type is 
indicated on the top of each block, mock, the negative control 
transfected without DNA. FC1, the transfection with 5 g~g of 
pFC1 DNA. 

min of  stress (Fig. 5 A,  lanes 2-5), whereas  the F G F - 2  
m R N A  level did  not  change (Fig. 5 B, his tograms 2-5). 

To find out  whether  this process was dependen t  on the 
5' region of the F G F - 2  m R N A ,  skin f ibroblasts  were trans- 
fected by the construct  used above  (Fig. 4 A)  and able to 
express the four F G F - C A T  fusion prote ins  (Fig. 6). The  
t ransfected fibroblasts  were heat  shocked and expression 
of the F G F - C A T  prote ins  then analyzed by Wes te rn  im- 
munoblot t ing  with an t i -CAT serum: the CUG-in i t i a t ed  fu- 
sion F G F - C A T  proteins (Fig. 6 A,  lanes 2-4)  were induced 
s imultaneously with endogenous  CUG-in i t i a t ed  FGF-2,  al- 
though with a lower efficiency (Fig. 6 B, lanes 2-4). This indi- 
cates that  the 5' of FGF-2  m R N A  comprises  the c/s-acting 
e lements  necessary and sufficient for heat  shock response.  

B FGF-2 mRNA quantitation 

Heat Shock ct 1['  30' 45' 60' 

d~ 

~° 

Z ~  

1 2 3 4 5 

Figure 5. Analysis of FGF-2 expression in heat shock-treated 
skin fibroblasts. (A) Subconfluent human skin fibroblasts were 
heat shocked by rapid and complete immersion of the flasks in a 
45°C bath for variable times. Cells were harvested directly after 
the heat treatment and FGF-2 expression analyzed as in Fig. 1, by 
Western immunoblotting with antiFGF-2 antibody. The heat 
shock durations (0--60 min) are indicated at the top of the lanes. 
SK-Hep-1 cell extract was used as a control of FGF-2 migration. 
The expected positions of FGF-2 isoforms are indicated (CUG1, 
CUG2/3, and AUG), as well as the size standards. (B) FGF-2 
mRNA present in each cell extract used in A was quantitated by 
RT-PCR as in Fig. 3. The heat shock duration is indicated on the 
top of each block. 

The  quest ion of  CUG-in i t i a ted  forms induction as a 
general  response to o ther  stress condit ions was addressed 
by subjecting skin f ibroblasts  to oxidat ive stress using xan- 
thine oxidase. The  analysis of F G F - 2  expression by West-  
ern immunoblo t t ing  showed that  the CUG-in i t i a t ed  forms 
were induced in response to oxidative stress (Fig. 7, lane 3). 

Taken  together,  these da ta  point  out  a process of  trans- 
lational regulat ion modulat ing the expression of  the FGF-2  
CUG-in i t i a ted  forms in normal  human cells as a response 
to stress. The appearance  of  such a process in condit ions of 
inhibi ted cap-dependent  t ranslat ion and the involvement  
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Figure 6. Transfection of heat-shocked skin fibroblasts by an 
FGF-CAT chimeric contruct. Skin fibroblast were transfected by 
electroporation (see Materials and Methods) with the plasmid 
pFC1 used in Fig. 4, expressing a chimeric FGF-CAT RNA (see 
the schema). After 48 h, the cells were subjected to heat shock 
treatment (0, 15, 30, or 45 min; lanes I to 4) and harvested as in 
Fig. 5. Western immunoblotting was performed either with anti- 
CAT antibody or with anti-FGF antibody to detect FGF-CAT 
(A) or endogenous FGF-2 (B) isoform expression, respectively. 
Size standards are indicated. 

of c/s-acting elements located in the 5' part of FGF-2 
mRNA (containing the IRES) favor a process of internal 
ribosome entry (Panniers et al., 1985; Vagner et al., 1995a). 

Specific Binding o f  HeLa Cell Proteins to FGF-2 mRNA 
5' Region 

The involvement of the 5' region of FGF-2 mRNA in the 
translational control of its expression prompted us to look 
for cell proteins that could interact with this 5' region. The 
proteins interacting with the FGF-2 m R N A  5' region 
(UTR + ATR) were characterized by UV cross-linking 
experiments. A 32p-labeled RNA probe corresponding to 
this 5' region (nt 1-539) was UV irradiated in the presence 
of HeLa  $10 extracts. Then the assay was RNase treated 
before analysis on PAGE. Several cross-linked bands were 
detected, the most abundant one migrating around 110 kD 
(Fig. 8, lane 3). Proteinase K treatment confirmed that 
these bands corresponded to proteins (lane 11). The speci- 

Western blot (anti-FGF-2) 
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serum 10% 0% 0% 
O,  stress . . + 

t U G !  

CUC,2/3 
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! 2 3 4 

Figure 7. Analysis of FGF-2 expression in skin fibroblasts sub- 
jected to oxidative stress. Skin fibroblasts submitted to oxidative 
stress by incubation with xanthine oxidase (150 i~g/ml) and hy- 
poxanthine (300 I~M) for 6 h, in absence of serum, as previously 
described (Volk et al., 1995). Western immunoblotting was per- 
formed with anti-FGF-2 antibody as in Fig. 5. The presence of se- 
rum in the culture and the subjection to stress is indicated at the 
top of each lane. SK-Hep-1 extracts were used as a control for 
FGF-2 isoforms migration. The expected positions of FGF-2 iso- 
forms are indicated (CUG1, CUG2/3, and AUG), as well as the 
size standards. This result is representative of four independent 
experiments. 

ficity of RNA-protein  interactions was tested by addition 
of an excess of different competitor RNAs; the cross- 
linked proteins were displaced from the labeled probe by 
addition of a 100-fold excess of homologous FGF-2 RNA 
(lane 6), but not by heterologous CAT RNA added in the 
same proportions (lane 10), confirming the specificity of 
the interactions between the FGF-2 m R N A  and the HeLa 
proteins. Interestingly, the EMCV IRES RNA was able to 
displace several proteins, except for p l l 0  (lane 8), suggest- 
ing that FGF-2 and EMCV RNAs could share the binding 
of common factors. 

The Binding of  Cell Proteins to FGF-2 mRNA Is 
Related to CUG-initiated FGF-2 Expression 

To find out whether the cross-linked proteins had some- 
thing to do with translation regulation, we prepared a 
HeLa ribosome salt wash retaining the ribosome-associ- 
ated proteins expected to be involved in translation (see 
Materials and Methods and Meerovitch et al., 1989). The 
cross-linking reaction performed with the ribosome salt 
wash showed the proteins already detected with the $10 
extract (Fig. 9, lanes 2-5), thus favoring a role of these pro- 
teins in translation regulation. 

The question of the cell specificity of the interacting 
proteins and of a possible relation between the profiles of 
protein binding and FGF-2 expression (Fig. 1) was studied 
by cross-linking experiments using cell-free extracts from 
various cell types. Different profiles of cross-linked pro- 
teins were obtained according to the cell types (Fig. 9, 
lanes 6-16). Interestingly, most of the factors visible in 
HeLa (lane 3) could be detected in the transformed cell 
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Figure 8. UV cross-linking of HeLa cellular factors with FGF-2 
RNA leader. HeLa cells S10 extract was incubated with RNA 
probe (105 cpm) corresponding to the FGF-2 leader RNA (nt 1-529) 
containing the 5' UTR and the ATR. Competition experiments 
were carried out by addition of unlabeled RNA in 20--100-fold 
molar excess. The competitors were FGF 5' (nt 1-539), EMCV 
(nt 261-837), or CAT (coding sequence of 0.7 kb). UV irradiation 
was performed as described in Materials and Methods with an 
energy of 400,000 gJ/cm 2 at 254 nm. Samples were treated with 
RNAses A and T1 before analysis by SDS-PAGE. Addition of 
HeLa extract, competitors, proteinase K, and UV irradiation is 
indicated at the top of the lanes. Migration of the size standards is 
shown. Several cross-linked products are indicated by arrows. 

lines (lanes 8, 10, and 12-15), except for the Bx-PC3 cells 
(producing no FGF-2, data not shown). Rabbit reticulo- 
cyte lysate showed several bands, but not the p l l 0  (lane 6), 
whereas these factors were neither detected in wheat germ 
extract nor in skin fibroblasts (lanes 7 and 9). Wheat germ 
extract is unable to translate FGF-2 m R N A  (Prats et al., 
1992), and the skin fibroblast only expresses the AUG-ini- 
tiated form (Fig. 1). This suggests a relation between the 
binding of these proteins and the expression of the FGF-2 
CUG-initiated forms. 

The hypothesis of a direct role of these factors in the ac- 
tivation of CUG-initiated forms expression predicts that 
such specific proteins should interact with FGF-2 RNA in 
stress conditions. Cross-linking experiments were per- 
formed using heat shock-treated fibroblast extracts, show- 
ing a drastic change in the cross-linking pattern as a func- 
tion of the heat shock duration (Fig. 10 A). The binding of 
several proteins was either induced or inhibited by stress 
(Fig. 10 A, lanes 2-6). The major bound protein that ap- 
peared after heat shock was a p60, not the p l l 0  as ob- 
served in HeLa and other transformed cell lines. This p60 
was also visible in HeLa, but in low amounts (Figs. 9 and 
10 A, lane 1). 

Cross-linking experiments were also performed with ex- 

tracts from fibroblasts treated by oxidative stress (Fig. 10 B). 
The same change in the cross-linked proteins profile as af- 
ter heat shock was observed, with a stress-induced binding 
of several proteins mostly including a p60. These data 
strongly suggest that one or several of these bound pro- 
teins, including the p60, could be involved in translational 
activation of FGF-2 CUG-initiated forms expression. 

The p60 Bound to FGF-2 mRNA Is Different from the 
PTB Internal Entry Factor 

The apparent molecular weight of the p60 observed in 
transformed cell lines and in the stressed skin fibroblasts 
suggested that it could correspond to the PTB shown to be 
a splicing factor and an internal entry factor involved in pi- 
cornavirus IRES function (Patton et al., 1991; Hellen et al., 
1993). 

The proteins bound to FGF-2 mRNA 5' (comprising the 
FGF IRES) were compared to those bound to the IRES's  
of two picomaviruses, EMCV and human rhinovirus (HRV) 
by carrying out cross-linking experiments using FGF, 
EMCV, and HRV 32p-labeled probes incubated with HeLa 
S10 extracts (Fig. 11, lanes l-6). The PTB protein was de- 
tected as a doublet with the two picornavirus IRESes 
(lanes 4 and 6), as previously described (Jang and Wim- 
mer, 1990; Borman et al., 1993). The FGF-2 p60 comi- 
grated with the upper band of the PTB doublet (lane 2). 

Competition experiments were performed with homori- 
bopolymers to characterize the binding features of the dif- 
ferent cross-linked proteins, using the FGF-2 mRNA 5' as 
a probe (Fig. 11, lanes 7-19). Both p l l 0  and p60 were dis- 
placed first by polyU and then by polyG. Thus the p60 was 
affine for Us but not for Cs. This distinguishes the p60 
from PTB, which is displaced by polyU and also by polyC 
(Borman et al., 1993; and data not shown). 

To clarify the question of PTB binding to FGF-2 
mRNA, we then immunoprecipitated the cross-linked pro- 
teins using anti-PTB antibody. Samples with proteins 
cross-linked to EMCV IRES were immunoprecipitated in 
parallel as a positive control. As shown in Fig. 12, PTB 
bound to EMCV IRES was efficiently precipitated by the 
antibody (lane 4). In contrast, the p60 bound to FGF-2 
mRNA was not immunoprecipitated by anti-PTB anti- 
body, either from HeLa extracts (lane 2) or from heat- 
shocked skin fibroblast extracts where it was the major 
bound protein (lanes 5 and 6). This led us to conclude that 
the p60 bound to the FGF-2 mRNA is not the PTB. 

Discussion 

The results reported here demonstrate that FGF-2 expres- 
sion is regulated at the translational level by a cell state-  
specific process; indeed, the expression of the CUG-initi- 
ated forms of FGF-2 occurs in human transformed cell 
lines but not in primary cell types. Furthermore this ex- 
pression is completely independent of the FGF-2 mRNA 
levels in the cells. The three studied "normal" cell types, of 
endothelial, epithelial, and fibroblastic origin, almost ex- 
clusively express the AUG-initiated 18-kD FGF-2. Stress 
conditions, however, are able to induce the synthesis of 
the CUG-initiated forms in skin fibroblasts. We show that 
the positive regulation of CUG initiation depends on cis- 
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Figure 9. UV cross-linking of 
FGF-2 RNA leader with ex- 
tracts from different cell 
types. S10 extracts from dif- 
ferent cell types were pre- 
pared as in Fig. 8. Hela S100 
and ribosome salt wash were 
also prepared as described in 
Materials and Methods. Rab- 
bit reticulocyte lysate and 
wheat germ extract were pro- 
vided by Promega Corp. 
(Madison, WI). All these ex- 
tracts were used as in Fig. 8 
in a cross-linking experiment 
with 105 cpm of RNA probe 
corresponding to the FGF-2 
RNA 5' region (nt 1-529). 
The origin of the cell extract 
is indicated on the top of the 
lanes. Migration of the size 
standards is shown. Cross- 
linked products are indicated 
by arrows. 

elements present in the 5' leader of the FGF-2 mRNA and 
is concomitant with the binding of several cell proteins to 
this leader region. This suggests that the CUG-initiated 
forms are translationally induced by trans-acting factors 
that would be active in transformed cells and activated as a 
response to stress in normal cells. The rapidity of the stress 
response favors a posttranscriptional or -translational acti- 
vation of the tram-acting factors. 

Although a large variety of cells have been described as 
producing FGF-2, little data about the regulation of FGF-2 
isoforms expression from one cell type to another has 
been reported. The CUG-initiated forms are slightly in- 
duced after cAMP or protein kinase C signal pathways 
stimulation, suggesting a possible regulation of the relative 
synthesis of the four isoforms (Stachowiak et al., 1994). 
More recently, a study using FGF-2 transgenic mice has 
suggested that the expression of FGF-2 isoforms is transla- 
tionally regulated in a tissue-specific manner (Coffin et al., 
1995). Our data show that the balance between FGF-2 iso- 
forms not only varies with the cell type but also with stress 
conditions in one same cell type, demonstrating the exist- 
ence of this translational regulation, in relation to cell 
transformation or stress. There is an apparent contradic- 
tion between our study, describing that normal cell types 
selectively express the AUG-initiated form, and the report 
of Coffin et al. showing that some normal cells (contained 
in tissue extracts) express the CUG-initiated forms. How- 
ever these data are not incompatible; indeed, we have ob- 
served that skin fibroblasts are able to express the CUG- 

initiated forms in certain cell physiological conditions. The 
most important difference between normal and trans- 
formed cells, regarding the CUG-initiated forms of FGF-2, 
would be that the expression of these isoforms is regulated 
in normal cells, whereas it is constitutive in transformed 
cells (Galy, B., unpublished results). 

Most previously described examples of translational con- 
trol correspond to negative regulations (Standart and 
Jackson, 1994). In contrast, CUG-initiated FGF-2 expres- 
sion) is induced by stress conditions (Figs. 5, 6, and 7) and 
is related to the binding of tram-acting factors to FGF-2 
mRNA (Figs. 9 and 10), demonstrating a mechanism of 
positive regulation. Several mechanisms could account for 
CUG activation. Firstly, the presence of a hairpin down- 
stream of non-AUG codons could increase translation by 
generating a ribosome pausing (Kozak, 1990). We have 
identified such an element downstream of CUG3 (position 
361), between nt 385 and 411 (Prats et al., 1992). Trans- 
acting factors targeting this element could mediate CUG 
activation by stabilizing the R N A  structure. A second 
possible mechanism would be dependent on the cap-bind- 
ing protein, eIF-4E; previous reports show that overex- 
pression of this factor not only affects cell growth and 
induces cell transformation (DeBenedetti  and Rhoads, 
1990; Lazaris-Karatzas et al., 1990) but is responsible for 
translational activation of messengers possessing struc- 
tured leader sequences, such as ornithine decarboxylase 
mRNA (Rousseau et al., 1996). It has also been shown in a 
recent report that rat FGF-2 is translationally induced in 
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Figure 10. UV cross-linking 
of stressed skin fibroblast pro- 
teins. $10 extracts were pre- 
pared from skin fibroblasts 
subjected to heat shock (A) or 
to oxidative stress (B). HeLa 
(as a control) and fibroblast 
extracts were used as in Fig. 8 
in a cross-linking experiment 
with 105 cpm of RNA probe 
corresponding to the FGF-2 
RNA 5' (nt 1-529). The nature 
of the cell extract, the time of 
heat shock (A), oxidative 
stress (B), and presence of se- 
rum (B) are indicated at the 
top of the lanes. Migration of 
the size standards is shown. 
The p60 cross-linked product 
is indicated by an arrow. 

CHO cells overexpressing elF-4E (Kevil et al., 1995). A 
third possible regulatory mechanism would involve an in- 
ternal ribosome entry, a translation-activating process that 
requires a cis-element, the IRES (Jackson, 1991), and 
trans-acting factors constituting the so-called IRESome 
(Witherell and Wimmer, 1994). Indeed, the FGF-2 mRNA 
contains an IRES, located upstream of the CUGs, which 
could be responsible for their activation (Vaguer et al., 
1995a). The internal entry hypothesis is supported by an 
important phenomenon, at least regarding the stress-induced 
CUG activation: heat shock has been shown to inhibit the 
cap-dependent translation by inactivation of eIF-4E (Pan- 
niers et al., 1985). We did in fact observe a strong shut off 
of cell global translation in our heat shock experiments 
(not shown). Consequently, it seems probable that the 
translational induction of FGF-2 CUG-init iated forms oc- 
curs by a cap-independent mechanism. This would be the 
first case of translational activation of a cellular mRNA 
using an internal entry process. 

An interesting question to address is the importance of 
the CUGs as initiating codons in the FGF-2 regulation 
process described here. Indeed it has been shown in the 

case of hepatitis C virus IRES that translation initiation ef- 
ficiency is remarkably unperturbed when the A U G  codon 
is substituted by non-AUG codons (Reynolds et al., 1995). 
This suggests that translation by ribosome internal entry is 
less stringent towards the start codon than the classical 
scanning mechanism and that initiation by internal entry 
could specifically regulate the use of CUGs or other non- 
A U G  codons. This point will be investigated by using mu- 
tants of the FGF-2 5' UTR without the IRES or having 
A U G  for CUG substitution. 

The present report shows that the binding of several 
proteins to the mRNA 5' is related to CUG-initiated 
forms expression. This suggests that one or several of 
these factors are involved in FGF-2 mRNA translational 
activation. The presence of an IRES in the FGF-2 mRNA, 
located upstream of the CUG codons, also suggests that 
these factors may be internal entry factors (Vaguer et al., 
1995a). Several observations favor this hypothesis. (a) The 
CUG-initiated forms and factor binding are induced by 
heat shock (see above); (b) the binding of several proteins 
is displaced by EMCV IRES (Fig. 8); and (c) the only 
translational specific trans-activators described up to now 
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Figure 11. Comparison with 
picornavirus IRES's and 
competition with homori- 
bopolymers. HeLa S10 ex- 
tracts were used in UV cross- 
linking experiments using 
FGF mRNA 5' region (lanes 
1 and 2), EMCV IRES (lanes 
3 and 4), or HRV IRES 
(lanes 5 and 6) as probes. 
Competition with homori- 
bopolymers (lanes 7-19) was 
carded out by adding differ- 
ent amounts (0.05-1.25 ~g) 
of polyA, -C, -G, or -T to the 
FGF RNA cross-linking as- 

says (see Materials and Methods). RNA probe, UV irradiation (/eft), homoribopolymer nature and amount are indicated on the top of 
each lane (right). Size standards are indicated (in the middle), as well as the size of FGF RNA cross-linked proteins on the left). The ar- 
row indicates the migration of the PTB (left) and of the FGF specific p60 (right). 
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Figure 12. Immunoprecipitation of cross-linked products with 
anti-PTB antibody. FGF-2 mRNA 5' region and EMCV IRES 
probes were cross-linked with HeLa S10 proteins (A) or with 
heat-shocked fibroblast S10 proteins (B) as in Fig. 11. The sam- 
ples were immunoprecipitated with anti-PTB antibody as de- 
scribed in Materials and Methods. The use of FGF or EMCV 
probe is indicated on the top of the lanes. C, cross-linked samples 
before immunoprecipitation. L immunoprecipitated samples. 
Size standards are indicated. The arrow indicates the immuno- 
precipitated PTB. 

are the internal entry factors constituting the picornavirus 
IRESomes (Standart and Jackson, 1994). Indeed, based on 
their apparent molecular weights, we can notice that some 
proteins among the FGF-2 mRNA cross-linked factors 
might correspond to viral IRES binding proteins. For in- 
stance, the p l l0  and the p75 described here (Fig. 11) can 
correspond to the pl00 and p70 bound to HRV and 
EMCV IRES's (Borman et al., 1993; Witherell and Wim- 
mer, 1994); the p50 bound to FGF mRNA may be related 
to the p52/La protein involved in poliovirus IRES function 
(Meerovitch et al., 1989; Svitkin et al., 1994). Finally, the 
protein migrating around 40 kD in our experiments might 
be similar to the p43-44 cross-linked to picornavirus and 
murine leukemia virus IRES's (Fig. 11; Hellen et al., 1994; 
Vagner et al., 1995b). These factors can also be specific to 
FGF-2 mRNA, as illustrated by the p60 shown here, which 
is clearly different from the p57/PTB splicing factor in- 
volved in viral IRES functions (Borovjagin et al., 1994; 
Toyoda et al., 1994). A recent report showing that PTB, 
necessary for internal entry only in the case of EMCV 
IRES, is not a universal internal entry factor (Kaminski et al., 
1995) let us hypothesize that the IRESome composition 
could be specific to each IRES and involve common fac- 
tors together with specific factors. In particular, cellular 
mRNAs IRESomes could involve proteins different from 
viral mRNAs IRESomes, allowing specific regulations 
such as that of FGF-2 expression. 

We would like to point out that the cross-linked factors 
we have characterized are not necessarily implicated in in- 
ternal ribosome entry; further investigation is required 
to identify them and demonstrate their translational regu- 

latory function. As far as the p60 protein is concerned, it 
has been suggested in the literature that c-src (pp60) may 
regulate the trafficking or translation of RNAs in a cell 
cycle-dependent manner (Taylor and Shalloway, 1994). 
However, the proteins of the src family have never been 
described as RNA-binding proteins, and furthermore, the 
src proteins are anchored in the cell membrane by their 
acylated end. As the p60 is clearly an RNA-binding pro- 
tein and the cell extracts used in the cross-linking experi- 
ments are cytoplasmic, we can rule out the possibility that 
the p60 interacting with FGF-2 mRNA is c-src or an src 
family member. On the other hand, an src protein could 
indirectly regulate RNA translation through its interaction 
with other proteins involved in its intracellular transduc- 
tion cascade. Indeed two src-associated proteins, p68 and 
p62, have been described as RNA-binding proteins (Wong 
et al., 1992; Fumagalli et al., 1994; Taylor and Shalloway, 
1994). These proteins could correspond to the p70 and p60 
shown here. Interestingly, the ability of p62 to bind RNA 
is altered by tyrosine phosphorylation (Wang et al., 1995), 
and this is compatible with the rapid induction of CUG- 
initiated expression in heat shock conditions. 

The stress induction reported here suggests a novel role 
for the CUG-initiated forms of FGF-2; their rapid synthe- 
sis in response to stress suggests that they could behave as 
survival factors. The stress induction could be representa- 
tive of physiological situations such as tissue lesion requir- 
ing FGF-2 for wound healing. The expression of CUG-ini- 
tiated isoforms in transformed cells indicates that they 
might be related to a critical state of the cell. 
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