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The 𝐿1-norm regularization is usually used in positron emission tomography (PET) reconstruction to suppress noise artifacts while
preserving edges. The alternating direction method of multipliers (ADMM) is proven to be effective for solving this problem. It
sequentially updates the additional variables, image pixels, and Lagrangian multipliers. Difficulties lie in obtaining a nonnegative
update of the image. And classic ADMM requires updating the image by greedy iteration to minimize the cost function, which is
computationally expensive. In this paper, we consider a specific application of ADMM to the 𝐿1-norm regularized weighted least
squares PET reconstruction problem. Main contribution is derivation of a new approach to iteratively and monotonically update
the image while self-constraining in the nonnegativity region and the absence of a predetermined step size. We give a rigorous
convergence proof on the quadratic subproblem of the ADMM algorithm considered in the paper. A simplified version is also
developed by replacing the minima of the image-related cost function by one iteration that only decreases it. The experimental
results show that the proposed algorithmwith greedy iterations provides a faster convergence than other commonly usedmethods.
Furthermore, the simplified version gives a comparable reconstructed result with far lower computational costs.

1. Introduction

Positron emission tomography (PET) is an important imag-
ing tool inmodernmedicine and provides noninvasive quan-
tification of the biochemical and biological processes inside
living subjects. Several reconstruction methods have been
developed and applied in clinical practice.Thesemethods can
be roughly divided into two categories: analytical methods
and iterative methods. Iterative methods have attracted more
attention because they generally model imaging physics
better and are more capable of suppressing noise artifacts
than analyticalmethods. A basic target of PET reconstruction
is to solve a system of the following form:

𝑌 = 𝑃𝑋 + 𝑆, (1)
where 𝑋 represents the biochemical activity distribution
inside a subject, 𝑌 denotes the measured projections, 𝑆 is
scatter and random events, and 𝑃 is a predetermined system
matrix, where 𝑋 ∈ 𝑅𝑁×1, 𝑌 ∈ 𝑅𝑀×1, 𝑆 ∈ 𝑅𝑀×1, and 𝑃 ∈𝑅𝑀×𝑁. All of these are fully nonnegative.

A classical approach is to select𝑋 such that the weighted
least squares (WLS) error [1] between 𝑌 and 𝑃𝑋 + 𝑆 is
minimized:

min
𝑋≥0

𝐹 (𝑋) = ‖𝑃𝑋 + 𝑆 − 𝑌‖2Σ . (2)

Σ is a diagonal matrix with the diagonal element Σ𝑖𝑖 = 1/𝜎𝑖,
where 𝜎𝑖 is the variance of the 𝑖th measurement. In theory,
the values in𝑌 are larger than those in 𝑆; however, in practical
applications, the latter one could exceed the former one when
estimating 𝑆.

Although an iterative algorithm can more effectively
suppress noise propagation than conventional filtered back-
projection, it may fail in special cases, such as increased
amount of noise, sparse projections, or low dose (which
results in high noise or poor SNR). In fact, the problem of
reconstructing PET image data is an ill-posed inverse prob-
lem. Over the past twenty years, efforts have been made to
solve these problems by employing regularization techniques
[2–8]. A general method is to introduce a priori knowledge
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to constrain the solution space, which can be expressed as a
regularization (or penalization) on the reconstructed image
to reflect information on the properties of acceptable images.
Tikhonov regularization [9, 10] is a popular method that
generally leads to a unique solution.There are manymethods
for solving such a quadratic programming problem [1, 11].
However, they exhibit a weak ability to preserve the edges
while smoothing the interior of the image.

Another viable regularization method is the 𝐿1-norm
regularization [12–16], in which one seeks to find the solution
of the following optimization problem:

min
𝑋≥0

𝐹 (𝑋) + 𝛽 ‖𝑅𝑋‖1 , (3)

where 𝛽 > 0 serves as a penalty parameter and 𝑅 is
a linear operator (e.g., gradient operator and orthonormal
transformation).The penalty parameter 𝛽 controls the trade-
off between data fidelity and resolution (image smoothness).
Several linear operators 𝑅 have been proposed, such as the
first- or second-order derivative or wavelet basis. Note that 𝑅
could include negative elements. The underlying philosophy
in working with 𝐿1-norm regularization is that most images
have a sparse representation [17].

In recent years, the subgradient-based method [18] has
been developed for solving convex and nonconvex opti-
mization problems; this method takes a subgradient related
surrogate function at each step to obtain the update. Another
method is the alternating direction method of multipliers
(ADMM) [19, 20]. ADMM decomposes the original problem
into three subproblems, and then it sequentially solves these
subproblems at each iteration. For medical imaging, ADMM
will distributively minimize the augmented Lagrangian-
related function to solve for the additional and primal
variables (pixels), and then it updates the dual variables,
which are associated with a coupling constraint.

One can reformulate the optimization problem in (3) by
imposing the extra constraint 𝑉 = 𝑅𝑋, which leads to the
following optimization problem:

min 𝐹 (𝑋) + 𝛽 ‖𝑉‖1
s.t. 𝑋 ≥ 0,

𝑉 = 𝑅𝑋.
(4)

Note that (3) and (4) have the same solution. The
scaled augmented Lagrangian function [19] is introduced to
overcome these difficulties, and it is defined as follows:

𝐿 (𝑋,𝑉, 𝜇) = 𝐹 (𝑋) + 𝛽 ‖𝑉‖1 + (𝜌2) 𝑅𝑋 − 𝑉 + 𝜇22
− (𝜌2) 𝜇22 ,

(5)

where 𝜇 is the dual variable or Lagrange multiplier and 𝜌 >0 is the penalty parameter. When 𝜌 = 0, the augmented
Lagrangian can be reduced to the unaugmented (common)
version.

By applying distribution optimization for 𝑉 and 𝑋
and dual ascent to 𝜇, a unified framework can be intro-
duced to solve the 𝐿1-norm regularized WLS reconstruction

problems. For the 𝑉-update, one exploits the separability𝐿(𝑋𝑡, 𝑉, 𝜇𝑡) in 𝑉, that is, 𝐿(𝑋𝑡, 𝑉, 𝜇𝑡) = ∑𝑀𝑖=1 𝐿 𝑖(𝑋𝑡, 𝑉𝑖, 𝜇𝑡), to
solve for each 𝑉𝑖 independently. A solution can be found in
[17], which is the well-known shrinkage method. To update𝜇, a simple gradient-ascent method can be used. When
not considering the details of the 𝑋-update, the ADMM’s
framework can be formulated [19] as follows.

Algorithm 1 (ADMM general framework). One has

(1) 𝑉𝑡+1𝑖 = (|(𝑅𝑋𝑡 + 𝜇𝑡)𝑖| − 𝛽/𝜌)+ sgn[(𝑅𝑋𝑡 + 𝜇𝑡)𝑖], 𝑖 =1, . . . ,𝑀;
(2) 𝑋𝑡+1 = argmin𝑋≥0𝐿(𝑋,𝑉𝑡+1, 𝜇𝑡);
(3) 𝜇𝑡+1 = 𝜇𝑡 + 𝑅𝑋𝑡+1 − 𝑉𝑡+1.

Here, the 𝑋-update is a difficult problem that minimizes the
following function with the nonnegativity constraint:

𝐿 (𝑋,𝑉𝑡+1, 𝜇𝑡) = 𝐹 (𝑋) + (𝜌2) 𝑅𝑋 − 𝑉𝑡+1 + 𝜇𝑡22 . (6)

When 2𝑃𝑇𝑃+𝜌𝑅𝑇𝑅 is invertible, we may obtain a unique
global solution, which has been used in [21, 22].

𝑋
= (2𝑃𝑇𝑃 + 𝜌𝑅𝑇𝑅)−1 [2𝑃𝑇 (𝑌 − 𝑆) + 𝜌𝑅𝑇 (𝑉𝑡+1 − 𝜇𝑡)]
𝑋 = max (0, 𝑋) ,

(7)

where the truncation below zero is necessary for constraining
the solution to the nonnegative space. This formulation is
feasible in theory if the regularization process guarantees the
nonsingularity of the matrix.

A viable method is the gradient-based method. The
steepest descent method is perhaps the simplest technique to
implement, which takes the negative gradient as the descent
direction:

𝑋𝑡+1 = 𝑋𝑡 − 𝛼 (𝑡) ∇𝐿 (𝑋𝑡, 𝑉𝑡+1, 𝜇𝑡)
𝑋𝑡+1 = max (𝑋𝑡+1, 0) , (8)

where the superscript 𝑡 denotes the 𝑡th iteration and 𝛼(𝑡) is
the step size. Of course, negative pixel values still need to be
truncated. The convergence of the gradient-based methods
depends on the choice of step size, which is problematic for
practical implementations.

Let 𝛼(𝑡) = 𝛼 be a constant, where 0 < 𝛼 <2/‖∇2𝐿𝑋(𝑋𝑡, 𝑉𝑡+1, 𝜇𝑡)‖ (‖ ⋅ ‖ denotes the maximum eigen-
value); then (8) becomes the projected Landweber method
[23]:

𝑋𝑡+1 = 𝑋𝑡 − 𝛼∇𝐿 (𝑋𝑡, 𝑉𝑡+1, 𝜇𝑡)
𝑋𝑡+1 = max (𝑋𝑡+1, 0) . (9)

The conjugate gradient method is a popular approach,
which is often implemented as an iterative algorithm appli-
cable to sparse systems for large-scale problems.
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However, for large-scale problems such as PET recon-
struction, the inverse matrix method becomes very costly
from a computational perspective. Furthermore, the “pure”
steepest descent method and the “pure” conjugate gradient
method do not meet the nonnegativity constraint, and con-
sequently, negative pixel values need to be truncated. The
truncation, however, leads to a divergent modification. The
projected Landweber method, however, is able to meet the
nonnegativity, but its convergence cannot be proven theo-
retically. In addition, the projected algorithms also destroy
the monotonic decreasing properties of the decomposed cost
function.

In fact, ADMM is a framework of distribution opti-
mization, which is not limited to PET reconstruction with
the nonnegativity constraints. With different constraints and
distributed variables, ADMM can be applicable in many
other fields, such as multiple-block convex programming
[24], ADMM for tomographywith nonlocal regularizers [25],
linear classification [26], and optimal power flow problems
[27].

In this paper, we consider a specific application ofADMM
to the 𝐿1-norm regularized WLS reconstruction problems.
Here, we do not change the framework of ADMM; rather,
we develop a new algorithm for PET image reconstruction.
The proposed approach is applicable to severalmedical image
reconstruction problems, such as TV regularized [13] and
wavelet regularized [14] image reconstruction. We focus on a
key subproblem: the 𝑋-update. A multiplicative update rule
is derived to iteratively and monotonically (in the sense of
decreasing cost function) update the pixel values. Similar to
the EM algorithm [28, 29], the pixel-update algorithm also
intrinsically satisfies the automatic satisfaction of the nonneg-
ativity constraint without the need for an adjustable step size.
We provide a rigorous convergence proof for the proposed𝑋-update, which shows that the algorithm will iteratively
pursue a single global optimum.The𝑋-update that optimizes
the subproblem inevitably leads to high computational costs,
and we can replace it by a single iteration algorithm to
decrease the decomposed cost function of the subproblem,
which is an often used strategy in distributed optimization.
The experimental results demonstrate that the proposed
algorithm (with greedy reconstruction of the pixels) provides
better performance compared to those of other commonly
used methods with respect to image qualification and con-
vergence speed. The results also show that the simplified
version provides a comparable reconstructed result but at
a considerably lower computational cost compared to the
existing methods.

2. Methodology

For notational simplicity, we define 𝐶 = −𝑉𝑡+1 + 𝜇𝑡 as a
constant vector, and then we define the cost function in (6)
as follows:

Φ (𝑋) = 𝐿 (𝑋,𝑉𝑡+1, 𝜇𝑡) = 𝐹 (𝑋) + (𝜌2)𝐺 (𝑋) ,
where: 𝐺 (𝑋) = ‖𝑅𝑋 + 𝐶‖22 .

(10)

We will solve this optimization problem using a modified
EM-type algorithm. As mentioned in many articles [30–33],
a surrogate function, as defined below, is useful in algorithm
derivation and convergence proof.

Definition 2 (surrogate). The function 𝜓(𝑋 | 𝑋𝑡) is a
surrogate of Ψ(𝑋) at 𝑋𝑡 (fixed) if 𝜓(𝑋𝑡 | 𝑋𝑡) = Ψ(𝑋𝑡) and𝜓(𝑋 | 𝑋𝑡) ≥ Ψ(𝑋).

Clearly, Ψ(𝑋) is decreasing under the update 𝑋𝑡+1 =
min𝑋𝜓(𝑋 | 𝑋𝑡) because of

Ψ(𝑋𝑡+1) ≤ 𝜓 (𝑋𝑡+1 | 𝑋𝑡) ≤ 𝜓 (𝑋𝑡 | 𝑋𝑡) = Ψ (𝑋𝑡) . (11)

There are two important properties for the surrogate:
additivity and transitivity. For the former, the sum of two
surrogates is a surrogate of the sum of two original functions.
For the latter, the surrogate of the surrogate of a function is a
surrogate of this function. Following these properties, we will
construct the surrogates for 𝐹(𝑋) and 𝐺(𝑋).
2.1. Surrogate for 𝐹(𝑋). We construct a surrogate 𝑓(𝑋 | 𝑋𝑡)
by the convexity. Let

𝜆𝑖∗ = 𝑆𝑖(𝑃𝑋𝑡 + 𝑆)𝑖 ,

𝜆𝑖𝑗 = 𝑃𝑖𝑗𝑋𝑡𝑗(𝑃𝑋𝑡 + 𝑆)𝑖
(12)

that satisfy 𝜆𝑖∗, 𝜆𝑖𝑗 ≥ 0 and 𝜆𝑖∗ + ∑𝑁𝑗=1 𝜆𝑖𝑗 = 1. They can be
the convex combination coefficients such that

𝑓 (𝑋 | 𝑋𝑡)
= 𝑀∑
𝑖=1

𝜎𝑖 [[
𝜆𝑖∗ ( 𝑆𝑖𝜆𝑖∗ − 𝑌𝑖)

2 + 𝑁∑
𝑗=1

𝜆𝑖𝑗 (𝑃𝑖𝑗𝑋𝑗𝜆𝑖𝑗 − 𝑌𝑖)
2]
]
. (13)

It can be verified that 𝑓(𝑋𝑡 | 𝑋𝑡) = 𝐹(𝑋𝑡). When
considering Jensen’s inequality and the convex combination
coefficients 𝜆𝑖𝑗, then 𝑓(𝑋 | 𝑋𝑡) ≥ 𝐹(𝑋) is proven by the
following inequality:

𝜆𝑖∗ ( 𝑆𝑖𝜆𝑖∗ − 𝑌𝑖)
2 + 𝑁∑
𝑗=1

𝜆𝑖𝑗 (𝑃𝑖𝑗𝑋𝑗𝜆𝑖𝑗 − 𝑌𝑖)
2

≥ [(𝑃𝑋)𝑖 − 𝑌𝑖 + 𝑆𝑖]2 .
(14)

A similar derivation can be found in [34]. Note that 𝜆∗𝑖𝑗 only
relates to the constant termwith regard to𝑋 and can therefore
be ignored when minimizing the function 𝑓(𝑋 | 𝑋𝑡).
2.2. Surrogate for 𝐺(𝑋). Since there may be some negative
values in the matrix 𝑅, it is difficult to directly construct a
surrogate as above. Some previous works, such as [35, 36],
are unable to solve the problem because they fail to guarantee
nonnegativity during the iterations, for which we provided
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a counterexample in [11]. We will utilize an intermediate
surrogate to solve the problem. Let 𝑅 = 𝑅− �̂� and 𝐶 = 𝐶− �̂�,
where𝑅, �̂�,𝐶, and �̂� arematrices or vectors with nonnegative
entries. Subsequently, we can construct a surrogate for 𝐺(𝑋)
at𝑋𝑡.

𝑔mid (𝑋 | 𝑋𝑡) = 𝑔 (𝑋 | 𝑋𝑡) + �̂� (𝑋 | 𝑋𝑡) , (15)

where

𝑔 (𝑋 | 𝑋𝑡)
= 12 2 (𝑅𝑋 + 𝐶) − (𝑅𝑋𝑡 + 𝐶) − (�̂�𝑋𝑡 + �̂�)22

�̂� (𝑋 | 𝑋𝑡)
= 12 2 (�̂�𝑋 + �̂�) − (𝑅𝑋𝑡 + 𝐶) − (�̂�𝑋𝑡 + �̂�)22 .

(16)

It can be verified that 𝑔mid(𝑋𝑡 | 𝑋𝑡) = 𝐺(𝑋𝑡). By
the convexity of 𝐺(𝑋), we view 1/2 as the combination
coefficients, leading to

𝑔mid (𝑋 | 𝑋𝑡)
= 12 2 (𝑅𝑋 + 𝐶) − (𝑅𝑋𝑡 + 𝐶) − (�̂�𝑋𝑡 + �̂�)22
+ 12 −2 (�̂�𝑋 + �̂�) + (𝑅𝑋𝑡 + 𝐶) + (�̂�𝑋𝑡 + �̂�)22

≥ 𝐺 (𝑋) .

(17)

Following the same process as in Section 2.1, we can
construct surrogates 𝑔(𝑋 | 𝑋𝑡) and ̂̂𝑔(𝑋 | 𝑋𝑡) for 𝑔(𝑋 | 𝑋𝑡)
and �̂�(𝑋 | 𝑋𝑡), respectively. Let

𝜆𝑖𝑗 = 𝑅𝑖𝑗𝑋𝑡𝑗
(𝑅𝑋𝑡 + 𝐶)

𝑖

�̂�𝑖𝑗 = �̂�𝑖𝑗𝑋𝑡𝑗
(�̂�𝑋𝑡 + �̂�)

𝑖

;
(18)

then

𝑔 (𝑋 | 𝑋𝑡)
= 12
𝑀∑
𝑖=1

𝑁∑
𝑗=1

𝜆𝑖𝑗 [2𝑅𝑖𝑗𝑋𝑗𝜆𝑖𝑗 − ((𝑅 + �̂�)𝑋𝑡 − 𝐶 − �̂�)
𝑗
]
2

̂̂𝑔 (𝑋 | 𝑋𝑡)
= 12
𝑀∑
𝑖=1

𝑁∑
𝑗=1

�̂�𝑖𝑗 [2�̂�𝑖𝑗𝑋𝑗�̂�𝑖𝑗 − ((𝑅 + �̂�)𝑋𝑡 − 𝐶 − �̂�)
𝑗
]
2

.

(19)

Note that 𝜆∗𝑖𝑗 and �̂�∗𝑖𝑗 are relative to the constant terms and can
safely be ignored. Now, we can obtain a surrogate for 𝐺(𝑋) at𝑋𝑡.

𝑔 (𝑋 | 𝑋𝑡) = 𝑔 (𝑋 | 𝑋𝑡) + ̂̂𝑔 (𝑋 | 𝑋𝑡) . (20)

2.3. Multiplicative Update Rule. We minimize 𝜙(𝑋 | 𝑋𝑡) =𝑓(𝑋 | 𝑋𝑡) + (𝜌/2)𝑔(𝑋 | 𝑋𝑡) to obtain a new iteration. Taking
the partial derivatives for𝑓(𝑋 | 𝑋𝑡), 𝑔(𝑋 | 𝑋𝑡) and �̂�(𝑋 | 𝑋𝑡)
leads to

𝜕𝑓 (𝑋 | 𝑋𝑡)
𝜕𝑋𝑗 = 2[𝑃

𝑇Σ (𝑃𝑋𝑡 + 𝑆)]
𝑗𝑋𝑡𝑗 𝑋𝑗 − 2 (𝑃𝑇Σ𝑌)𝑗

𝜕𝑔 (𝑋 | 𝑋𝑡)
𝜕𝑋𝑗 = 4[𝑅

𝑇 (𝑅𝑋𝑡 + 𝐶)]
𝑗𝑋𝑡𝑗 𝑋𝑗

− 2 {𝑅𝑇 [(𝑅 + �̂�)𝑋𝑡 + 𝐶 + �̂�]}
𝑗

𝜕̂̂𝑔 (𝑋 | 𝑋𝑡)
𝜕𝑋𝑗 = 4[�̂�

𝑇 (�̂�𝑋𝑡 + �̂�)]
𝑗𝑋𝑡𝑗 𝑋𝑗

− 2 {�̂�𝑇 [(𝑅 + �̂�)𝑋𝑡 + 𝐶 + �̂�]}
𝑗
.

(21)

Solving the one-dimensional equations 𝜕𝜙(𝑋 | 𝑋𝑡)/𝜕𝑋𝑗 = 0 leads to a multiplicative update rule, which is the
main result in this paper.

𝑋𝑡+1𝑗 = 𝑋𝑡𝑗 [𝐴1 + (𝜌/2)𝐴2]𝑗[𝐴3 + 𝜌𝐴4]𝑗 ,
where 𝐴1 = 𝑃𝑇Σ𝑌, 𝐴2 = (𝑅 + �̂�)𝑇 (𝑅 + �̂�)𝑋𝑡 + (𝑅 + �̂�)𝑇 (𝐶 + �̂�) , 𝐴3 = 𝑃𝑇Σ (𝑃𝑋𝑡 + 𝑆) , 𝐴4 = (𝑅𝑇𝑅 + �̂�𝑇�̂�)𝑋𝑡 + 𝑅𝑇𝐶 + �̂�𝑇�̂�.

(22)

The update rule results from the current imagemultiplied
by a factor and is flexible and easy to implement. The
derivation process can also be explained in terms of EM
optimization: when considering the surrogate as the mini-
mal conditional expectation, its minimization is equivalent
to the maximization of the conditional expectation. The
algorithm shows two important properties: the iterations

are positive if the initial estimate is positive, and the cost
function monotonically decreases. For this derivation pro-
cess, the key step is to replace the minimization of the
cost function by minimizing at each iteration the surro-
gate whose variables are separable. Moreover, the mini-
mization of the surrogate ensures that the cost function
decreases.
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2.4. Specific ADMM and Simplified Version. Now, we can
present a specific ADMM that is flexible and convenient for
PET reconstruction.

Algorithm 3 (specific ADMM). Given 𝛽 > 0 and 𝜌 > 0, then
(1) 𝑉𝑡+1𝑖 = (|(𝑅𝑋𝑡 + 𝜇𝑡)𝑖| − 𝛽/𝜌)+ sgn[(𝑅𝑋𝑡 + 𝜇𝑡)𝑖], 𝑖 =1, . . . ,𝑀;
(2) iteratively update 𝑋 by (22) until some stop rule is

satisfied;
(3) 𝜇𝑡+1 = 𝜇𝑡 + 𝑅𝑋𝑡+1 − 𝑉𝑡+1.
Note that, in Algorithm 3, ADMM requires greedy itera-

tions to obtain the optimal solution with respect to𝑋, which
is an expensive operation. In general, an update that decreases
the primal cost function is sufficient for use in practical
applications; thus, we will provide the following simplified
algorithm.

Algorithm 4 (simplified ADMM). Given 𝛽 > 0 and 𝜌 > 0,
then

(1) 𝑉𝑡+1𝑖 = (|(𝑅𝑋𝑡 + 𝜇𝑡)𝑖| − 𝛽/𝜌)+ sgn[(𝑅𝑋𝑡 + 𝜇𝑡)𝑖], 𝑖 =1, . . . ,𝑀;
(2) update𝑋 by (22) with only one iteration;
(3) 𝜇𝑡+1 = 𝜇𝑡 + 𝑅𝑋𝑡+1 − 𝑉𝑡+1.

3. Convergence

There are many convergence proofs for both constrained
and unconstrained ADMM [19, 20]. Therefore, we only need
to limit ourselves to discussing the convergence of the 𝑋-
update.Wewill theoretically prove that the iteration sequence
will converge to a global solution if we use it to pursue
an accurate solution without considering the computational
cost. In the appendix, we will prove that update (22) can
iteratively andmonotonicallyminimize the cost function (10)
while observing the nonnegativity constraint along the lines
of [35–39].

4. Experiments

4.1. Simulated Head Phantom Data. A simulated head phan-
tom with 128 × 128 pixels (pixel width of 4mm), as shown in
Figure 1, is used in the following experiments. This phantom
is modified to meet the needs of PET simulation because the
original one is a CT phantom. There are many advantages
to using simulated phantoms, including prior knowledge of
the pixel values and the ability to control noise. The total
detection counts are approximately 5 × 105.

An anisotropic TV regularization is used to test the
algorithmic performance as follows:

𝐺 (𝑋) = 𝑁∑
𝑗=1

(𝑋𝑗 − 𝑋𝑗,right + 𝑋𝑗 − 𝑋𝑗,below) , (23)

where𝑋𝑗,right and𝑋𝑗,below, respectively, represent pixels to the
right and below𝑋𝑗.

We compare the performance of the proposed method
with De Pierro’s ISRA (image space reconstruction method)
[34] and the PWLS-EM algorithm with a quadratic smooth-
ing regularization [11].Thesemethods are selected to demon-
strate the difference between regularized and nonregularized
reconstruction algorithms. Moreover, the difference between𝐿1-norm regularization and squared 𝐿2-norm regularization
is examined. We also use several methods to pursue 𝑋-
update, including the projected Landweber and the conjugate
gradientmethods.Theprojected Landwebermethoduses𝛼 =1/[‖𝑃‖1‖𝑃‖∞+𝛽‖𝑅‖1‖𝑅‖∞] [40], where ‖⋅‖1 and ‖⋅‖∞ denote
the 1- and∞-norms of a matrix, respectively. The code of the
conjugate gradient method comes from [41], which is slightly
modified to meet our criteria.

In the following, the results of the ADMM-type algo-
rithms are named ADMM-𝑥-𝑦-𝑧, where 𝑥 represents the 𝑋-
update method, which can be EM (proposed), PL (projected
Landweber), and CG (conjugate gradient); 𝑦 denotes the
number of outer loops; and 𝑧 is the number of inner loops. For
example, ADMM-EM-400-120 refers to using the proposed
method to update 𝑋 with 120 inner iterations and update all
of𝑉,𝑋, and 𝜇 with 400 outer iterations. In the unambiguous
case, we will omit 𝑥, 𝑦, 𝑧, or all of them for notational
simplicity. The experiments are performed on a HP Compaq
PC with a 3.00GHz Core i5 CPU and 4GB of memory.
The algorithms are implemented in MATLAB 7.0. All of the
algorithms are initiated using the same uniform image for a
fair comparison.

The system matrix is obtained using the “angle of view”
method [28]. The diagonal matrix Σ is computed using
Fessler’s “data-plugin” technique [1].

Using the system matrix, we project the phantom on the
sinogram with 128 radial bins (bin size of 4mm) and 128
angular views evenly spaced over 𝜋.The noisy projections are
obtained by Fessler’s pseudorandom formulation.

𝑦𝑖 = 𝑐𝑖Poisson {𝑐−1𝑖 (𝑦∗𝑖 + 𝑎𝑖𝑦∗𝑖 )}
− 𝑐𝑖Poisson {𝑐−1𝑖 𝑎𝑖𝑦∗𝑖 } , (24)

where 𝑦∗𝑖 is the noise-free projection, 𝑎𝑖 = 30% simulates
the contribution of random events, and 𝑐𝑖 is the 𝑖th detector
efficiency.We select 𝑐𝑖 = 1 and thus ignore the influence of the
detector efficiency. Furthermore, we ignore 𝑆 in (2) during the
simulation process.

Mean absolute error (MAE) can be used to measure the
proximity of the reconstructed image to the true image. The
MAE value is calculated by taking the average of the absolute
difference between the reconstructed pixel values and the real
ones over the entire image. The best algorithm will provide
the lowest MAE value.

MAE (𝑡) = 1𝑁 𝑋𝑡 − 𝑋True1 . (25)

The following criterion is applied to stop the iteration
process:

𝜒 (𝑡) =
𝑋𝑡+1 − 𝑋𝑡2‖𝑋𝑡‖2 < 𝜖, (26)

where 𝜖 is a difference tolerance.
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(a) (b)

(c) (d)

Figure 1: Shepp-Logan phantomwith 128×128 grids: (a) Shepp-Logan phantom, (b) background, (c) low-activity ROI, and (d) high-activity
ROI.

Contrast and variability are typically used to evaluate
image quality. We compute these parameters using the
method ofNEMA[42].DenotemeanΩ(𝑋) and stdΩ(𝑋) as the
mean and standard deviation of the image𝑋 on the regionΩ;
then

Contrast = meanΩ1 (𝑋) /meanΩ2 (𝑋)
meanΩ1 (𝑋True) /meanΩ2 (𝑋True)

Variability = stdΩ1 (𝑋)
meanΩ1 (𝑋) ,

(27)

where Ω1 represents the ROI (region of interest) and Ω2
denotes the background.

The running time of the algorithms is easily influenced
by many factors, for example, coding level and running
environment. Therefore, we also compare the computational
complexity for the sake of fairness. Here, we use a simple and
feasible method by counting the number ofmultiplications of
the system matrix and any vector because the TV matrix (𝑅)
is very sparse, and thus the computation load can be ignored.
In fact, for all of ADMM-PL, ADMM-CG, and ADMM-EM,

each inner loop (𝑋-update) requires only twomultiplications
of the system matrix and a vector; consequently, the com-
putation complexity can be further simplified to the total
number of inner loops, which equals the multiplications of
the number of outer loops and inner loops for each𝑋-update.
In the following, we will take it to indicate the computational
complexity.

In Figure 2, we find a suitable penalty parameter for
PWLS-EM by comparing the change of theMAE at the 400th
iteration with respect to 𝛽. We also pursue the optimal 𝛽
and 𝜌 for ADMM-EM by comparing the change of MAE at
the 400th outer iteration and the 120th inner iteration. Since
the 𝑋-update by EM can be proven in theory to converge to
a single global optimum, ADMM-EM may be viewed as a
golden standard. For PWLS-EM, the optimalMAE values are
obtained at 𝛽 = 10−4. For ADMM-EM, the optimal penalty
parameter is obtained at (𝛽, 𝜌) = (10−2, 10−4). In addition,
the minimal MAE values for PWLS-EM and ADMM-EM are
41.91 and 13.05, respectively. This phenomenon shows a clear
advantage of 𝐿1-norm regularization compared to Tikhonov-
type regularization.
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Figure 2: MAE values generated by the greedy enumeration strategy: (a) PWLS-EM with 400 iterations and (b) ADMM-EM with 400 outer
iterations and 120 inner iterations. The global minimum MAE values correspond to the optimal penalty parameters. Note that both the 𝑥-
and 𝑦-axes are log-scale to provide a clear visualization. PWLS-EM obtains the minimal MAE value (41.91) at 𝛽 = 10−4, and ADMM-EM
obtains the minimal value (13.05) at (𝛽, 𝜌) = (10−2, 10−4).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Reconstructed images by (a) ISRAwith 400 iterations, (b) ADMM-PL-400-120, (c) ADMM-CG-400-120, (d) ADMM-EM-400-120,
(e) PWLS-EM with 400 iterations, (f) ADMM-PL-400-1, (g) ADMM-CG-400-1, and (h) ADMM-EM-400-1.

Below, we focus on several special algorithms, including
ISRA, PWLS-EM (𝛽 = 10−4), and ADMM (𝛽 = 10−2 and𝜌 = 10−4). Figure 3 shows the reconstructions corresponding
to a greedy outer and inner iteration. As shown in this
figure, ISRA’s image suffers from serious noise artifacts, and
PWLS-EM fails to preserve the edges. ADMM-PL-400-1 and
ADMM-CG-400-1 provide an obvious blurred reconstruc-
tion. The remaining images exhibit smooth interiors and
sharp edges, which are desirable results. These algorithms
provide almost identical reconstructed results. In fact, since
the subproblem to update the pixel values has a strictly convex
cost function, every convergent algorithm will converge to
the same result with a greedy iteration number. This is
the reason for why ADMM-PL-400-120, ADMM-CG-400-
120, and ADMM-EM-400-120 provide similar results. This

experiment also indicates that EM is more suitable for the
simplified ADMM algorithm than PL and CG. We believe
that the reason is because the EM-𝑋-update can ensure the
monotonic decrease of the augmented Lagrangian function;
however, the projected Landweber and CG have no such
characteristic.

Figure 4 presents a comparison of the MAE curves and
cost function with increasing iteration numbers for ADMM-
PL, ADMM-CG, and ADMM-EM, in which the curves of
ISRA and PWLS-EM disappear because they clearly fail to
preserve edges and suppress noise artifacts. As shown, for
both curves, ADMM-PL-1 presents larger MAE and cost
function values and ADMM-CG-1 provides the next-worse
curve, demonstrating the consistent conclusion that ADMM-
PL and ADMM-CG are ill-suited for the proposed simplified
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Figure 4: MAE and cost function versus the number of outer loops, where the greedy versions of ADMM use 120 iterations for the inner
loop to update image pixels: (a) MAE and (b) cost function.

strategy. ADMM-EM-120 exhibits the fastest convergence
rate; however, it is only slightly superior to ADMM-CG-120.
ADMM-PL-120 and ADMM-EM-1 present similar curves. In
conclusion, ADMM-EM-120 and ADMM-CG-120 perform
better than ADMM-PL-120 and ADMM-EM-1 when only
judging these curves, but eventually, all algorithms will
approach the same target with increasing iteration numbers.

Note that ADMM-EM has been proven in theory to
converge to a unique global solution of the corresponding
subproblem with a greedy 𝑋-update. This means that when
ignoring rounding error, our algorithm can arrive at any
desired accuracy given a large enough iteration count. Thus,
in these experiments, ADMM-PL and ADMM-CG will also
converge to that solution if they are indeed convergent.
However, to date, there is no evidence to show the conver-
gence when negative values are truncated during the iteration
process.

Table 1 presents the comparison of algorithmic perfor-
mance, including MAE, cost function, contrast, variability,
running time (second), and computational complexity. We
only compare the greedy versions of ADMM-PL, ADMM-
CG, and ADMM-EMwith the simplified version of ADMM-
EM because the simplified versions of ADMM-PL and
ADMM-CG failed to obtain an acceptable image. Our find-
ings show that either the greedy or simplified version of
ADMM-EM always provides the best results. In addition, the
greedy versions of ADMM with 𝑋-update by PL, CG, and
EM impose a similar time cost and have the same computa-
tional complexity, but the simplified version of ADMM-EM
requires the least number of iterations.

Figure 5 differs from Figure 4 because the former fixes the
number of inner iterations and the latter fixes the number
of outer iterations. This figure also presents a comparison
of MAE curves and cost function. As shown, ADMM-EM
always presents the best result, ADMM-CG provides the next

best result, and ADMM-PL shows the worst result; however,
all of them will be consistent after sufficient inner iterations.
We can also observe that ADMM-EM’s result does not
actually depend on the number of inner iterations, which
demonstrates a clear advantage of the simplified version over
the other two.

The above experiments provide a comparison while
fixing the number of outer or inner iterations. In practical
applications, we generally do not require this many iterations
to obtain an acceptable image. In Table 2, (26) will be used
as a stopping condition for both cases; then, we obtain the
acceptable images with 𝜖 = 10−8. As shown, when fixing the
number of inner iterations, the greedy ADMM-EM requires
a lower number of outer iterations, whereas the simplified
ADMM-EM requires more outer iterations. When fixing the
outer iteration count, ADMM-EM still requires the lowest
number of inner iterations, while ADMM-PL requires the
most.

Table 3 also presents a comparison of algorithmic perfor-
mance; however, the number of inner and outer iterations
use those suggested by Table 2 to meet the stop rule 𝜖 =10−8. ADMM-EM-68-11 is also included in the comparison.
All presets present comparable evaluation parameters, but
the simplified ADMM-EM requires very little running time
and computational complexity. We observe that either the
greedy or simplified version of ADMM-EM still provides
the best results. In addition, the greedy version of ADMM-
PL requires the largest amount of time and computational
cost. The greedy versions of ADMM-EM and ADMM-CG
have a similar computational cost, but the simplified version
of ADMM-EM requires less computational cost. In fact,
ADMM-EM-256-1 consumes 42.98% of the running time
of ADMM-CG-71-11 and 9.37% of that of ADMM-PL-292-
20, which corresponds to 32.78% and 4.38% of computation
complexity, respectively.
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Table 1: Algorithmic performance including mean absolute error (MAE), cost function (Fun.), contrast (LC and HC denote that of low and
high ROI, resp.), variability (Var.), running time (Time, units of seconds), and computational complexity (Comp.), in which we use [ ] to
represent the best value. All experiments are executed twenty times to obtain an average value.

ADMM- MAE Fun. (106) LC (%) HC (%) Var. (%) Time Comp.
PL-50-10 82.40 44.55 71.74 33.85 12.56 6.64 500
CG-50-10 16.00 7.70 97.48 78.06 11.26 10.79 500
EM-50-10 [13.73] [7.67] 98.33 [83.44] [10.91] 6.71 500
EM-50-1 25.69 8.24 [98.54] 74.93 13.66 [1.37] [50]
PL-100-20 42.88 12.21 89.98 48.17 15.62 25.35 2000
CG-100-20 14.26 [7.66] 98.01 83.18 10.73 33.56 2000
EM-100-20 [13.12] [7.66] 98.15 [84.09] [10.69] 25.27 2000
EM-100-1 18.98 7.84 [98.61] 81.17 12.27 [2.73] [100]
PL-200-40 20.47 7.99 96.74 68.93 12.65 99.47 8000
CG-200-40 14.22 7.65 98.24 83.82 10.73 115.17 8000
EM-200-40 [13.03] [7.64] 98.32 [84.35] [10.68] 97.62 8000
EM-200-1 15.30 7.69 [98.63] 83.77 11.34 [5.42] [200]
PL-300-80 14.43 7.68 97.98 81.03 11.13 295.93 24000
CG-300-80 14.20 7.65 98.24 84.30 10.69 318.08 24000
EM-300-80 [12.96] [7.64] 98.31 [84.78] [10.64] 288.76 24000
EM-300-1 14.23 7.68 [98.54] 84.66 11.02 [8.14] [300]
PL-400-120 13.23 7.65 98.26 83.85 10.87 590.77 48000
CG-400-120 14.23 [7.64] 98.19 83.84 10.82 617.80 48000
EM-400-120 [13.05] [7.64] 98.26 84.28 [10.78] 615.27 48000
EM-400-1 13.15 7.66 [98.42] [84.30] 10.88 [10.84] [400]

Table 2: Inner and outer iteration numbers to meet 𝜖 = 10−8 in
(26). For Case 1, we fix 120 inner iterations for the greedy ADMM
algorithms; for Case 2, we fix 400 outer iterations.
Algorithm Iteration number
Case 1: given inner iteration number Outer iteration number
ADMM-PL-120 292
ADMM-CG-120 71
ADMM-EM-120 68
ADMM-EM-1 256
Case 2: given outer iteration number Inner iteration number
ADMM-PL-400 20
ADMM-CG-400 11
ADMM-EM-400 1

4.2. PET Clinical Data. Real clinical brain projections, which
were obtained using Positron’s mPower scanner with 10𝜇Ci
FDG preinjected into a patient, were also used for evaluation
purposes. The acquisition lasted for 10 minutes, and 700M
counts in 61 slices were obtained. The normalization was
performed by measurements obtained from a calibration
scan with a 1 𝜇Ci Ge68 rotating rod source. The attenuation
coefficients of the attenuation media were computed from a
transmission scan of a 5 𝜇Ci Ge68 rod source. The raw data
were 128 radial bins and 128 angles (bin size 4mm), which
are shown in Figure 6. The ADMM-type algorithms with(𝛽, 𝜌) = (10−2, 10−4) obtain the best reconstruction as above,

which we also use on the real clinical data. We also executed
the proposed iteration numbers in Table 3 for the algorithms.

Figure 7 shows the reconstructions of the patient’s projec-
tion data. For real clinical data, it is difficult to quantitatively
evaluate the algorithms. The reconstructed grid is 128 × 128,
with 4mmpixels.This figure illustrates that the two proposed
algorithms produce sharper imageswith greater contrast than
those achieved with other algorithms. Moreover, PL-292-20
and CG-71-11 do not clearly resolve the ellipse. Among them,
PL-292-20 results in a seriously degraded image, where the
boundaries of the different regions are obscure. The large
difference is due to the lower number of iterations. These
experimental results further demonstrate that ADMM-EM
leads to a superior result than the others by providing a fast
convergence.

From the derivation of the proposed method, we make
the following observation: the EM-type 𝑋-update ensures
that the cost function decreases at each iteration. However,
it is difficult for the other algorithms to meet this condition,
particularly for lower numbers of iterations. Thus, ADMM-
EM with one inner loop can achieve a good result. Certainly,
while running many inner loops, all of the algorithms will
converge to the same solution; thus, they present some similar
images.

5. Conclusion

We present a special application of ADMM to PET image
reconstruction. Specifically, a new update rule is developed
to iteratively update the pixel values, which exhibits desirable
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Figure 5: MAE and cost function versus the number of inner loops, where the number of outer loops is fixed to 400 for a sufficient
convergence: (a) MAE and (b) cost function. Note that the samples of the iteration number of inner loop are collected every 3 iterations
during the experiment.

Table 3: Comparison of algorithmic performance similar to Table 1. We still use [ ] to represent the best value, and all experiments are still
executed twenty times to obtain an average value. Note that ADMM-EM-68-11 uses the same inner iteration count as ADMM-CG.

ADMM- MAE Fun. (106) LC (%) HC (%) Var. (%) Time Comp.
PL-292-20 23.31 8.31 96.11 64.37 13.25 74.17 5840
CG-71-11 14.73 7.70 97.85 81.21 10.78 16.17 781
EM-68-11 [13.21] [7.67] 98.42 [84.52] [10.61] 9.94 748
EM-256-1 14.45 7.68 [98.62] 84.33 11.00 [6.95] [256]

Figure 6: Real clinical brain projections with 128 bins and 128 angles
that are acquired from a mPower scanner.

properties, including monotonic decrease of the cost func-
tion, self-constraining to the feasible region, and no need to
impose a step size. Such properties allow us to implement
a simplified version of ADMM, requiring considerably less

time and computational overhead. We provide a rigorous
theoretical global convergence proof for the update step.
The simulation results demonstrate that the proposed greedy
algorithm provides a stabler and faster convergence with
similar computational cost as ADMM-PL and ADMM-
CG. The results also indicate that the proposed simplified
algorithm obtains a similar image quality while imposing
lower computational costs.

For our simplified algorithm, a theoretical convergence
proof cannot be provided; rather, we use the experimental
method to demonstrate the convergence. Proving the conver-
gence for the simplified algorithm will be the focus of future
work.

Appendix

In theory, the Karush-Kuhn-Tucker (KKT) point will be a
global solution if the cost function is convex. It is easy to
see the convexity ofΦ(𝑋). ByTheorem 2.19 in [43], the KKT
conditions of (10) are as follows:

𝜕Φ (𝑋)𝜕𝑋𝑗 = 0 if 𝑋𝑗 > 0 (A.1)
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Figure 7: The reconstructed results of real clinical brain PET data are, respectively, obtained by (a) PL-292-20, (b) CG-71-11, (c) EM-68-11,
and (d) EM-256-1. Every result is scaled according to its own minimum and maximum.

𝜕Φ (𝑋)𝜕𝑋𝑗 ≥ 0 if 𝑋𝑗 = 0. (A.2)

In the following, we use a number of reasonable assump-
tions.

Assumption A.1. For the iteration sequence {𝑋𝑡}, we assume
that

(1) the algorithm starts from a positive image;
(2) (𝑃𝑇Σ𝑃)𝑗𝑗 > 0 for all 𝑗;
(3) Φ is a strictly convex function.

The first assumption forces the iterations to be positive,
but the limit may be zero.The second condition is reasonable
because (𝑃𝑇Σ𝑃)𝑗𝑗 = 0 suggests that 𝑃𝑖𝑗 = 0 for any 𝑖. Thus,
the equation 𝑌 = 𝑃𝑋 is irrelevant to 𝑋𝑗, and then 𝑋𝑗 in𝑋 is removable. For the third requirement, one of the main
reasons to add the regularization is to enforce the convexity.

First, we provide four useful lemmas.

Lemma A.2. The set of accumulation points of a bounded
sequence {𝑍𝑡} with {‖𝑍𝑡+1 − 𝑍𝑡‖} → 0 is connected and
compact.

Proof. See Theorem 28.1, Ostrowski [44].

Lemma A.3. The iteration sequence {𝑋𝑡} is bounded.
Proof. We have {𝑋𝑡} ⊂ {𝑋 : Φ(𝑋) ≤ Φ(𝑋0)} ⊂ {𝑋 :𝐹(𝑋) ≤ Φ(𝑋0)}; therefore, if 𝐹 has bounded level sets, {𝑋𝑡}
is bounded. The boundedness of the level sets of 𝐹 can be
proven by contradiction. Otherwise, for a given real value�̂�, there must exist a sequence {𝑍𝑡} that satisfies 𝐹(𝑍𝑡) ≤ �̂�
and an element {𝑍𝑡𝑗} that approaches +∞. Considering that
𝑃𝑖𝑗 ≥ 0 and ∑𝑁𝑖=1 𝑃2𝑖𝑗 > 0 (Assumption A.1) for all 𝑗, then it
implies that 𝐹(𝑍𝑡) → +∞, which is a contradiction.

Lemma A.4. The sequence {‖𝑋𝑡 − 𝑋𝑡+1‖} → 0. Furthermore,
if a subsequence {𝑋𝑡𝑠} → 𝑋∗, then {𝑋𝑡𝑠+1} → 𝑋∗ as well.
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Proof. (1) Take into account that

∇2𝑗𝑗𝜙 (𝑋 | 𝑋𝑡)
= 2[𝑃

𝑇Σ (𝑃𝑋𝑡 + 𝑆)]
𝑗𝑋𝑡𝑗

+ 2𝜌[[
[
[𝑅𝑇 (𝑅𝑋𝑡 + 𝐶)]

𝑗𝑋𝑡𝑗 + [�̂�
𝑇 (�̂�𝑋𝑡 + �̂�)]

𝑗𝑋𝑡𝑗
]]
]

≥ 2(𝑃
𝑇Σ𝑃𝑋𝑡)

𝑗𝑋𝑡𝑗 ≥ 2 (𝑃𝑇Σ𝑃)
𝑗𝑗
.

(A.3)

Let 𝛾 = min𝑗{(𝑃𝑇Σ𝑃)𝑗𝑗}. Since ∇𝜙(𝑋𝑡+1 | 𝑋𝑡) = 0, then
Φ(𝑋𝑡) − Φ (𝑋𝑡+1) ≥ 𝜙 (𝑋𝑡 | 𝑋𝑡) − 𝜙 (𝑋𝑡+1 | 𝑋𝑡)
= 12 (𝑋𝑡 − 𝑋𝑡+1)𝑇 ∇2𝜙 (𝑋𝑡+1 | 𝑋𝑡) (𝑋𝑡 − 𝑋𝑡+1)
≥ 𝛾 𝑋𝑡 − 𝑋𝑡+12 .

(A.4)

Because {Φ(𝑋𝑡)} monotonically decreases and it is bounded
from below, then {Φ(𝑋𝑡) − Φ(𝑋𝑡+1)} → 0; thus, {‖𝑋𝑡 −𝑋𝑡+1‖} → 0.

(2) By contradiction, if {𝑋𝑡𝑠+1} diverges, then it must
have a convergent subsequence {𝑋𝑡𝑠𝑠+1} → 𝑋∗∗ ̸= 𝑋∗
because of the boundedness by Lemma A.3. Let 𝜖0 = ‖𝑋∗ −𝑋∗∗‖ > 0. Consider the two convergent subsequences {𝑋𝑡𝑠𝑠}
and {𝑋𝑡𝑠𝑠+1}; then, there must be a positive integer 𝑇 to make‖𝑋𝑡𝑠𝑠 −𝑋∗‖ < 𝜖0/4 and ‖𝑋𝑡𝑠𝑠+1−𝑋∗∗‖ < 𝜖0/4when 𝑡𝑠𝑠 > 𝑇. By
the triangle inequality, we can obtain the contradictive result
to {‖𝑋𝑡 − 𝑋𝑡+1‖} → 0 as

𝑋𝑡𝑠𝑠 − 𝑋𝑡𝑠𝑠+1 + 𝑋𝑡𝑠𝑠 − 𝑋∗ + 𝑋𝑡𝑠𝑠+1 − 𝑋∗∗
≥ 𝑋∗ − 𝑋∗∗ ⇒𝑋𝑡𝑠𝑠 − 𝑋𝑡𝑠𝑠+1 > 𝜖02 .

(A.5)

Lemma A.5. At each iteration, one knows that

𝑋𝑡+1𝑗 = 𝑋𝑡𝑗 − 𝛼𝑗 [∇Φ (𝑋𝑡)]𝑗 ,
where 𝛼𝑗 = 𝑋𝑡𝑗2 (𝐴3)𝑗 + 2𝜌 (𝐴4)𝑗 .

(A.6)

The derivation process is omitted due to its simplicity.
By the three theorems below, the global convergence will be
proven.

Theorem A.6. Let {𝑋𝑡𝑠} → 𝑋∗ be any convergent subse-
quence; then𝑋∗ meets the first KKT condition (A.1).

Proof. When𝑋∗𝑗 > 0, by (21), it can be verified that

𝜕𝑓 (𝑋 | 𝑋∗)
𝜕𝑋𝑗

𝑋∗ = 2 [𝑃
𝑇 (𝑃𝑋∗ − 𝑌 + 𝑆)]

𝑗

𝜕𝑔 (𝑋 | 𝑋∗)
𝜕𝑋𝑗

𝑋∗ = 2𝑅
𝑇 (𝑅𝑋∗ + 𝐶)

− 2𝑅𝑇 (�̂�𝑋∗ + �̂�)
𝜕̂̂𝑔 (𝑋 | 𝑋∗)

𝜕𝑋𝑗
𝑋∗ = 2�̂�

𝑇 (�̂�𝑋∗ + �̂�)
− 2�̂�𝑇 (𝑅𝑋∗ + 𝐶) .

(A.7)

Then 𝜕𝜙(𝑋 | 𝑋∗)/𝜕𝑋𝑗|𝑋∗ = 𝜕Φ(𝑋∗)/𝜕𝑋𝑗.
We consider that 𝜕𝜙(𝑋 | 𝑋𝑡𝑠)/𝜕𝑋𝑗|𝑋𝑡𝑠+1 = 0. Because{𝑋𝑡𝑠} → 𝑋∗ and {𝑋𝑡𝑠+1} → 𝑋∗ (Lemma A.4), then

𝜕𝜙 (𝑋| 𝑋∗)
𝜕𝑋𝑗

𝑋∗ = lim
𝑡𝑠→+∞

𝜕𝜙 (𝑋 | 𝑋𝑡𝑠)𝜕𝑋𝑗
𝑋𝑡𝑠+1 = 0. (A.8)

Theorem A.7. The entire sequence {𝑋𝑡} converges.
Proof. According to Lemmas A.2, A.3, and A.4, the set of
accumulation points of {𝑋𝑡} is connected and compact. If we
can prove that the number of accumulation points is finite,
then the desired result follows because a finite set can be
connected only if it consists of a single point [38].

To prove the existence of a finite number of accumulation
points, we consider any accumulation point 𝑋∗. Given an
integer set Ω = {1, 2, . . . , 𝑇}, where 𝑇 is the total number of
components of𝑋, thenΩ∗ = {𝑗 : 𝑋∗𝑗 = 0} is a subset ofΩ. LetΦΩ∗ be the restrictions of Φ to the set {𝑋 : 𝑋𝑗 = 0, 𝑗 ∈ Ω∗},
which is a strictly convex function of the reduced variables.
It follows that ΦΩ∗ has a unique minimum (Theorem A.6:𝜕Φ(𝑋∗)/𝜕𝑋𝑗 = 0 if 𝑋∗𝑗 > 0). It means that an accumulation
point must correspond to a subset of Ω. The number of
subsets ofΩ is finite; thus, the number of accumulation points
is also finite.

In Theorem A.6, we prove that every accumulation point
meets the first KKT condition, by which the full sequence
convergence is provided inTheorem A.7. Naturally, the limit
of {𝑋𝑡} satisfies the first KKT condition. In the following, we
will show that the second KKT condition is also satisfied.

Theorem A.8. The limit 𝑋∗ of {𝑋𝑡} meets the second KKT
condition (A.2).

Proof. When𝑋∗𝑗 = 0, by contradiction, we assume that there
is 𝑋∗𝑗 = 0 satisfying [∇Φ(𝑋∗)]𝑗 < 0. Since {𝑋𝑡} → 𝑋∗, there
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exists 𝜖 < 0 and a positive integerT such that [∇Φ(𝑋𝑡)]𝑗 < 𝜖
for 𝑡 > T; then

𝑋𝑡+1𝑗 − 𝑋𝑡𝑗 = −𝛼𝑗 [∇Φ (𝑋𝑡)]𝑗 > −𝛼𝑗𝜖 > 0
(by Lemma A.5) . (A.9)

Thus, we can obtain that𝑋𝑡+1𝑗 > 𝑋𝑡𝑗, which is a contradiction
to {𝑋𝑡𝑗} → 0.
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