
13332  |     Ecology and Evolution. 2019;9:13332–13343.www.ecolevol.org

 

Received: 23 March 2019  |  Revised: 9 September 2019  |  Accepted: 17 September 2019

DOI: 10.1002/ece3.5788  

O R I G I N A L  R E S E A R C H

Efficient phenotypic sex classification of zebrafish using 
machine learning methods

Shahrbanou Hosseini1,2  |   Henner Simianer1,2 |   Jens Tetens1,2 |   Bertram Brenig1,2,3 |   
Sebastian Herzog4,5 |   Ahmad Reza Sharifi1,2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Herzog and Sharifi are shared last authors. 

1Department of Animal Sciences, University 
of Goettingen, Goettingen, Germany
2Center for Integrated Breeding 
Research, University of Goettingen, 
Goettingen, Germany
3Institute of Veterinary Medicine, University 
of Goettingen, Goettingen, Germany
4Max Planck Institute for Dynamics and Self‐
Organization, Goettingen, Germany
5Department for Computational 
Neuroscience, 3rd Physics Institute‐
Biophysics, University of Goettingen, 
Goettingen, Germany

Correspondence
Shahrbanou Hosseini, Department of 
Animal Sciences, University of Goettingen, 
Goettingen, Germany.
Email: Shahrbanou.Hosseini@uni‐
goettingen.de

Abstract
Sex determination in zebrafish by manual approaches according to current guidelines 
relies on human observation. These guidelines for sex recognition have proven to be 
subjective and highly labor‐intensive. To address this problem, we present a meth‐
odology to automatically classify the phenotypic sex using two machine learning 
methods: Deep Convolutional Neural Networks (DCNNs) based on the whole fish ap‐
pearance and Support Vector Machine (SVM) based on caudal fin coloration. Machine 
learning techniques in sex classification provide potential efficiency with the advan‐
tage of automatization and robustness in the prediction process. Furthermore, since 
developmental plasticity can be influenced by environmental conditions, we have 
investigated the impact of elevated water temperature during embryogenesis on sex 
and sex‐related differences in color intensity of adult zebrafish. The estimated color 
intensity based on SVM was then applied to detect the association between colora‐
tion and body weight and length. Phenotypic sex classifications using machine learn‐
ing methods resulted in a high degree of association with the real sex in nontreated 
animals. In temperature‐induced animals, DCNNs reached a performance of 100%, 
whereas 20% of males were misclassified using SVM due to a lower color intensity. 
Furthermore, a positive association between color intensity and body weight and 
length was observed in males. Our study demonstrates that high ambient tempera‐
ture leads to a lower color intensity in male animals and a positive association of male 
caudal fin coloration with body weight and length, which appears to play a significant 
role in sexual attraction. The software developed for sex classification in this study 
is readily applicable to other species with sex‐linked visible phenotypic differences.

K E Y W O R D S

color, machine learning, sex classification, temperature, zebrafish

www.ecolevol.org
mailto:
https://orcid.org/0000-0003-2826-8394
http://creativecommons.org/licenses/by/4.0/
mailto:Shahrbanou.Hosseini@uni-goettingen.de
mailto:Shahrbanou.Hosseini@uni-goettingen.de


     |  13333HOSSEINI Et al.

1  | INTRODUC TION

Sexual dimorphism between males and females such as sexually di‐
chromatism can play an important role in sexual attraction for a po‐
tential mate (Singh & Nüsslein‐Volhard, 2015). Sexual attraction with 
respect to color has been observed in some fish species in previous 
studies (Gronell, 1989; Kraak, Bakker, & Mundwiler, 1999): Mating 
preference in female Chrysiptera cyanea is correlated with intensity 
of orange caudal fin coloration in males during courtship periods, 
and reproductive success in Gasterosteus aculeatus increased with 
redness of male throat.

Coloration can therefore be used in sexually dichromatic species 
for sex determination. Zebrafish have emerged as a well‐established 
vertebrate model organism for studies of biology, genetics, embryo‐
nal development, diseases, drug screening, and environmental effect 
(Nowik et al., 2015; Ribas et al., 2017). This animal possesses sexual 
plasticity, meaning that it changes its sex depending on environmen‐
tal factors (Kobayashi, Nagahama, & Nakamura, 2013), which makes 
it a suitable organism for studying the environmental effects on 
phenotypic plasticity in fish populations. Temperature is one of the 
most important environmental factors affecting the animal's pheno‐
type. Previous studies reported that high temperature leads to an 
increase in the proportion of males in zebrafish (Abozaid, Wessels, & 
Hörstgen‐Schwark, 2011; Hosseini, Brenig, Tetens, & Sharifi, 2019; 
Hosseini, Ha, et al., 2019; Ribas et al., 2017). The sex ratio can influ‐
ence population dynamics leading to a reduction in genetic variation 
and loss of heterozygosity, which increases inbreeding and adversely 
affects fitness traits resulting in the risk of extinction, particularly 
in small and isolated populations (Brown et al., 2015). Furthermore, 
a recent study demonstrated that the effect of high temperature 
in heat‐exposed zebrafish leads to a loss of pigmentation intensity 
(Ribas et al., 2017). Generally, the intensity of color in fish is reg‐
ulated by genetic factors and controlled through neurohormonal 
mechanisms (Hutter, Hettyey, Penn, & Zala, 2012; Price, Weadick, 
Shim, & Rodd, 2008). Beyond the genetic regulation of color inten‐
sity, variation in coloration can be influenced by environmental fac‐
tors such as temperature and light (Price et al., 2008).

In zebrafish, males show a slightly more intense yellow coloration 
compared to females, which is thought to be important for sexual 
attraction (Hutter, Penn, Magee, & Zala, 2010; Nüsslein‐Volhard & 
Singh, 2017; Singh & Nüsslein‐Volhard, 2015). Furthermore, previ‐
ous studies showed that female zebrafish are able to visually dis‐
criminate sexes, that is, they recognize males based on their yellow 
coloration, particularly during courtship and spawning (Hutter et al., 
2012; Hutter, Zala, & Penn, 2011). However, for human observers 
the differences in coloration between male and female zebrafish 
are often difficult to discriminate due to minor sexual dimorphism 
in body color in this species (Hutter et al., 2012). The conventional 
guidelines for sex determination in zebrafish by human percep‐
tion include sex‐related differences in various features such as 
color, shape, behavior, and genital papilla (McMillan, Géraudie, & 
Akimenko, 2015). For example, females often have a round shape 
and protruding abdomen compared to males, but not all females 

possess an obviously distended abdomen (Hutter et al., 2010; 
McMillan et al., 2015). Furthermore, sex determination using color‐
ation in zebrafish is difficult because there is interindividual variation 
in color, and in some cases, males and females exhibit similar body 
coloration (McMillan et al., 2015). However, a precise sex determi‐
nation of adult fish can be performed using microscopic examination 
by dissecting gonad tissue, which requires killing animals (Abozaid 
et al., 2011), is labor‐intensive and requires biological expertise. 
Hence, the current approaches for sex determination in zebrafish 
are subjective and not sufficiently reliable, and highly time‐consum‐
ing (McMillan et al., 2015).

In recent years, machine learning has emerged as a promising 
technique for data processing in life science and computational 
biology (Angermueller, Pärnamaa, Parts, & Stegle, 2016; Liakos, 
Busato, Moshou, Pearson, & Bochtis, 2018), particularly in cluster‐
ing biological images and phenotypic classification (Grys et al., 2016; 
Jeanray et al., 2015). Deep learning models, a relatively new branch 
of machine learning, consist of multiple processing layers to learn 
representations of large datasets and have dramatically advanced 
and improved the state‐of‐the‐art in various research fields (LeCun, 
Bengio, & Hinton, 2015; Liakos et al., 2018; Min, Lee, & Yoon, 2017). 
Convolutional neural networks (CNN), a deep learning architecture, 
recently surpassed human‐level accuracy especially for image recog‐
nition and classification (Grys et al., 2016).

The main goal of this study was to develop an efficient technique 
for sex determination of zebrafish using two fully automatic machine 
learning methods: Deep Convolutional Neural Networks (DCNNs) 
based on body color and pattern, and Support Vector Machine 
(SVM) based on caudal fin color only. We first applied DCNNs to de‐
termine the sex from the image of the whole fish body. We secondly 
applied SVM using the color distribution of the caudal fin pictures to 
automatically determine the sex of zebrafish. Both approaches used 
RGB images as an input and were trained in a supervised manner to 
classify the sex of an individual using image analysis. The estimated 
color intensity based on SVM was then used to quantify the degree 
of association between coloration and body weight and length. To 
further demonstrate the utility of the approaches, the SVM tech‐
nique was used to quantify the impact of high water temperature on 
color intensity of the caudal fins of different sexes. This technique 
can be used in various science areas, in which sexual plasticity and its 
ecological relevance will be the focus of scientific research.

2  | MATERIAL S AND METHODS

2.1 | Ethics statement

All procedures in this study were in strict accordance with the German 
animal welfare act and national and international recommendations. 
This study was approved by the University of Goettingen committee 
for the care and use of animals (File number E3‐17). The broodstocks 
were kept in the recirculation systems of aquaculture facilities ac‐
cording to the approved institutional guidelines on the use of ani‐
mals for research purposes (Abozaid et al., 2011).
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2.2 | Experimental design and phenotypic 
measurements

We designed a treatment–control study to examine the effect of 
high water temperature during the critical period of zebrafish em‐
bryogenesis on sex ratio, color intensity, body weight and length, and 
their associations. For this, equal proportions of fertilized eggs from 
full‐sib families of Singapore strain (Hosseini, Ha, et al., 2019; Von 
Hertell, Hörstgen‐Schwark, Langholz, & Jung, 1990) were exposed 
to low (28°C) and high temperatures (35°C) during 5–24 hr post‐fer‐
tilization (hpf; Hosseini, Ha, et al., 2019). The standard rearing tem‐
peratures for zebrafish are between 26–29°C with an optimum of 
28°C (Detrich, Zon, & Westerfield, 2004; Ribas & Piferrer, 2014). 
The high temperature applied in the temperature‐exposed group 
of this study is in line with previously reported studies (Hosseini, 
Brenig, et al., 2019; Hosseini, Ha, et al., 2019; Abozaid et al., 2011). 
The temperature of heat‐exposed groups was changed gradually in 
this experiment. Two weeks after hatching, the temperature treat‐
ment and control groups of different families were separately mixed 
in bigger tanks to eliminate the effect of population density within 
tanks and kept until sexual maturity (90 days post‐fertilization). After 
maturation, total length and body weight of all individuals were 
measured, as described in Hosseini, Brenig, et al. (2019). All individu‐
als showed no caudal fin damage and exhibited normal morphology. 
The real sex in the control and temperature treatment groups was 
individually determined in adult fish by microscopic inspection. All 
husbandry facilities, fish management and water quality control, ani‐
mal care and feeding, and data recording are described in detail by 
Hosseini, Brenig, et al. (2019).

2.3 | Image acquisition

For imaging of fish, each adult individual was removed from their 
tank and killed in ice water. The fish was then placed in a glass petri 
plate and photographed. The images of all adult fish were captured 

individually using a digital camera (Nikon D7200). The Nikon D7200 
is an Advanced Photo System type‐C (APS‐C) digital single‐lens re‐
flex camera with a maximum image resolution of 6,000 × 4,000 (24 
megapixels). This camera has an AF‐S DX Micro‐NIKKOR 40 mm 
1:2.8G lens with high resolution and contrast from infinite to full 
size (1:1 magnification). For taking the pictures, the camera was 
fixed in a Kaiser RS3 Copy Stand (kaiser‐fototechnik) at a distance of 
17 cm from the object location, at which fish were placed in a glass 
petri plate. In order to provide the optimal conditions for eliminat‐
ing specular reflections and shadow problems, two different light‐
ing techniques were applied. First, a light panel; Rex‐Slimline (Rex 
Leuchtplatten) was used for upward illumination, and second, a Cold 
LED Light Source; KL 300 LED (SCHOTT AG Lighting and Imaging) 
was used for lateral illumination. All photographs were taken verti‐
cally from the lateral view of fish in an ordinary fish laboratory room 
under common fluorescent light and under a well‐defined setting 
as described above. The same image recording procedure was used 
for all individuals in this study. All images were saved in RAW file 
and TIFF format with a resolution of 4,496 × 3,000 pixels. RAW files 
were then imported into the Photoshop software (Adobe Photoshop 
CS5, Photoshop Extended, version 12.0, 2010), for processing. The 
whole caudal fin region was cut out for SVM analysis. The caudal fin 
region was defined by the base of the fin at the caudal end of the 
body from the proximal to the distal end, which was clearly visible in 
the picture. We used one image of each of 448 animals to determine 
the sex. In an image preprocessing step, one out of 448 images was 
discarded from the dataset used for sex classification by machine 
learning due to low picture quality.

2.4 | Color feature extraction

Sex classification of the whole fish body and caudal fin was con‐
ducted using DCNNs and SVM. For the color‐based classifica‐
tion of sex, color histograms (Swain & Ballard, 1991) were used to 
train a SVM (Keerthi & Lin, 2003). To do so, the images were first 

F I G U R E  1   The schematic diagram 
represents the Support Vector Machine 
classification with Gaussian kernel 
function used in this study for sex 
discrimination. Xi presents samples (input 
data), w presents weights, and b illustrates 
the bias factor
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F I G U R E  2   The graph represents the 
flow chart of the architecture of the 
convolutional neural networks (CNNs) 
applied for sex classification in this study
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transformed from the RGB color space to the laboratory color space. 
Based on the converted laboratory image, histograms to describe 
the color distribution for each channel were calculated. For this pur‐
pose, all the colors in each image were counted and a frequency dis‐
tribution generated. These histograms were used as features to train 
the SVM with a Gaussian kernel. A simple illustration of SVM with 
Gaussian kernel can be found in Figure 1. The main idea of training 
the SVM was to obtain a hyperplane that could separate the his‐
tograms in order to enable sex classification. The maps transform 
the histogram to a score value by calculating the distance from the 
histogram in a higher dimension to the hyperplane, giving a scalar 
value, which is given the L2 (Euclidian) distance (see materials and 
methods in Appendix S1).

2.5 | Deep convolutional neural networks

A convolutional neural network is an artificial neural network in‐
troduced by Krizhevsky, Sutskever, and Hinton (2012). Basically, 
the structure of a classical CNN consists of one or more convolu‐
tional layers, followed by a pooling layer. In principle, this unit can 
be repeated as often as required; with sufficient repetitions, this 
is referred to as DCNNs. The data processing through a network 
is done layer wise. The flow chart of the CNN architecture ap‐
plied for sex classification in this study is illustrated in Figure 2. 
This CNN uses raw image pixels to model a simple differentiation 
score function. The architecture consists of the layers, which are 
arranged in three dimensions: width, height, and depth, where 
width and height are the dimensions of the image, and depth rep‐
resents the color channels: red, green, and blue. The original image 
is transformed layer by layer from the original pixel values to the 
final class score. As mentioned before, the INPUT layer receives 
the raw pixel values of an image as a matrix. In this case, an image 
is a tensor with the size (255 × 255 × 3). The convolution layers 
calculate a point product from the comparatively small convolu‐
tion matrix (also called filter kernel) with the currently underlying 
image section, whereby the convolution matrix moves stepwise 
over the input of the layer. For the first convolution layer, we 
used 96 convolution matrices (filters) of 3 × 3 pixels. In the next 
steps, the number of filters was increased to 384. After normaliza‐
tion, the convolution input of each neuron was transformed by a 
Rectified Linear Unit (ReLU) activation function (Nair & Hinton, 
2010) into the output that models the relative significance. To pre‐
vent the vanishing of the gradient during training residual connec‐
tions were used (He, Zhang, Ren, & Sun, 2015), where the outputs 
of one layer are re‐added to the original input matrix. This pro‐
cess was repeated in a consecutive processing using the increased 
number of filters. To minimize overfitting, the last feature layer 
was reduced by a global mean pooling operation. At the end, the 
probabilities for a binary outcome, namely the sex, were deter‐
mined. For this purpose, the Softmax function was used, which 
represents the probability distribution over different possible 
events (see materials and methods in Appendix S1).

2.6 | Statistical analysis

Statistical analysis of treatment effect on phenotypic sex of adult 
zebrafish was performed by applying a linear logistic model with a 
binary response variable, which was modeled as a Bernoulli random 
variable with yi. The dependent variable (yi) can take the value 1 with 
the probability of being male πi or 0 with the probability of being 
female 1−πi for observation i.

The logistic model uses a link function g (πi) linking the expected 
value to the linear predictors ηi.

The data were then analyzed with the GLIMMIX procedure of 
SAS according to the following model:

where πi is the probability to be male, μ is the overall mean effect, αi is 
the fixed effect of temperature treatment (i = 1: temperature‐treated 
eggs 35°C, i = 2: control group 28°C). Least squares means were esti‐
mated on the logit scale and then back‐transformed to the probability 
scale using the inverse link function �i=exp (�i)∕

[

1+exp (�i)
]

, apply‐
ing the LSMEANS statement. Significant differences between least 
squares means were tested using a t test procedure by inclusion of 
the PDIFF option in the LSMEANS statement and adjusted by Tukey–
Kramer correction. Standard errors of least square means were cal‐
culated as described by Littell, Milliken, Stroup, and Wolfinger (2006).

The impact of treatment and sex on body weight and length were 
analyzed using the GLM procedure of SAS with the following model:

where yijk is the observation for body weight and length, μ is the gen‐
eral mean, αi is the effect of treatment (temperature treatment, con‐
trol), βj is the fixed effect of sex, αβij is the fixed effect of interactions 
between treatment and sex, and �ijk is the random error.

To determine the degree of association between the sex classifi‐
cations using DCNNs and SVM with the real sex in a further analysis, 
the mean square contingency coefficient (phi‐coefficient; φ) was es‐
timated using the FREQ procedure of SAS through the construction 
of contingency tables.

The SVM estimates are individual scores for being male or female 
based on RGB color, which was used for sex classification. The vari‐
ation of the differences between these estimated scores for males 
and females reflects the degree of color intensity. An individual with 
a higher score for a certain sex, which is dependent on the color in‐
tensity, was classified as male or female. We created a new variable 
in the first step based on the differences between the estimated 
scores of males and females for each individual. Then, we computed 
the z‐score of this variable by applying the z‐transformation, which 
was used as a dependent variable in the statistical model in order to 
analyze the association between body weight and length and the de‐
gree of caudal fin pigmentation for the different sexes, treatments, 
and their interactions as main factors. For this purpose, an analysis of 
covariance was applied using body weight and length as the covariate 

Logit

(

�i

1−�i

)

=�i=�+�i

yijk=�+�i+�j+��ij+�ijk
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terms with up to three polynomial degrees, and considering the fixed 
main factors (real sex, treatment) and their interaction effects as well 
as the interactions between the main factors and the covariate (body 
weight or length) up to degree 3 of the polynomial. The final model 
was obtained by backward elimination of nonsignificant factors and 
factor combinations using F‐statistics. Since extreme observations or 
outliers can influence the parameter estimations, outliers of the data‐
set were detected using the influence diagnostics recommended by 
Belsley, Kuh, and Welsch (1980). The influence diagnostics methods 
are incorporated into the REG and MIXED procedure of SAS by using 
the INFLUENCE option in the MODEL statement (SAS/STAT® 9.2 
User's Guide, the MIXED Procedure, 2008). The Studentized resid‐
uals are excellent statistics for detecting unusual observations. We 
estimated the Studentized residuals using the INFLUENCE option in 
the MODEL statement of SAS' mixed procedure to estimate residuals 
for each recorded data point. 20 records out of the 448 data points 
with absolute extreme values larger than 3 (Hosmer, Lemeshow, & 
Sturdivant, 2013) were identified and discarded from subsequent 
statistical analysis. The final statistical model was applied with the 
mixed procedure of SAS as follows:

where yijk is the quantile of the standard normal distribution (z‐score) 
as described above, μ is the general mean, αi is the effect of treatment 
(temperature treatment, control), βj is the fixed effect of sex, αβij is the 
fixed effect of an interaction between treatment and sex, b1 is the lin‐
ear regression coefficient of body weight or length (x), b2 is the linear 
regression coefficient of interaction between sex and body weight or 
length (x), and �ijk is the random error. SAS system version 9.3 (SAS 
Institute Inc. 2014) was used for all aforementioned statistical analyses.

3  | RESULTS

3.1 | Sex classification detected via machine 
learning methods

For evaluating the classification performance of the two machine 
learning methods, the result of these methods was compared with the 
real sex output in the different experimental groups. The descriptive 
statistical analysis of the real sex using microscopic inspection of go‐
nadal tissues showed that high temperature resulted in an increase in 
the proportion of males compared to the control group (79.80% vs. 
50.20%). These differences were highly significant by applying gen‐
eralized linear model (p < .0001). The detailed results of this part of 

yijk=�+�i+�j+��ij+b1(xij)+b2�j(xij)+�ijk

F I G U R E  3   The result of sex 
classification using deep convolutional 
neural networks (DCNNs) and support 
vector machine (SVM) methods compared 
with real sex. The degree of agreement (φ) 
between sex classification using DCNNs 
analysis of adult fish body features and 
SVM analysis using color of caudal fin with 
real sex in control (a, b) and temperature 
treatment groups (c, d)
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the experiment are given in Hosseini, Ha, et al. (2019). According to 
the DCNNs analysis, the percentage of male was 79.80% in the heat‐
treated group versus 51.41% in the control group. The descriptive 
statistic for SVM showed 67.17% male in the treatment compared to 
49.40% in the control group. The result of the generalized linear model 
analysis revealed that these differences were also highly significant for 
both machine learning approaches. Classification of sex using DCNNs 
and SVM methods and the degree of association with the real sex are 
presented in Figure 3. The DCNNs were trained to classify the sex 
based on color and pattern of fish pictures, while SVM classified the 
sex based on the caudal fin color only. Our analyses demonstrated 
a high agreement (φ = 0.97) between the sex ratio determined by 
DCNNs and the real sex ratio in the control group. The same applies 
to sex determination using SVM in the control group, which showed 
a slightly lower association with the real sex (φ = 0.96; Figure 3a,b). In 
temperature‐treated animals, DCNNs were able to determine the sex 
in complete agreement with the real sex (φ = 1.0), whereas sex clas‐
sification by color features in the caudal fin using SVM showed a lower 
association with the real sex (φ = 0.71; Figure 3c,d). In this analysis, 
25 animals were misclassified as females using SVM, all of which were 
temperature‐treated male animals. Inspection of the pictures of those 

animals showed a lower caudal fin pigmentation intensity compared 
to the regular males in the control group. To investigate this further, 
we performed a new analysis considering the color intensity of these 
animals resulting from SVM as a new level of the main factor sex and 
compared them with the color intensity score of correctly classified 
males in the temperature‐treated group, which resulted in a significant 
difference in color intensity between these two groups (−0.3526 vs. 
0.6004; p < .0001). We suppose these animals were neomales who 
had altered their sex from genotypic females to phenotypic males in 
response to high water temperature and showed lower pigmentation 
intensity due to the temperature‐induced masculinization.

3.2 | Association between color intensity and body 
weight and length

In a further stage of this study, the degree of caudal fin coloration in 
association with body weight and length for the fixed effects of sex, 
treatment and their interactions were analyzed (Figures 4 and 5). As 
expected, the sex as a main factor in the statistical model leads to 
distinct differences in pigmentation intensity between males and fe‐
males without considering any covariates (body weight or length) in 

F I G U R E  4   Association between 
degree of caudal fin coloration using SVM 
with body weight and length in different 
experimental groups: CF (control female), 
CM (control male), TF (treatment female), 
and TM (treatment male). (a) LS‐means for 
the levels of Treatment × Sex interaction 
without considering any covariates 
in statistical model and considering 
the covariate of body weight (b) and 
total length (c). Different alphabets 
(a–c) illustrate the significant differences 
between the least squares means of 
different factor levels (p < .0001). Y axis 
represents the color intensity of caudal 
fins derived from SVM

F I G U R E  5   The effect of body weight 
(a) and total length (b) on pigmentation 
intensity in different experimental 
groups: CF (control female), CM (control 
male), TF (treatment female), and TM 
(treatment male). The solid lines show the 
LS‐means at certain level of body weight 
and total length. The dash bars present 
the confidence limits of LS‐means. Y axis 
represents the color intensity of caudal 
fins derived from SVM
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the statistical model. Males showed a higher pigmentation intensity 
compared to females (male: 0.768 vs. female: −1.165). Considering 
the main factor treatment, the treated animals exhibited a lower 
pigmentation intensity compared to the control group (treatment: 
−0.0869 vs. control: −0.3102), in response to high water tempera‐
ture. We found a significant sex–temperature interaction on pigmen‐
tation intensity. Comparing the pigmentation intensity of females 
without considering any covariates in the control and treatment 
groups revealed that there is no significant difference in coloration 
between these two groups. In contrast to this, high temperature 
treatment resulted in a distinct reduction in color intensity of males, 
which partly contributed to a significant treatment effect (Figure 4a). 
This result indicates that temperature treatment during early em‐
bryogenesis might have an impact on the expression of pigmenta‐
tion genes responsible for development of the caudal fin coloration 
and phenotypic variation in males. The same is true considering the 
adjusted means derived from the main factors and interactions using 
body weight or length as covariates (Figure 4b,c). The result of the 
analysis of covariance also showed a significant positive association 
between body weight and length of adult fish with the degree of 
caudal fin color intensity in males both in the control and heat‐in‐
duced groups, whereas no significant association was detected in 
females (Figure 5a,b). To the best of our knowledge, this finding has 
not been reported in zebrafish so far.

3.3 | Body weight and length

Table 1 summarizes the least squares means and the significance 
of explanatory variables on body weight and total length in adult 

zebrafish. The main factor treatment and sex as well as their inter‐
actions (treatment × sex) showed a significant influence on body 
weight. However, only a significant influence of the main factor sex 
on length was observed. Zebrafish raised at a high temperature (HT) 
were heavier (0.4161 vs. 0.3952) and longer (35.4976 vs. 34.8982) 
than those raised at a low temperature (LT) condition. In the case of 
sex, a significant difference of body weight was observed between 
males and females; a considerably higher body weight was found in 
the female group versus males, while the effect on total length was 
not significant. The differences in body weight between LT‐ and 
HT females for the effect of interaction between treatment × sex 
were not significant. However, temperature treatment resulted in a 
significant reduction of body weight in males.

4  | DISCUSSION

Machine learning approaches recently became the leading tech‐
nique for object and action recognition in humans (Jain, Tompson, 
Andriluka, Taylor, & Bregler, 2013; Toshev & Szegedy, 2013). The 
technique has great potential in animal sciences for studying of dif‐
ferent aspects of animal behavior such as movement, food intake, 
social structure and competition, reproduction behavior, communi‐
cation and welfare, and nesting using complex datasets (Borchers et 
al., 2017; Stern, He, & Yang, 2015; Valletta, Torney, Kings, Thornton, 
& Madden, 2017; Wang, 2019; XU & Cheng, 2017). Automated imag‐
ing technologies provide a large number of images that require an 
efficient strategy of analysis such as machine learning. Thus, image 
analyses can be used to identify and classify objects in various 

TA B L E  1   Least squares means, standard error (±SE), and ANOVA significance level for body weight (g) and total length (mm) in adult 
zebrafish for the effect of temperature, sex, and treatment × sex interaction

Effect

Traits

Body weight Total length

Treatment

Low temperature1  (LT) 0.3952 ± 0.0049a 34.8982 ± 0.1323a

High temperature2  (HT) 0.4161 ± 0.0067b 35.4976 ± 0.1816b

Sex

Male 0.3773 ± 0.0047a 35.1049 ± 0.1253a

Female 0.4339 ± 0.0069b 35.2909 ± 0.1865a

Treatment × Sex

LT × Male 0.3582 ± 0.0070a 34.9648 ± 0.1882a

HT × Male 0.3965 ± 0.0062b 35.2450 ± 0.1653a

LT × Female 0.4321 ± 0.0069b 34.8316 ± 0.1859a

HT × Female 0.4357 ± 0.0121b 35.7502 ± 0.3233a

ANOVA significance level [p (F)] Treatment Sex Treatment × Sex

Body weight 0.0131 <0.0001 0.0392

Total length 0.0079 0.4082 0.1560

Note: Different alphabets (a–c) illustrate the significant differences between the least squares means of different factor levels (p < .05).
1Low temperature refers to the control group at 28°C. 
2High temperature refers to the temperature treatment group at 35°C. 
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biological research aspects (Grys et al., 2016; Liakos et al., 2018). 
The study of Jeanray et al. (2015) is an example of image analysis for 
classifying phenotypical deformity in zebrafish larvae using machine 
learning methods. Their study on phenotypic classification of images 
resulted in a high agreement with manual classification by biological 
experts. Automation of analysis and classification of sex using ma‐
chine learning methods directly from images is a great possibility to 
increase the efficiency in the prediction process (Singh & Goel, 2016). 
The current guidelines for phenotypic sex classification in zebrafish 
using conventional methods are subjective and rely on different phe‐
notypic observations by humans, which are highly labor‐intensive 
and potentially prone to error in the prediction process (McMillan et 
al., 2015). For example, zebrafish quickly become pale after removing 
from the water (Hutter et al., 2010), which may refer to the presence 
or absence of iridophore pigment cell types. Iridophores give the 
body a shiny appearance by reflecting light in the water (Frohnhöfer, 
Krauss, Maischein, & Nüsslein‐Volhard, 2013; Patterson & Parichy, 
2013). Iridophores are present in the body coloration, but are not 
involved in the fin color formation (Singh & Nüsslein‐Volhard, 2015). 
It is often difficult to distinguish between sexes using different body 
colors outside of water. In this study, we presented two fully auto‐
mated machine learning methods (DCNNs and SVM) as efficient, ro‐
bust, and flexible approaches for sex classification in zebrafish using 
a set of images for the first time in a color space designed for human 
perception. Machine learning classification relies on the quality, size, 
and objectivity of learning datasets, which is more reliable than man‐
ual approaches for sex determination in zebrafish. Our method is not 
specific to zebrafish; it is a general approach that could be applicable 
to other organisms for future research. Based on phenotypic char‐
acteristics in this study, a high accuracy of sex differentiation was 
obtained using these two methods in nonheat‐treated groups.

Furthermore, in this study, we reported a less intense color in 
the caudal fin of a subset of adult zebrafish using SVM who were ex‐
posed to elevated water temperature during embryogenesis. Based 
on this result, classification of sex using SVM technique is applicable 
for sexing in nonexperimentally manipulated individuals, but it may 
be less effective when the phenotypes (color) are experimentally al‐
tered. Therefore, some treated males in this study were misclassified 
using SVM due to reduced pigmentation intensity. However, DCNNs 
was able to classify the sex with high performance independent of 
the alteration of phenotypes.

The effect of high temperature on the loss of pigmentation has 
already been observed in adult zebrafish in another study, where 
the animals were thermally influenced during the larval stage 
(Ribas et al., 2017). Since in our study, the pigmentation deficiency 
was mainly observed in heat‐treated males, suggesting that these 
animals might have been sex‐reversed or masculinized females. 
Therefore, it was hypothesized that decreased color intensity in 
masculinized animals would potentially influence sexual attrac‐
tiveness and, thus, mating success. The molecular genetic study 
of heat‐induced masculinization in European sea bass showed that 
masculinization process is caused by epigenetic modifications 
(Navarro‐Martin et al., 2011). In a recent study, transcriptome 

analysis was used to distinguish neomales from the normal male 
zebrafish (Ribas et al., 2017). Hence, genetic and epigenetic in‐
vestigations can be used to discriminate the masculinized from 
normal animals and to elucidate the physiological mechanisms of 
sexual‐reversed males in interaction with environment. However, 
the underlying mechanism of color intensity in interaction with the 
environmental temperature is still not clear and deserves further 
research.

Sexual selection represents a mode of selection on certain traits 
to increase an individual's reproductive success. Regarding sexual 
selection theory, males of many species develop a variety of sec‐
ondary sexual characters and traits, such as body ornaments and 
pronounced coloration, to signal their attractiveness as mating part‐
ners (Uusi‐Heikkilä, Böckenhoff, Wolter, & Arlinghaus, 2012). In ze‐
brafish, females usually have a rounder shape than males, and males 
display a more intense yellow coloration than females particularly 
during sexual activity (Gerlai, Lahav, Guo, & Rosenthal, 2000; Hutter 
et al., 2010; Singh & Nüsslein‐Volhard, 2015), which appears to be 
important for sexual attraction. Since reproduction is energetically 
costly it is generally expected that there is a positive relationship 
between partner quality and reproductive investment in terms of 
differential allocation theory (Uusi‐Heikkilä et al., 2012). In a study 
on a laboratory strain of zebrafish, neither female preferences 
nor spawning successes were associated with the male body size 
(Spence & Smith, 2006). Furthermore, the effect of male body size 
for female preferences could not be detected because the hypothe‐
sis of the study was focused on differences in male dominance, not 
on male body size with a large size variation (Spence & Smith, 2006). 
In contrast, other studies demonstrated a clear female preferences 
for larger males (Pyron, 2003; Skinner & Watt, 2007; Uusi‐Heikkilä 
et al., 2012). In these studies, females allocate their reproductive re‐
sources to larger males, characterized by a higher spawning proba‐
bility and clutch size. In our study using machine learning techniques, 
we found a pronounced secondary sexual characteristic (color) in ze‐
brafish males compared to females. In addition, a positive association 
between color intensity and body weight and length was observed in 
male zebrafish. Our results in this study suggest that male coloration 
and its positive association with body weight and length may play a 
role in sexual attraction in the zebrafish strain studied here and may 
increase reproductive success. However, whether caudal fin color‐
ation and its interaction with body size serves as a sexually selected 
trait for mating success in this species requires further research. 
Sexual preferences using coloration and size have been observed in 
other fish species. For example, mating preference in C. cyanea is re‐
lated to male body size and orange caudal fin color intensity (Gronell, 
1989; Wacker, Östlund‐Nilsson, Forsgren, Newport, & Amundsen, 
2016) and in G. aculeatus to redness of the throat in males (Kraak et 
al., 1999).

Another aspect of this study was to investigate the impact of el‐
evated water temperatures on growth performance. The high tem‐
peratures during embryonic development positively influenced both 
traits of growth, namely body weight and length. Schnurr, Yin, and 
Scott (2014) also observed a higher growth rate in zebrafish treated 
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with high temperature during embryonic development compared to 
the control group. Our previous study confirms this too; a positive ef‐
fect of increased temperature during embryogenesis on growth rate of 
another zebrafish strain was observed, which was more pronounced 
in females than in males (Hosseini, Brenig, et al., 2019). Embryonic 
temperature in zebrafish affects thermal acclimation of muscle tissue, 
which has an influence on energy metabolism and swimming per‐
formance in adult fish, due to differences in the expression of genes 
involved in energy metabolism, cell stress, muscle contraction, and 
apoptosis (Scott & Johnston, 2012). Effects of temperature during em‐
bryonic development on growth rate were also reported in other fish 
species such as gilthead sea bream. Exposure to different tempera‐
ture (low temperature: 18°C, high temperature: 22°C) during embryo‐
genesis in sea bream and its effect on muscle growth rate and body 
weight revealed that early temperature treatment has an influence 
on the expression profiles of a part of muscle developmental genes 
(Hsp90a, UNC45, MyoD, and IGF1) and their expression is influenced 
by different temperature treatment (Serrana et al., 2012). In our study, 
we found a positive effect of increased temperature on growth per‐
formance in adult fish in response to high ambient temperature, which 
may partly be due to the effect of temperature on muscle develop‐
mental gene expression in zebrafish.

Generally, developmental plasticity can be influenced by many dif‐
ferent environmental factors, which induce the expression of different 
phenotypes. A classic example of plastic responses to environment is 
the effect of temperature on different phenotypic traits such as sex 
determination, body size, pigmentation, and survival in many animal 
species (Lafuente & Beldade, 2019). Some plastic characteristics are si‐
multaneously influenced by the same environmental factor and change 
in combined form in response to the environment. Some of such plas‐
tic traits might be adaptive, while some others might be maladaptive. 
These plastic responses to the environmental cues lead to phenotypic 
variation and diversification in a population, which affects response 
to selection (Lafuente & Beldade, 2019). However, phenotypic expres‐
sion may be unfavorable as a result of plasticity under certain environ‐
mental conditions and only a subpopulation with certain phenotypic 
expression may adapt. Thus, the survival of an adapted subpopulation 
only could lead to an impoverishment of genetic variation, or in general 
might have unfavorable effects and the species could be threatened 
with extinction (Brown et al., 2015; Bürger & Lynch, 1995). As shown in 
this study, the correlated plastic responses of phenotypic traits, includ‐
ing sex determination and color to high temperatures, might contribute 
to population dynamics and a risk of extinction in changing environ‐
ments (Allendorf & Luikart, 2007; Bürger & Lynch, 1995), particularly 
under extreme and fluctuating environmental conditions, which is rel‐
evant from an ecological point of view.

5 | CONCLUSIONS

Phenotypic classification of sex using machine learning methods in 
this study resulted in a high degree of association with the real sex, 
which possesses the advantage of automatization and robustness 

with a high degree of accuracy compared to conventional methods. 
In addition, we found that high ambient temperature leads to a lower 
color intensity in some treated males, which was quantified by SVM 
in the caudal fin, suggesting that these animals were likely masculin‐
ized animals or neomales. Our findings further indicated that the color 
intensity is associated with body weight and length in males but not in 
females, which appears to play a significant role in sexual attractive‐
ness. Furthermore, none of our techniques and developed software 
in this study is specific to zebrafish; the same approach can be readily 
applied to other species with phenotypic sexual dimorphism.
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