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Abstract Our previous studies found that mitochondrial uncouplers CCCP and niclosamide
inhibited artery constriction and the mechanism involved AMPK activation in vascular smooth
muscle cells. BAM15 is a novel type of mitochondrial uncoupler. The aim of the present study is to
identify the vasoactivity of BAM15 and characterize the BAM15-induced AMPK activation in
vascular smooth muscle cells (A10 cells). BAM15 relaxed phenylephrine (PE)-induced constricted rat
mesenteric arteries with intact and denuded endothelium. Pretreatment with BAM15 inhibited PE-
induced constriction of rat mesenteric arteries with intact and denuded endothelium. BAM15, CCCP,
and niclosamide had the comparable IC50 value of vasorelaxation in PE-induced constriction of rat
mesenteric arteries. BAM15 was less cytotoxic in A10 cells compared with CCCP and niclosamide.
BAM15 depolarized mitochondrial membrane potential, induced mitochondrial fission, increased
mitochondrial ROS production, and increased mitochondrial oxygen consumption rate in A10 cells.
BAM15 potently activated AMPK in A10 cells and the efficacy of BAM15 was stronger than that of
CCCP, niclosamide, and AMPK positive activators metformin and AICAR. In conclusion, BAM15
activates AMPK in vascular smooth muscle cells with higher potency than that of CCCP, niclosamide
and the known AMPK activators metformin and AICAR. The present work indicates that BAM15 is a
potent AMPK activator.
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1. Introduction

Mitochondria are key cellular organelles which provide energy
through oxidative phosphorylation process. Normally, the nutrient
oxidation is coupled with ATP production in cells via the
electrochemical proton gradient across mitochondrial inner mem-
brane. However, when the proton leaks back to the mitochondrial
matrix through either the endogenous mitochondrial uncoupling
proteins(UCPs) or the exogenous chemical uncouplers, the proton
gradient decreases and the ATP production is reduced, which is
referred as “mitochondrial uncoupling”. Mitochondrial uncoupling
is not completely harmful, “mild mitochondrial uncoupling” is
reported to be protective in a variety of disorders, including
obesity1, diabetes2, ischemia/reperfusion injury3, Parkinson's dis-
ease4 and aging5. For instance, UCP2 overexpression restored the
impaired endothelium-dependent relaxation in obese diabetic
mice6, inhibited proliferation and migration of vascular smooth
muscle cells induced by high glucose and Ang II7; in addition to
overexpression of UCPs, through the mechanism of inducing mild
mitochondrial uncoupling, the chemical mitochondrial uncouplers
improved diabetic symptoms2, reversed hypertriglyceridemia, fatty
liver disease, and insulin resistance8,9, and combated obesity10

in mice.
Due to the beneficial effects of mild mitochondrial uncoupling,

developing mitochondrial uncouplers to induce mild mitochondrial
uncoupling is a strategy for treating not only the metabolic disorders
but also the heart, vascular, and nerve injury. However, the
limitation of the widely used protonophore uncouplers such as
FCCP is that they induce plasma membrane depolarization, result-
ing in off-target effects11. Based on this reason, Kenwood et al.12

developed a new mitochondrial uncoupler BAM15 which had a
broad effective range and did not affect plasma membrane electro-
physiology. Furthermore, they proved that BAM15 protected
against kidney ischemic-reperfusion injury in vivo12. This finding
brings promising hope for the development of the novel mitochon-
drial uncouplers.

Our previous works systemically studied the vasorelaxant effect
of mitochondrial uncouplers and found that mitochondrial uncou-
plers inhibited artery constriction and the mechanisms involved
AMPK activation in vascular smooth muscle cells13,14. BAM15 is
a new type of mitochondrial uncoupler with different characteriza-
tion from the classical uncoupler FCCP12, which enlightens us to
identify: (1) whether BAM15 shows the similar vasoactivity as the
classical uncouplers? (2) whether BAM15 has the similar effect of
activating AMPK as the classical uncouplers? Identification of
these pharmacological properties is important for developing novel
type of mitochondrial uncouplers with potential clinic use. In the
present work, we compared the effects of BAM15 on artery
constriction and AMPK signal in vascular smooth muscle
cells with that of mitochondrial uncouplers CCCP and niclosa-
mide. We found that BAM15 inhibited artery constriction,
similarly to the effects of CCCP and niclosamide. However,
BAM15 had higher potency of activating AMPK in vascular
smooth muscle cells than CCCP, niclosamide and the known
AMPK activators metformin and AICAR, indicating that BAM15
is a promising AMPK activator with potential use in metabolic
disorders.
2. Materials and methods

2.1. Agents and animals

BAM15 (N5,N6-bis(2-fluorophenyl)[1,2,5]oxadiazolo[3,4-b]pyra-
zine-5,6-diamine) was purchased from Cayman chemical (USA).
CCCP, acetylcholine chloride (Ach), oligomycin, rotenone and
antimycin A were purchased from Sigma Aldrich Chemistry (Saint
Louis, MO, USA). Niclosamide ethanolamine salt was purchased
from Shanghai Rongbai biological technology Co., Ltd. (Shang-
hai, China). Phenylephrine (PE) was purchased from Shanghai
Harvest Pharmaceutical Co., Ltd. (Shanghai, China). Mito-Tracker
Green, fluo-3/AM, MitoSOX, tetramethylrhodamine methyl ester
(TMRM) and hoechst were purchased from life technology
(Invitrogen, Oregon, USA). Metformin HCl, AICAR, BAPTA/
AM, STO609 were purchased from Selleck Chemicals (shanghai,
China). AMPK, p-AMPK (Thr172) antibodies were purchased
from Cell Signaling Technology (Danvers, MA, USA). Arterial
smooth muscle cells (A10) were purchased from ATCC (Mana-
ssas, Virginia, USA). Adult male Sprague–Dawley rats were
purchased from Charles River (Charles River Laboratory Animal,
Beijing, China). All animal experiments were approved by the
Institutional Animal Care and Use Committee of Harbin Medical
University.

2.2. Mesenteric artery and aorta tension measurement

The methods in detail were described in our previous studies13–16.
Briefly, The entire mesentery and thoracic aorta were removed
from adult male Sprague–Dawley rats (300–350 g) and placed in a
petri dish with cold physiological saline solution (PSS) aerated
with gas (95% O2 þ 5% CO2). The mesenteric arteries and
thoracic aorta were dissected into 2-mm and 4-mm rings respec-
tively. The isometric contractions of mesenteric arterial rings and
thoracic aortic rings were measured by using multi wire myograph
system (model 620 DMT, Danish Myo Technology, Denmark) and
multi-channel myograph system (BL-420S, Chengdu Taimeng
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Software Co., Ltd., China), respectively. The KPSS (60 mmol/L
Kþ) solution for inducing vasoconstriction was composed of
(mmol/L): NaCl, 74.7; KCl, 60; MgSO4 � 7H2O, 1.17; KH2PO4,
1.18; NaHCO3, 14.9; CaCl2, 1.6; D-glucose, 5.5; EDTA, 0.026.

2.3. Live and dead cell staining

The viability of A10 cells was measured by using live/dead
viability/cytotoxicity assay kit as described in our previous
study17. The numbers of live and dead cells were counted
automatically with Image J software (NIH, USA).

2.4. Western blot

The protein levels were analyzed by Western blot. The methods in
detail were described in our previous studies13–15.

2.5. Measurement of cellular ATP concentration and ADP/ATP
ratio

The level of ATP was measured by using the ATP biolumines-
cence assay kit (Beyotime, Shanghai, China). The ADP/ATP ratio
was measured by use of an ADP/ATP-Lite assay kit (Vigorous
Bio, Beijing, China). The methods in detail were described in our
previous studies13,14.

2.6. Measurement of mitochondrial membrane potential

The mitochondrial membrane potential was measured as described
in our previous works13,14. Briefly, the cells were incubated in free
medium containing TMRM (50 nmol/L) for 45 min and hoechst
(1 μg/mL) for 12 min in dark at 37 1C, then were imaged by using
confocal laser scanning microscopy (Zeiss LSM 700; Zeiss;
Oberkochen, Germany). The red fluorescence serves as an
indicator of the mitochondrial membrane potential and the blue
fluorescence serves as an indicator of cell nucleus. Mitochondrial
membrane potential was quantified as the change in fluorescence
over the initial TMRM fluorescence (F/F0).

2.7. Measurement of mitochondrial reactive oxygen species
(mitoROS)

The mitoROS was detected as described in our previous
works13,14. Cells were loaded with MitoSOX (5 μmol/L) for
20 min and Hoechst (1 μg/mL) for 12 min at 37 1C. The red
fluorescence representing mitochondrial ROS was imaged by
using confocal microscopy (Fluoview Fv10i, Olympus, Japan)
and quantified by using Image software.

2.8. Measurement of intracellular [Ca2þ]i

The intracellular [Ca2þ]i was detected as described in our previous
works13,14. Cells were loaded with Ca2þ-sensitive dye Fluo-3/AM
(5 μmol/L) and incubated at 37 1C for 15 min. Then, the cell
nucleus was incubated with hoechst (1 μg/mL) for 12 min. The
fluorescence intensity reflecting [Ca2þ]i was measured by confocal
microscopy (Zeiss LSM 700; Zeiss; Oberkochen, Germany). The
change of intracellular [Ca2þ]i was monitored with the relative
intensity of green fluorescence.
2.9. Staining of mitochondrial morphology

The mitochondria morphology of A10 cells was observed by using
a mitochondrial selective probe MitoTracker Green as described in
our previous work15.
2.10. Mitochondrial respiratory measurements

The intact whole cell respiratory function was determined by high-
resolution respirometry (Oxygraph-2k; Oroboros Instruments,
Innsbruck, Austria). The protocol was designed as ATP synthase
inhibitor-uncoupler-inhibitor titrations to evaluate the effects of
uncouplers on the maximal uncoupled respiratory capacity of the
electron transfer system. A10 cells were centrifuged and suspended in
culture medium, and then about 106 cells/cm3 intact cells were added
to the two O2k-chambers (2 cm3). The routine respiration is followed
by inhibition of ATP synthase (manual titration of oligomycin,
5mmol/L, 1 μL) to induce the non-phosphorylating LEAK state.
When respiration is stable, manual titrations of uncoupers (1mmol/L
CCCP, 1mmol/L NEN, 1mmol/L BAM15) were in steps of 1 μL for
10 times, 4 μL for 2 times and 10 μL for 2 or 3 times to induce
maximum noncoupled flux (capacity of the election transfer system,
ETS) at intervals of 120 s. Then, 1 μL rotenone (1mmol/L) and 1 μL
antimycin A (5mmol/L) were used to get the residual respiration.
2.11. Statistical analysis

Data were expressed by mean 7 SEM and analyzed by using
Sigma Plot 12.5. Two-group comparisons were performed by
Student's t-test. Multiple-group comparisons were carried out
using one-way ANOVA. P o 0.05 was considered significant.
3. Results

3.1. BAM15 inhibits phenylephrine (PE)-induced constriction of
rat mesenteric arteries

Our previous studies found that mitochondrial uncouplers inhibited
artery constriction13,14,18, and that BAM15 is a new uncoupler with
different characterization from the classical uncouplers. Therefore, we
examined the vasoactivity of BAM15 firstly. BAM15 relaxed PE-
induced constricted rat mesenteric arteries with intact and denuded
endothelium in a dose-dependent manner (Fig. 1A–F). Pretreatment
with BAM15 inhibited PE-induced constriction of rat mesenteric
arteries with intact and denuded endothelium (Fig. 1G–H).



Figure 1 BAM15 inhibited phenylephrine (PE)-induced constriction of rat mesenteric arteries. (A) Acetylcholine (1 μmol/L, Ach)-induced
vasorelaxation confirmed the rat mesenteric arteries with intact-endothelium. (B) and (C) BAM15 elicited dose-dependent relaxation of PE-induced
constriction of rat mesenteric arteries with intact endothelium. (D) The absence of Ach (1 μmol/L)-induced vasorelaxation confirmed the rat
mesenteric arteries with denuded-endothelium. (E) and (F) BAM15 elicited dose-dependent relaxation of PE-induced constriction of rat mesenteric
arteries with denuded endothelium. (G) and (H) BAM15 pretreatment inhibited PE-induced vasoconstriction in rat mesenteric arteries with intact
and denuded endothelium. *Po0.05,**Po0.01 vs control.
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3.2. BAM15 relaxes constricted thoracic aorta of rats

We further examined the effect of BAM15 on PE-induced
constriction of rat aorta. As shown in Fig. 2A–B, BAM15 dose-
dependently relaxed PE-induced constriction of rat aorta. How-
ever, although BAM15 relaxed the rat aorta constriction induced
by high Kþ (KPSS), the KPSS-induced aorta constriction was less
sensitive to BAM15 treatment than PE-induced aorta vasoconstric-
tion (Fig. 2C).
Figure 2 BAM15 relaxed vasoconstriction of rat thoracic aorta with in
induced vasoconstriction of rat thoracic aorta with intact endothelium. **

induced vasoconstriction of rat thoracic aorta with intact endothelium. *Po
3.3. Comparison of vasoactivity of BAM15, CCCP and
niclosamide

Since BAM15 showed the similar vasoactivity as the classical
mitochondrial uncouplers CCCP and niclosamide13,14, we com-
pared the efficacy of vasoactivity of BAM15, CCCP, and
niclosamide (niclosamide ethanolamine salt). As shown in
Fig. 3, the vasorelaxant efficacy of BAM15 was relatively lower
than that of CCCP, and niclosamide, whereas BAM15, CCCP, and
tact endothelium. (A) and (B) BAM15 dose-dependently relaxed PE-
Po0.01 vs DMSO (control). (C) BAM15 (5 μmol/L) relaxed KPSS-
0.05 vs DMSO (control).



Figure 3 The comparison of vasoactivity of BAM15, CCCP and
niclosamide. BAM15, CCCP and niclosamide showed equivalent
vasorelaxation in rat mesenteric arteries with denuded endothelium.
CCCP, carbonyl cyanide m-chlorophenylhydrazone; NE, niclosamide
ethanolamine salt.
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niclosamide had the comparable IC50 value of vasorelaxation in
PE-induced constriction of rat mesenteric arteries.
3.4. Effects of BAM15, CCCP and niclosamide on cell viability,
mitochondrial membrane potential, mitochondrial ROS, mitochondrial
fission, and mitochondrial respiration of A10 cells

BAM15 was reported to be less cytotoxic than FCCP in L6 and
NmuLi cells12. We further compared the cytotoxic effect of
BAM15, CCCP and niclosamide with the same concentrations
(10 mmol/L) in A10 cells. As shown in Fig. 4A, the optical images
showed that the cell densities in CCCP and niclosamide groups
were less than that in control group, and dead cells appeared in
niclosamide group; however, the cell state in BAM15 group was
no significant change. By using the LIVE/DEADs cell viability
assays, we further proved that BAM15 at 10 mmol/L had no
significant cytotoxicity in A10 cells, but both CCCP and niclosa-
mide had shown significant cytotoxicity at the same concentrations
(Fig. 4B).
Figure 4 The effect of BAM15, CCCP and niclosamide on cell viability.
niclosamide at 10 μmol/L for 24 h. (B) The representative images of Liv
niclosamide at 10 μmol/L for 24 h, and the analyzed data. The live cells wer
n ¼ 7 in each group. CCCP, carbonyl cyanide m-chlorophenylhydrazone;
BAM15 is a mitochondrial uncoupler, we further confirmed the
mitochondrial uncoupling effect of BAM15 in A10 cells. As
shown in Fig. 5A, the TMRM staining results showed that BAM15
treatment significantly depolarized the mitochondrial membrane
potential in A10 cells and the analyzed data was shown in Fig. 5B.
BAM15 treatment also increased mitochondrial ROS production in
A10 cells (Fig. 5C–D). We further measured the effect of BAM15,
CCCP and niclosamide on oxygen consumption rate in A10 cells
by using Oxygraph-2k. As shown in Fig. 5E and F, the sequence
of the potency of increasing oxygen consumption rate was
niclosamide 4 CCCP 4 BAM15. However, the maximal efficacy
of inducing mitochondrial uncoupling was basically equivalent for
three types of mitochondrial uncouplers (Fig. 5G).

The classical mitochondrial uncouplers induced mitochondrial
fission19,20. Since BAM15 is a new type of mitochondrial
uncoupler with different characterization from the classical uncou-
plers, we wondered its effect on mitochondrial fission in A10 cells.
As shown in Fig. 6, BAM15 at 2 μmol/L induced mitochondrial
fission in A10 cells, similarly to the effects of classical uncouplers
CCCP and niclosamide.
3.5. BAM15 potently activates AMPK in A10 cells

Our previous studies found that CCCP and niclosamide activated
AMPK in A10 cells13,14, we further examined the effect of
BAM15 on AMPK in A10 cells. As shown in Fig. 7A, BAM15
treatment (from 0.25 to 5 μmol/L) for 5 min induced significant
activation of AMPK in A10 cells, and the BAM15-induced AMPK
activation was dose-dependent. We compared the effect of
BAM15, CCCP and niclosamide on AMPK activation in A10
cells at the same concentration (1 μmol/L). CCCP and niclosamide
at 1 μmol/L showed no significant effect on AMPK while BAM15
at 1 μmol/L had activated AMPK in A10 cells (Fig. 7B). We
further compared the effect of the known AMPK activators
metformin and AICAR with that of BAM15. Metformin and
AICAR treatment (2 mmol/L) for 1 h did not affect AMPK
activity, but BAM15 at 5 μmol/L significantly activated AMPK
in A10 cells (Fig. 7C). We further extended the treatment time to
(A) The optical images of A10 cells treated with BAM15, CCCP and
e and Dead staining of A10 cells treated with BAM15, CCCP and
e stained in green and dead cells in red. *Po0.05,**Po0.01 vs control,
NE, niclosamide ethanolamine salt.



Figure 5 BAM15 induced mitochondrial uncoupling in A10 cells. (A) and (B) TMRM staining images showed that BAM15 (2 μmol/L)
treatment depolarized mitochondrial membrane potential and the summarized data. **Po0.01 vs control. (C) and (D) BAM15 (2 μmol/L) treatment
increased mitochondrial ROS production in A10 cells. **Po0.01 vs control. (E) and (G) Representative profiles and summarized data for oxygen
consumption in A10 cells treated with BAM15, CCCP and niclosamide (n ¼ 6). Omy, oligomycin (2.5 μmol/L); Rot, rotenone (0.5 μmol/L); Ama,
antimycin A (2.5 μmol/L). CCCP, carbonyl cyanide m-chlorophenylhydrazone; NE, niclosamide ethanolamine salt. OCR, oxygen consumption
rate; MMR: maximal mitochondrial respiration.
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6 h, metformin still could not activate AMPK; AICAR-induced
AMPK activation could be detected, but the AICAR-induced
AMPK activation was markedly less than that of BAM15 at 5
μmol/L (Fig. 7D). The above results suggested that BAM15 was a
potent AMPK activator.
AMPK is mainly activated by the cellular AMP/ATP ratio
increase or Ca2þ/calmodulin-dependent protein kinase kinase
(CaMKKβ) signal21. Our previous works found that the classical
uncouplers CCCP and niclosamide increase intracellular [Ca2þ]i
concentration in A10 cells13,14. Therefore, we speculated that



Figure 6 BAM15, CCCP, and niclosamide induced mitochondrial fission in A10 cells. (A)–(D) The framed areas were enlarged for clear
exhibition. CCCP, carbonyl cyanide m-chlorophenylhydrazone; NE, niclosamide ethanolamine salt. (E) Mitochondrial roundness was analyzed by
using Image-Pro Plus software and normalized to the mean of mitochondrial roundness at 0 min. Roundness ¼ Perimeter2/(4πArea). **Po0.01 vs
0 min, n Z 46 in each group.
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BAM15 might activate AMPK in A10 cells through increasing
intracellular [Ca2þ]i. However, we did not detect the BAM15-
induced significant increase of intracellular [Ca2þ]i in A10 cells
(Fig. 8A); the intracellular calcium chelator BAPTA/AM and the
selective CaMKK inhibitor STO-609 did not inhibit BAM15-
induced AMPK activation in A10 cells (Fig. 8B–C), indicating
that BAM15-induced AMPK activation was not through Ca2þ/
CaMKK pathway. We further examined the effect of BAM15 on
cellular ATP level and ADP/ATP ratio in A10 cells, results
showed that BAM15 treatment for 5 min reduced ATP production
and increased ADP/ATP ratio (Fig. 8D), indicating that BAM15-
induced AMPK activation might be through reducing ATP level
and increasing ADP/ATP ratio.
4. Discussion

BAM15 is a novel mitochondrial uncoupler identified recently, the
most important characterization of which is that it does not
depolarize the plasma membrane12. Here, we found that BAM15
showed similar vasoactivity as the classical mitochondrial uncou-
plers CCCP and niclosamide13,14. Especially, we proved that
BAM15 is a potent AMPK activator, the potency of which was
higher than that of CCCP, niclosamide and the known AMPK
activators metformin and AICAR; more importantly, it is less
cytotoxic. In view of AMPK as the therapeutic target in multiple
diseases22–24, the present work indicates that BAM15 could be
developed as a novel drug with AMPK as target.

Although the most important finding of the present study was
that BAM15 was a potent AMPK activator; however, the first
purpose of the present study was to compare the vasoactivity of the
three uncouplers BAM15, CCCP and niclosamide. We had found
that mitochondrial uncouplers CCCP and niclosamide induced
vasorelaxation13,14. Since BAM15 is a new type of mitochondrial
uncoupler with different characterization from the classical uncou-
plers, we compared the vasoactivity of the three uncouplers firstly.
The three uncouplers had the comparable IC50 value of vasorelaxa-
tion in PE-induced constriction of rat mesenteric arteries but the
vasorelaxant efficacy of BAM15 was relatively lower than that of
CCCP, and niclosamide. Our previous work showed that AMPK
activation was involved in CCCP- and niclosamide-induced vasor-
elaxation13,14. Next, we compared the effect of BAM15, CCCP, and
niclosamide on AMPK signal in A10 cells. Surprisingly, we found
that BAM15 strongly activated AMPK in A10 cells, and the
potency was significantly higher than that of CCCP, niclosamide
and the known AMPK activators metformin and AICAR. Therefore,
the mechanism of uncoupler-induced AMPK activation and vasor-
elaxation remained to be clarified.



Figure 7 BAM15 activated AMPK in A10 cells. (A) BAM15 treatment for 5 min induced AMPK activation in A10 cells in a dose-dependent
manner. *Po0.05, **Po0.01 vs control, n¼9 in each group. (B) BAM15 but not CCCP and niclosamide treatment for 5 min at 1 μmol/L activated
AMPK in A10 cells. **Po0.01 vs control, n ¼ 11 in each group. CCCP, carbonyl cyanide m-chlorophenylhydrazone; NE, niclosamide
ethanolamine salt. (C) BAM15 (5 μmol/L) but not metformin (2 mmol/L) and AICAR (2 mmol/L) treatment for 1 h activated AMPK in A10 cells.
**Po0.01 vs control, n¼6 in each group. Met, metformin. (D) BAM15 (5 μmol/L) treatment for 6 h significantly activated AMPK compared with
AICAR (2 mmol/L) and metformin (2 mmol/L). *Po0.05, **Po0.01 vs control, n¼7 in each group. Met, metformin.
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Metformin is the first-line drug for type 2 diabetes and is being
proved to be therapeutic for multiple cardiovascular diseases and
cancer. Metformin-induced activation of the energy-sensor AMPK
mainly contributes its pharmacological actions, and the mechan-
isms of metformin-induced AMPK activation have been inten-
sively studied. It was reported that metformin inhibited complex I
of the electron transport chain, preventing mitochondrial ATP
production, thus, increasing cytoplasmic AMP/ATP ratio and
activating AMPK25. On the other hand, some studies showed that
metformin treatment efficiently activated AMPK without disrupt-
ing energy state26, so a lysosomal mechanism of AMPK activation
was further proposed27. AICAR is another positive AMPK
activator. AICAR is a nucleoside that is phosphorylated to the
nucleotide 5-amino-4-imidazolecarboxamide riboside 50-mono-
phosphate (ZMP), which does not perturb the cellular contents
of ATP, ADP or AMP, but mimics the effects of AMP on the
AMPK activation28. Metformin and AICAR activate AMPK in
many cell types and tissues to exert their therapeutic actions. For
instance, they activated AMPK in MCF-7 and A549 cancer cells to
inhibit tumor growth29, activated AMPK in THP-1 monocytes to
inhibit monocyte-to-macrophage differentiation30, and activated
AMPK in human pulmonary arterial smooth muscle cells to inhibit
cell proliferation31. However, Metformin and AICAR had to be
used at the mmol/L level in the in vitro experiments in these
studies29–32. In the present study, we compared the effect of
BAM15, metformin and AICAR on AMPK signal in A10 cells in
the same experimental conditions. We found that the potency of
AMPK activation by BAM15 was thousand times more than that
of metformin and AICAR. More importantly, BAM15 at the
concentrations activating AMPK showed no cytotoxic effect,
indicating that BAM15 would be a new AMPK activator with
potential clinical significance.

Increase of intracellular Ca2þ signal contributes to mitochon-
drial fission15,33–35, we speculated that the classical mitochondrial



Figure 8 BAM15-induced AMPK activation in A10 cells were through reducing ATP production but not Ca2þ/CaMKK pathway activation.
(A) The representative time-lapse images and the summarized data showed that BAM15 (2 μmol/L) did not significantly affect cytosolic [Ca2þ]i in
A10 cells. (B) and (C) BAPTA/AM and STO609 pretreatments did not inhibit BAM15-induced AMPK activation in A10 cells. A10 cells were
treated with BAM15 (5 μmol/L, 5min) after BAPTA-AM (20 μmol/L, 1h) and STO-609 (50 μmol/L, 1 h) pretreatments. n¼9 in (B) and n¼10 in
(C). **Po0.01 vs DMSO (control). (D) BAM15 treatment for 5 min reduced ATP production and increased ADP/ATP ratio in A10 cells.
**Po0.01 vs control.
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uncouplers might stimulate mitochondrial fission through plasma
membrane depolarization-induced [Ca2þ]i increase. Our previous
works showed that the classical uncouplers CCCP and niclosamide
increased [Ca2þ]i in A10 cells13,14, and the present data showed
that they induced mitochondrial fission in A10 cells. BAM15 did
not depolarize the plasma membrane and we found that it did not
significantly affect [Ca2þ]i in A10 cells indeed. However, BAM15
induced mitochondrial fission in A10 cells, indicating that
mitochondrial uncoupler-induced mitochondrial fission might be
not through the increase of [Ca2þ]i. Previous studies reported that
CCCP induced mitochondrial fission in various cell types includ-
ing HeLa cells, MDCK cells and fibroblasts36,37, and several
mechanisms might be involved, including inducing dephosphor-
ylation of Drp1 at S63738, activating mitochondrial permeability
transition39, and stimulating mitochondrial fusion protein OPA1 to
be cleaved by the inducible protease OMA140–42. BAM15 might
share the similar mechanisms of inducing mitochondrial fission
as CCCP.

BAM15 has the general properties of mitochondrial uncouplers,
including inducing mitochondrial membrane potential depolariza-
tion, increasing mitochondrial oxygen consumption rate, reducing
ATP production, activating AMPK; however, compared with the
classical uncouplers, BAM15 is significantly less cytotoxic, as
evidenced by other12 and our present data. These results indicate
that the mitochondrial uncoupling effect of mitochondrial uncou-
plers could be separated from their cytotoxic effect, for instance,
BAM15 strongly activates AMPK but is less cytotoxic. Therefore,
it is promising to develop mitochondrial uncouplers as AMPK
activator with clinical application.
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