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ABSTRACT
Recent reports using conventional Susceptible, Exposed, 
Infected and Removed models suggest that the next wave 
of the COVID-19 pandemic in the UK could overwhelm 
health services, with fatalities exceeding the first wave. 
We used Bayesian model comparison to revisit these 
conclusions, allowing for heterogeneity of exposure, 
susceptibility and transmission. We used dynamic causal 
modelling to estimate the evidence for alternative models 
of daily cases and deaths from the USA, the UK, Brazil, 
Italy, France, Spain, Mexico, Belgium, Germany and 
Canada over the period 25 January 2020 to 15 June 
2020. These data were used to estimate the proportions 
of people (i) not exposed to the virus, (ii) not susceptible 
to infection when exposed and (iii) not infectious when 
susceptible to infection. Bayesian model comparison 
furnished overwhelming evidence for heterogeneity of 
exposure, susceptibility and transmission. Furthermore, 
both lockdown and the build- up of population immunity 
contributed to viral transmission in all but one country. 
Small variations in heterogeneity were sufficient to explain 
large differences in mortality rates. The best model of UK 
data predicts a second surge of fatalities will be much less 
than the first peak. The size of the second wave depends 
sensitively on the loss of immunity and the efficacy of 
Find- Test- Trace- Isolate- Support programmes. In summary, 
accounting for heterogeneity of exposure, susceptibility 
and transmission suggests that the next wave of the SARS- 
CoV-2 pandemic will be much smaller than conventional 
models predict, with less economic and health 
disruption. This heterogeneity means that seroprevalence 
underestimates effective herd immunity and, crucially, the 
potential of public health programmes.

INTRODUCTION
The UK has suffered one of the highest death 
rates in the world from SARS- CoV-2. Three 
recent analyses project an even larger second 
wave of infections—with the UK facing an 
overwhelmed health service and death rates 
far higher than the first wave, unless a series 
of national lockdowns are enforced.1 2 Okell 
et al (ibid) suggest that ‘the epidemic is still 
at a relatively early stage and that a large 
proportion of the population therefore 
remain susceptible’. The Academy of Medical 
Science report (Government Publications: 
research and analysis: COVID-19: preparing 

for a challenging winter 2020/21, 7 July 
2020 (Paper prepared by the Academy of 
Medical Sciences) https:// acmedsci. ac. uk/ 
file- download/ 51353957) suggested a peak 
in hospital admissions and deaths in January/
February 2021 with estimates of 119 900 (95% 
CI 24 500 to 251 000) hospital deaths between 
September 2020 and June 2021—double the 
number that occurred during the first wave 
in the spring of 2020. Davies et al1 project a 
median unmitigated burden of 23 million 
(95% CI 13 to 30 million) clinical cases and 
350 000 deaths (95% CI 170 000 to 480 000) 
due to COVID-19 in the UK by December 
2021, with only national lockdowns capable 
of bringing the reproductive ratio near or 
below one. These kinds of projections have 
profound consequences for the national 
economy and the resulting health impacts of 
recession and unemployment.

This article challenges these projections 
and, in particular, the underlying assumptions 
that the risk of infection is homogeneous 

Summary box

 ► Hundreds of modelling papers have been published 
recently, offering predictions and projections of the 
current coronavirus outbreak; these range from 
peer- reviewed publications to rapid reports from 
learned societies.

 ► Many, if not most, of these modelling initiatives com-
mit to a particular kind of epidemiological model that 
precludes heterogeneity in viral exposure, suscepti-
bility and transmission.

 ► The ensuing projections can be fantastic in terms of 
fatalities and ensuing public health responses.

 ► This study revisits the evidence for conventional ep-
idemiological modelling assumptions using dynamic 
causal modelling and Bayesian model comparison.

 ► It provides overwhelming evidence for heterogeneity, 
and the interaction between lockdown and herd im-
munity in suppressing viral transmission.

 ► Heterogeneity of this sort means that low seropreva-
lence (<20%) is consistent with levels of population 
immunity that play a substantive role in attenuating 
viral transmission and, crucially, facilitating public 
health measures.

http://gh.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjgh-2020-003978&domain=pdf&date_stamp=2020-11-14
http://orcid.org/0000-0001-7984-8909
https://acmedsci.ac.uk/file-download/51353957
https://acmedsci.ac.uk/file-download/51353957
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within the population. The role of pre- existing immunity, 
host genetics and overdispersion in nuancing viral trans-
mission—and explaining the course of the pandemic in 
light of unlocking—calls for a more careful quantitative 
analysis.3–6 The role of heterogeneity in exposure, suscep-
tibility and transmission is receiving more attention, espe-
cially in relation to the build- up of herd immunity.7 8 This 
article illustrates a formal approach to epidemiological 
modelling that may help resolve some prescient issues.

The pessimistic projections above consider two principal 
mechanisms that underlie the mitigation—and possible 
suppression—of the ongoing coronavirus epidemic: (i) a 
reduction in viral transmission due to lockdown and social 
distancing measures, and (ii) a build- up of population or 
herd immunity. Herd immunity can be read as the popu-
lation immunity that is required to attenuate community 
transmission. For example, Okell et al (ibid) review three 
lines of argument and conclude that herd immunity is 
unlikely to explain differences in mortality rates across 
countries, thereby placing a strategic emphasis on lock-
down to preclude a rebound of infections. This is in 
contrast with a herd immunity scenario, whereby immu-
nity in the population will reduce transmission to pre- 
empt a second wave.5 8–10

We use their analyses as a vehicle to question the 
validity of projections based on conventional (Suscep-
tible, Exposed, Infected and Removed (SEIR)) model-
ling assumptions. In particular, we deconstruct their 
arguments to show that the empirical observations they 
draw on are consistent with herd immunity. Further-
more, public health responses and herd immunity are 
not mutually exclusive explanations for mortality rates, 
they both contribute to the epidemiological process and 
contextualise each other in potentially important ways. In 
turn, this has implications for the timing of interventions 
such as lockdown and Find- Test- Trace- Isolate- Support 
(FTTIS). More generally, we question the commitment 
to conventional epidemiological models that have not 
been subject to proper model comparison.

DYNAMIC CAUSAL MODELLING
Dynamic causal modelling (DCM) is the application of 
variational Bayes to estimate the parameters of state- 
space models and, crucially, the evidence for alterna-
tive models of the same data.11 It was developed to 
model interactions among neuronal populations and 
has been used subsequently in radar, medical nosology 
and recently epidemiology.11–15 Variational Bayes is also 
known as approximate Bayesian inference and is computa-
tionally more efficient than Bayesian techniques based 
on sampling procedures (eg, approximate Bayesian compu-
tation), which predominate in epidemiological model-
ling.16–18 The particular dynamic causal model used here 
embeds an SEIR model of immune status into a model 
that includes all latent factors generating data; namely, 
location, infection symptom and testing status. Please see 
the foundational paper for structural details of the model 

used in this paper15 and the generic (variational Laplace) 
scheme used to estimate model parameters and evidence.

DCM differs from conventional epidemiological 
modelling in that it uses mean field approximations and 
standard variational procedures to model the evolution 
of probability densities.16 This contrasts with epidemi-
ological modelling that generally uses stochastic real-
isations of epidemiological dynamics to approximate 
probability densities with sample densities.17 19–21 One 
advantage of variational procedures is that they are 
orders of magnitude more efficient, enabling end- to- end 
model inversion or fitting within minutes (on a laptop) 
as opposed to hours or days (on a supercomputer).17 
More importantly, variational procedures provide an effi-
cient way of assessing the quality of one model relative 
to another, in terms of model evidence (a.k.a., marginal 
likelihood).22 This enables one to compare different 
models using Bayesian model comparison (a.k.a. struc-
ture learning) and use the best model for nowcasting, 
forecasting or, indeed, test competing hypotheses about 
viral transmission.

More generally, Bayesian model comparison plays a 
central role in testing hypotheses given (often sparse 
or noisy) data. It eschews intuitive assumptions, about 
whether there are sufficient data to test this or that, by 
evaluating the evidence for competing hypotheses or 
models. If there is sufficient information in the data to 
disambiguate between two hypotheses, the difference 
in log- evidence will enable one to confidently assert 
one model is more likely than the other. Note that this 
automatically ensures that the model is identifiable, in 
relation to the model parameters or prior assumptions 
in question.

Dynamic causal models can be extended to generate 
any kind of epidemiological data at hand: for example, 
the number of positive antigen tests. This requires careful 
consideration of how positive tests are generated, by model-
ling latent variables such as the bias towards testing people 
with or without infection or, indeed, the time- dependent 
capacity for testing. In short, everything that matters—in 
terms of the latent (hidden) causes of the data—can be 
installed in the model, including lockdown, self- isolation 
and other processes that underwrite viral transmission. 
Model comparison can then be used to assess whether 
the effect of a latent cause is needed to explain the data—
by withdrawing the effect and seeing if model evidence 
increases or decreases. Here, we leverage the efficiency of 
DCM to evaluate the evidence for a series of models that 
are distinguished by heterogeneity or variability in the way 
that populations respond to an epidemic. The dynamic 
causal model used for the analyses below is summarised in 
terms of its structure (figure 1) and parameters (table 1).

Parameters and priors
The prior expectations in table 1 should be read as the 
effective rates and time constants as they manifest in a 
real- world setting.23–28 The incubation period refers to 
the time constant corresponding to the rate at which 
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one becomes symptomatic if infected—it does not refer 
to the period one is infected prior to developing symp-
toms. For example, early evidence indicates that by 14 
days, approximately 95% of presymptomatic periods 
will be over.29 30 The priors for the non- susceptible and 

non- infectious proportion of the population are based 
on clinical and serological studies reported over the past 
few weeks.31 32 Please see the code base for a detailed 
explanation of the role of these parameters in transi-
tion probabilities among states. Although the (scale) 

Figure 1 A location, infection, symptom and testing (LIST) model. This schematic summarises a LIST model used for the 
accompanying analyses. This model is formally equivalent to the model by Friston et al.56 It includes a state (isolated) to model 
people who have yet to be exposed to the virus or are shielding because they think they may be infectious (within their home 
or elsewhere). It also includes a (seronegative) state to model individuals who have pre- existing immunity, for example, via 
cross- reactivity38 39 or other protective host factors.41 42 This absorbing state plays the role of the recovered or removed states 
of Susceptible, Exposed, Infected and Removed (SEIR) models—once entered, people stay in this state for the duration of 
the outbreak. One can leave any of the remaining states. For example, one occupies the deceased state for a day and then 
moves to healthy on the following day. Similarly, one occupies the state of testing positive or negative for a day, and then 
moves to the untested state the following day. This enables the occupancy of various states to be quantified in terms of daily 
rates. The discs represent the four factors of the model, and the segments correspond to their states (ie, compartments). The 
green disc is the closest to a conventional (ie, SEIR) model that is embedded within three other factors. The states within any 
factor are mutually exclusive. In other words, every individual has to be in one state associated with four factors. The orange 
boxes represent the observable outputs that are generated by this model, in this instance, daily reports of positive tests and 
deaths. The rate of transition between states—or the dwell time within any state—rests on the model parameters that, in some 
instances, can be specified with fairly precise prior densities—listed in table 1.
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parameters are implemented as probabilities or rates, 
they are estimated as log scale parameters, denoted by 
 ϑ = lnθ . Note that the priors are over log scale parame-
ters and are therefore mildly informative. For example, 
a prior variance of 1/256 corresponds to a prior SD of 
1/16. This means that the parameter in question can, 
a priori, vary by a factor of about 30%. Parameters 
with a variance of one can be regarded as essentially 
free parameters (that can vary over several orders of 

magnitude), for example, the effective population size, 
which is roughly the size of a large city. The default 
priors used for the current analyses are also listed in 
spm_COVID_priors.m (https://www. fil. ion. ucl. ac. uk/ 
spm/ covid- 19/) and can be optimised using Bayesian 
model comparison (by comparing the evidence with 
models that have greater or lesser shrinkage priors).15

Notice that this model is more nuanced than most 
conventional epidemiological models. For example, 

Table 1 Parameters of the epidemic (LIST) model and priors: N
(
η,C

)
 

Number Parameter Mean Variance Description

1  θn 4 1 Number of initial cases

2  θr 1/2 1/256 Proportion of non- susceptible cases

3  θN 8 1 Effective population size (millions)

Location   

4  θout 1/3 1/256 Probability of going out

5  θsde 1/32 1/256 Social distancing threshold

6  θcap 16/100 000 1/256 Critical care capacity threshold (per capita)

Infection   

7  θres 1/2 1/256 Proportion of non- infectious cases

8  θRin 4 1/16 Effective number of contacts: home

9  θRou 48 1/16 Effective number of contacts: work

10  θtrn 1/3 1/16 Transmission strength

11

 
θinf = exp

(
− 1

τinf

)
 

 τinf = 4 1/256 Infected period (days)

12

 
θcon = exp

(
− 1

τcon

)
 

 τcon = 4 1/256 Infectious period (days)

13

 
θimm = exp

(
− 1

τimm

)
 

 τimm = 1: 32 1/512 Seropositive period (months)

Symptoms   

14

 
1− θdev = exp

(
− 1

τinc

)
 

 τinc = 16 1/256 Incubation period (days)

15  θsev 1/32 1/256 Probability of severe symptoms (eg, ARDS)

16

 
θsym = exp

(
− 1

τsym

)
 

 τsym = 8 1/256 Symptomatic period (days)

17

 
θrds = exp

(
− 1

τrds

)
 

 τrds = 10 1/256 ARDS period (days)

18  θfat 1/2 1/256 ARDS fatality rate: hospital

19  θsur 1/8 1/256 ARDS fatality rate: home

Testing   

20  θttt 1/10 000 1 Efficacy of tracking and tracing

21  θlat 2 1 Latency of enhanced testing (months)

22  θsus 4/10 000 1/256 Enhanced testing

23  θbas 4/10 000 1/256 Baseline testing

24  θtes 8 1/16 Selectivity of testing infected people

25

 
θdel = exp

(
− 1

τdel

)
 

 τdel = 2 1/256 Delay in reporting test results (days)

(NB: prior means are for scale parameters  θ = exp
(
ϑ
)
 .

ARDS, acute respiratory distress syndrome; LIST, location, infection, symptom and testing.

https://www.fil.ion.ucl.ac.uk/spm/covid-19/
https://www.fil.ion.ucl.ac.uk/spm/covid-19/
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immunity and testing are separate factors. This means 
that we have not simply added an observation model to 
an SEIR- like model; rather, testing now becomes a latent 
factor that can influence other factors (eg, the loca-
tion factor via social distancing). Furthermore, there 
is a difference between the latent testing state and the 
reported number of new cases—that depends on sensi-
tivity and specificity, via thresholds used for reporting.33 
Separating the infection and symptom factors allows 
the model to accommodate asymptomatic infection34: 
to move from an asymptomatic to a symptomatic state 
depends on whether one is infected but moving from 
an infected to an infectious state does not depend on 
whether one is symptomatic. Furthermore, it allows for 
viral transmission prior to symptom onset.35 36

This particular dynamic causal model accommodates 
heterogeneity at three levels that can have a substantive 
effect on epidemiological trajectories. These effects are 
variously described in terms of overdispersion, super- 
spreading and amplification events.4 6 37 In the current 

model, heterogeneity was modelled in terms of three 
bipartitions (summarised in figure 2).

Heterogeneity in exposure
This was modelled in terms of an effective population 
size that is less than the total (census) population. The 
effective population comprises individuals who are in 
contact with other infected individuals. The remainder 
of the population are assumed to be geographically 
sequestered from a regional outbreak or are shielded 
from it. For example, if the population of the UK 
was 68 million, and the effective population was 39 
million, then only 57% are considered to participate 
in the outbreak. Of this effective population, a certain 
proportion are susceptible to infection.

Heterogeneity in susceptibility
This was modelled in terms of a portion of the effec-
tive population that are not susceptible to infection. 
For example, they may have pre- existing immunity via 
cross- reactivity38–40 or particular host factors41 42 such 
as mucosal immunity.43 This non- susceptible propor-
tion is assigned to the seronegative state at the start of 
the outbreak. Of the remaining susceptible people, a 
certain proportion can transmit the virus to others.

Heterogeneity in transmission
We modelled heterogeneity in transmission with a free 
parameter (with a prior of one half and a prior SD of 
1/16). This parameter corresponds to the proportion 
of susceptible people who are unlikely to transmit the 
virus, that is, individuals who move directly from a state 
of being infected to a seronegative state (as opposed to 
moving to a seropositive state after a period of being infec-
tious). We associated this transition with a mild infec-
tion44 that does not entail seroconversion, for example, 
recovery in terms of T- cell- mediated responses.39 41 In 
short, the seronegative state plays the role of a seropositive 
state of immunity for people who never become infec-
tious, either because they are not susceptible to infec-
tion or have a mild infection (with or without symp-
toms, eg, children).

Modelling heterogeneity of susceptibility in terms 
of susceptible and non- susceptible individuals can 
be read as modelling the difference between old 
(susceptible) and young (non- susceptible) people.24 
However, in contrast to models with age- stratification, 
the current model does not consider different contact 
rates between different strata (eg, contact matrices). 
Instead, we finesse this limitation with location- specific 
contact rates—parameterised by the number of people 
one is exposed to in different locations. Although full 
stratification is straightforward to implement (please 
see DEM_COVID_I.m for a Matlab demonstration that 
can be read as pseudocode), this simplified model of 
heterogeneity is sufficient to make definitive inferences 
about the joint contribution of lockdown and popula-
tion immunity to viral transmission.

Figure 2 Heterogeneity of exposure, susceptibility and 
transmission. Upper panel: this schematic illustrates the 
composition of a population in terms of a proportion that is 
not exposed to the virus, a proportion that is not susceptible 
when exposed and a further proportion of susceptible 
people who cannot transmit the virus. These proportions 
are unknown but can be estimated from the data. Lower 
panel: this schematic illustrates the parameterisation of 
heterogeneity in terms of the parameters in table 1.
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The prior means of non- susceptible and non- 
infectious people of 50% was chosen on the basis of 
secondary attack rates in well- defined cohorts.34 45 
A prior variance of 1/256 corresponds to a range of 
between 42% and 58% (99% CI). Note that these priors 
are just constraints (that are also used as starting 
estimates). The posterior estimate can be markedly 
different from the prior if the data are sufficiently 
informative.

This kind of model is sufficiently expressive to 
reconcile the apparent disparity between morbidity/
mortality rates and low seroprevalence observed 
empirically31 (https://www. gov. uk/ government/ 
publications/ national- covid- 19- surveillance- reports/ 
sero- surveillance- of- covid- 19). We will see below that 
Bayesian model comparison suggests there is very 
strong evidence46 for all three types of heterogeneity.

Given a suitable dynamic causal model one can use 
standard variational techniques to fit the empirical data 
and estimate model parameters. Having estimated the 
requisite model parameters, one can then reconstitute 
the most likely trajectories of latent states: namely, the 
probability of being in different locations, states of 
infection, symptom and testing states. An example is 
provided in figure 3 using daily cases and death- by- date 
data from the UK from 30 January 2020 to 1 September 
2020.

Patients and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of this 
research.

Having briefly established the form and nature of the 
quantitative modelling, we now apply it to daily reports 
of new cases and deaths from several countries. Our 
focus is not on the detailed structure of the model. 
Rather, we use the model to illustrate how Bayesian 
model comparison can be used to test some assump-
tions that underwrite conventional models. In this 
setting, we frame the results in the form of a commen-
tary and restrict the analysis to data available at the time 
the above reports were published (ie, from 25 January 
2020 to 15 June 2021).

HETEROGENEITY IN EXPOSURE, SUSCEPTIBILITY AND 
TRANSMISSION
In what follows, we use DCM to revisit some assump-
tions implicit in conventional epidemiological model-
ling. We follow the three lines of arguments rehearsed 
in Okell et al (ibid). The first can be summarised as: 
under herd immunity the cumulative mortality rate per million 
of the population should plateau at roughly the same level in 
different countries.

This is true if, and only if, the same proportion of 
the population can transmit the virus. In other words, a 
plateau to endemic equilibrium—based on the removal 
of susceptible people from the population—only 

requires people are susceptible to infection to be 
immune. If this proportion depends on the composition 
of a country’s population (ie, demography), mortality 
rates could differ from country to country. This can be 
illustrated by using models with heterogeneous popu-
lation structures, of the sort summarised in figure 2. 
Figure 4 shows the data and ensuing predictions for 
10 countries, using the format of Okell et al.2 These 
countries were chosen because, at time of writing, they 
had a well- defined first peak in conjunction with a high 
fatality rate, in relation to other countries.

Heterogeneity of transmission may be particularly 
important here.3 This is sometimes framed in terms 
of overdispersion or the notion of superspreading and 
amplification events.4 6 37 For example, if only 20% of 
the population were able to develop a sufficient viral 
load to infect others, then protective immunity in this 
subpopulation would be sufficient for an innocuous 
endemic equilibrium.47 Furthermore, if seroconver-
sion occurs largely in the subpopulation spreading the 
virus,48 a sufficient herd immunity may only require a 
seroprevalence of around 10% of the effective popu-
lation (right panel of figure 4). In short, one might 
challenge the assumption that COVID-19 is spread 
homogeneously across the population. Indeed, hetero-
geneity is becoming increasingly evident in high- risk 
settings, and in the variation in the period of infectivity 
across ages.

This begs the question: is there evidence for hetero-
geneity in the dispersion of SARS- CoV-2? And, if so, 
does this heterogeneity vary from country to country? 
Figure 5 answers this question using Bayesian model 
comparison. It shows—under the models in question—
there is overwhelming evidence for heterogeneity of 
exposure, susceptibility and transmission. And that 
a substantial proportion of each country’s popula-
tion does not contribute to viral transmission. These 
proportions vary from country to country, leading to 
the differential mortality rates as shown in figure 4.

In general, the effective population is roughly half of 
the census population, with some variation over coun-
tries. The non- susceptible and non- infectious propor-
tions are roughly half of the effective and susceptible 
populations, respectively—varying between 45% and 
65%. This variation underwrites the differences in 
fatality rates in figure 4. It could be argued that the 
estimates of the proportion of non- susceptible indi-
viduals is at odds with empirical data from contained 
outbreaks. For example, on the aircraft carrier Charles 
de Gaulle, about 70% of sailors were infected (https:// 
en. wikipedia. org/ wiki/ COVID- 19_ pandemic_ on_ 
Charles_ de_ Gaulle). However, this argument overlooks 
the contribution of heterogeneity: there were no chil-
dren on the Charles de Gaulle.

Okell et al (ibid) wrote: ‘If acquisition of herd immu-
nity was responsible for the drop in incidence in all 
countries, then disease exposure, susceptibility, or 
severity would need to be extremely different between 

https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
https://en.wikipedia.org/wiki/COVID-19_pandemic_on_Charles_de_Gaulle
https://en.wikipedia.org/wiki/COVID-19_pandemic_on_Charles_de_Gaulle
https://en.wikipedia.org/wiki/COVID-19_pandemic_on_Charles_de_Gaulle
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Figure 3 Latent causes. This figure illustrates posterior predictions of the most likely latent states for the UK. Here, the 
outcomes in the upper two panels (dots) are supplemented with the underlying latent causes or expected states in the lower 
four panels (the first state in each factor has been omitted for clarity, ie, home, susceptible, healthy and untested). These 
latent or expected states generate the observable outcomes in the upper two panels. The solid lines are colour- coded and 
correspond to the states of the four factors in figure 2. For example, under the location factor, the probability of being found at 
in a high- risk location (work: blue line) rises at the onset of the outbreak, falls during lockdown and then slowly recovers during 
unlocking. At the same time, the proportion of the population who are not exposed to the virus (removed: yellow line) falls, as 
the exposed proportion increases to the effective population size. During lockdown, the probability of isolating oneself rises to 
about 3% during the peak of the pandemic (isolated: purple line). After about 6 weeks, lockdown starts to relax and slowly tails 
off, with accompanying falls in morbidity (in terms of symptoms: blue line in the symptom panel) and mortality (in terms of death 
rate). Note that seroprevalence (AB +ve: yellow line in the infection panel) peaks at about 50 weeks and then starts to decline. 
Please see software and data note for details about the model inversion and data used to prepare this figure—and figure 6 for 
CIs on fatality rates. (This figure can be reproduced automatically by invoking the Matlab routine DEM_COVID_COUNTRY.m).
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populations’. On the basis of the above quantitative 
modelling, this assumption transpires to be wrong: 
small variations in heterogeneity of exposure and 
susceptibility are sufficient to explain differences 
between countries. Our point here is that predicates or 
assumptions of this sort can be evaluated quantitatively 
in terms of model evidence.

DO COUNTRIES THAT WENT INTO LOCKDOWN EARLY 
EXPERIENCE FEWER DEATHS IN SUBSEQUENT WEEKS?
This is the second argument made by Okell et al (ibid) 
for the unique role of lockdown in mitigating fatalities: 
however, exactly the same correlation—between cumu-
lative deaths before and after lockdown—emerges 
under epidemiological models that entertain heteroge-
neity and herd immunity (see figure 4 (middle panel)). 
In short, had the authors tested the hypothesis that lock-
down or herd immunity were necessary to explain the 
data, they would have found very strong evidence for 
both—and may have concluded that lockdown nuances 
the emergence of herd immunity (see figure 5).

DOES A CORRELATION BETWEEN ANTIBODIES TO SARS-
COV-2 (IE, SEROPREVALENCE) AND COVID-19 MORTALITY 
RATES IMPLY A SIMILAR INFECTION FATALITY RATIO OVER 
COUNTRIES?
Conventional models generally assume this is the 
case.2 24 The problem with this assumption is that it 
precludes pre- existing immunity and loss of immunity 
(as in SEIR models).38 Population immunity could 
fall over a few months due to population flux and 
host factors, such as loss of neutralising antibodies.48 
This is important because it means that seropreva-
lence could fall slowly after the first wave of infection 

(indeed, empirical seroprevalence is not increasing 
and may be decreasing in the UK (https://www. ons. 
gov. uk/ peop lepo pula tion andc ommunity/ healthand-
socialcare/ cond itio nsan ddis eases/ bulletins/ coro navi 
rusc ovid 19in fect ions urve ypilot/ 18june2020# antibody- 
data). In turn, this produces a non- linear relationship 
between the prevalence of antibodies and cumulative 
deaths at the time seroprevalence is assessed. This is 
illustrated by the curvilinear relationships in the right 
panel of figure 4 (under a loss of seroprevalence with a 
time constant of 3 months). If one associates infection 
fatality ratio (IFR) with the slope of fatality rates—as 
a function of seroprevalence—then the IFR changes 
over time. In short, the IFR changes as the epidemic 
progresses, as the proportion of susceptible and trans-
mitting people falls, or those at highest risk succumb 
early in the pandemic. This begs the question: are 
quantities such as IFR fit for purpose when trying to 
model epidemiological dynamics?

WHAT IS THE IMPACT OF DIFFERENT RATES OF LOSS OF 
IMMUNITY?
So, what are the implications of heterogeneity for 
seroprevalence and a second wave? The Bayesian 
model comparisons in figure 5 speak to a mechanistic 
role for herd immunity in mitigating a rebound of 
infections. Note that this model predicts seropreva-
lences that are consistent with empirical community 
studies, without ever seeing these serological data (eg, in 
the UK if 11% of the effective population is seroposi-
tive and the effective population is 49% of the census 
population, we would expect 5.4% of people to have 
antibodies, which was the case at the time of anal-
ysis (https://www. gov. uk/ government/ publications/ 

Figure 4 This figure reproduces the quantitative results in the Okell et al (ibid). However, here, they are based on the 
predictions of a dynamic causal model of the epidemic in the 10 countries with the highest mortality on 15 June 2020. The 
left panel shows the cumulative deaths per million as a function of time to illustrate variation over countries. The middle panel 
plots the log deaths per million in the 6 weeks following lockdown against the corresponding mortality before lockdown. The 
right panel plots the estimated cumulative deaths against estimated seroprevalence in the effective population over a period 
of 180 days. Note that these graphics include both empirical data (dots and circles) and predictions (coloured lines) based on 
the parameter estimates of the dynamic causal modelling (CIs have been omitted for clarity). The predictions of seroprevalence 
are, in this example, based purely on new cases and deaths. Although it would be relatively straightforward to include empirical 
seroprevalence data in the dynamic causal modelling, we have presented the seroprevalence predictions to illustrate the 
predictive validity of the model—given that the predictions are in line with empirical reports (ie, between 5% and 20%).

https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/18june2020#antibody-data
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/18june2020#antibody-data
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/18june2020#antibody-data
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/18june2020#antibody-data
https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/coronaviruscovid19infectionsurveypilot/18june2020#antibody-data
https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
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Figure 5 Bayesian model comparison of dynamic causal models of the coronavirus outbreak in 10 countries with the greatest 
mortality rates. The upper panel shows the drop in log evidence when removing a component from the model. This reduction 
is known as log Bayes factor. For example, if the No build- up of herd immunity model for the UK has a log evidence of −54, 
then it is exp(54) times less likely than the full model that includes a build- up of immunity. By convention, a difference in log 
evidence of 3 is taken to indicate strong evidence in favour of the full model. The full model accommodates heterogeneity at 
three levels. The first considers an effective population that is exposed to infection, where the remainder are geographically 
isolated or shielding. Of this effective population, a certain proportion cannot be infected (eg, due to host factors such as 
pre- existing immunity). Of the remaining susceptible population, a certain proportion cannot transmit the virus (eg, through 
having a short period of viral shedding). This leaves a subpopulation who are both susceptible to infection and capable of 
transmission. By removing these three kinds of heterogeneity—and re- evaluating the evidence for the reduced models in 
relation to the full model—one can assess the evidence for the contribution of heterogeneity. Similarly, one can remove social 
distancing and the build- up of seropositive immunity from the model and evaluate their respective contribution. The results 
in the upper panel indicate very strong evidence in favour of the full model for nearly all countries. The exceptions are Brazil 
and Spain—where the entire population appears to participate in the outbreak—and Mexico, where social distancing is not 
evident. Mexico is an interesting example where removing a model parameter increases model evidence (via a reduction model 
complexity). Full model: this model incorporates all three forms of heterogeneity, social distancing and seropositive immunity. 
Exposure: heterogeneity to exposure was removed by equating the effective and total population. Susceptibility: heterogeneity 
of susceptibility was reduced by decreasing the prior proportion of non- susceptible people by a factor of e. Transmission: 
heterogeneity of transmission was reduced by decreasing the prior proportion of non- infectious people by a factor of e. 
Lockdown: social distancing was reduced by increasing the social distancing threshold by a factor of e2. Immunity: the effect 
of immunity was reduced by decreasing the period of seropositivity by a factor of e2. The lower panels provide the posterior 
expectations (ie, most likely value given the data) of the effective population under the full model, alongside the census 
population (left panel). The subsequent panels show the non- susceptible proportion of the effective population (middle panel) 
and non- infectious proportion of the susceptible population (right panel). CIs have been submitted for clarity but were in the 
order of 10%–20%.
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national- covid- 19- surveillance- reports/ sero- surveil-
lance- of- covid- 19).

Predictive validity of this sort generally increases with 
model evidence. This follows from the fact that the log- 
evidence is accuracy minus complexity. In other words, 
models with the greatest evidence afford an accurate 
account of the data at hand, in the simplest way possible. 
Unlike the Akaike and widely used Bayesian informa-
tion criteria (AIC and BIC), the variational bounds on 
log- evidence used in DCM evaluate complexity explic-
itly.22 Models with the greatest evidence have the greatest 
predictive validity because they do not overfit the data. 
An example of the posterior predictions afforded by the 
current model is provided in figures 3 and 6 that indi-
cate the timing and amplitude of a second wave in the 
UK. Figure 6 focuses on fatality rates under a couple 
of different scenarios; namely, under a rapid loss of 
antibody- mediated immunity and under an accelerated 
FTTIS programme.

These posterior predictions suggest that there may be 
a mild surge of fatalities over the autumn, peaking at 
about 100 per day. This second wave could be eliminated 
completely with an increase in the efficacy of contact 
tracing (FTTIS)—modelled as the probability of self- 
isolating, given one is infected but asymptomatic. It can 
be seen that even with a relatively low efficacy of 25%, 
elimination is possible by November, with convergence 
to zero fatality rates. Please see Friston et al49 for a more 
comprehensive analysis. Note that in a month or two, 
death rates should disambiguate between these scenarios.

The CIs in figure 6 may appear rather tight. This reflects 
two issues. First, the well- known overconfidence problem 
with variational inference—discussed in Friston et al15 
and MacKay.50 Second, these posterior predictive densi-
ties are based on the entire timeseries, under a dynamic 
causal model that constrains the functional form of the 
trajectories. Put simply, this means that uncertainty about 
the future can be reduced substantially by data from the 
past.

CONCLUSION
Our reading of the epidemiological modelling litera-
ture suggests a systemic failure to formally evaluate the 
evidence for alternative models (eg, models with age 
stratification and heterogeneous contact structure). This 
may reflect the fact that agent- based, stochastic trans-
mission models are notoriously difficult to evaluate in 
terms of their evidence.16 18 In contrast, the variational 
approaches used in DCM34–39 furnish a variational bound 
on model evidence that allows competing models to be 
assessed quickly and efficiently. The central role of model 
comparison is established in many disciplines and is 
currently attracting attention in epidemiology.51

Although model evaluation using the AIC (or widely 
used BIC) can be found in the epidemiological litera-
ture,52–54 this kind of comparison does not constitute 
proper model comparison. This is because the complexity 
part of model evidence is not estimated by the AIC (or 
widely used BIC). The model complexity corresponds 

Figure 6 Expected death rates as a function of time for a heterogeneous UK population. The trajectories (lines) and 
accompanying 90% Bayesian CIs (shaded areas) correspond to posterior predictions with a loss of immunity over 32 (blue) 
and 6 (orange) months. This subsumes loss of protective immunity due to population fluxes and the immunological status of 
individuals. The 6- month scenario can be considered a worst- case prediction, under which we would expect a second peak of 
about 100 deaths per day. Under the more optimistic prior of enduring immunity, fatality rates would be substantially lower than 
witnessed during the first peak (31 vs 856 per day, respectively, 95% CI 24 to 37). The green line reproduces the predictions 
after increasing the efficacy of find, test, trace, isolate and support to 25% (from its posterior estimate of about 1%). FTTIS, 
Find- Test- Trace- Isolate- Support.

https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
https://www.gov.uk/government/publications/national-covid-19-surveillance-reports/sero-surveillance-of-covid-19
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to the df used to explain the data (technically, the KL 
divergence between the posterior and prior). The AIC 
and BIC approximate complexity with (functions of) 
the number of free parameters, irrespective of whether 
these parameters are used or not. This means that the 
AIC is not fit for purpose when comparing models in a 
clinical or epidemiological setting. Please see Penny22 for 
illustrations of the failure of the AIC (and BIC). In short, 
it appears that most of the predictions underwriting 
‘scientific advice’ to governmental agencies are based 
on epidemiological models that have not been properly 
compared with alternative models. If there is no rebound 
in fatality rates in the next few months, the conclusions 
in Okell et al, Davies et al and the Academy of Medical 
Sciences report (ibid) will be put under some pressure. 
This pressure might license a more (model) evidence- 
based approach, using the requisite variational methods 
that predominate in statistical physics, machine learning 
and (dynamic) causal modelling.

The recurrent theme above is the danger of commit-
ting to one particular model or conception of the 
epidemiological process. In other fields—dealing with 
population dynamics—Bayesian model comparison is 
used to identify the best structure and parameterisation 
of models28–30 known as structure learning.31 32 Figure 5 
offers an example of Bayesian model comparison in 
epidemiology, evincing very strong evidence for hetero-
geneity in responses to viral infection—and a synergistic 
role for social distancing and herd immunity.

Identifying the right epidemiological model has 
considerable public health and economic implications. 
While SARS- CoV-2 may not be eradicated, model selec-
tion suggests that any second wave will be much smaller 
than other models have projected, and the virus will 
become endemic rather than epidemic. The size of a 
second wave may depend sensitively on the efficacy of 
FTTIS programmes and the rate of loss of immunity. 
Recent evidence suggests T- cell immunity may be more 
important for long- term immunity with circulating SARS- 
CoV-2- specific CD8+ and CD4+ T cells identified in 70% 
and 100% of convalescent patients with COVID-19, 
respectively.39 Furthermore, 90% of people who serocon-
vert make detectible neutralising antibody responses that 
are stable for at least 3 months.55 If the above dynamic 
causal model is broadly correct, future national lock-
downs may be unnecessary. As an endemic and poten-
tially fatal virus, especially in elderly people and those 
with underlying conditions, attention to the details of 
FTTIS and shielding becomes all the more important. 
This emphasises the need for clear criteria for when and 
how to implement local lockdowns in ‘hotspot’ areas.

In summary, lockdown and social distancing have 
undoubtedly restricted the transmission of the virus. 
Model comparison suggests that these approaches 
remain an essential component of pandemic control, 
particularly at current levels of infections in the UK. 
However, extending the notion of ‘herd immunity’—to 
include seronegative individuals with lower susceptibility 

and/or lower risk of transmission—engenders an 
immune subpopulation that can change over time and 
country. The implicit immunity may reduce mortality 
and lower the risk of a second wave to a greater extent 
than predicted under many epidemiological models. On 
this view, herd immunity subsumes people who are not 
susceptible to infection or, if they are, are unlikely to be 
infectious or seroconvert; noting that SARS- CoV-2 can 
induce virus- specific T- cell responses without serocon-
version. This reconciles the apparent disparity between 
reports of new cases, mortality rates and the low seroprev-
alence observed empirically. Crucially, Bayesian model 
comparison confirms that there is very strong evidence 
for the heterogeneity that underwrites this kind of herd 
immunity.8

Put simply, an effective herd immunity—that works 
hand- in- hand with appropriate public health and local 
lockdown measures—requires <20% seroprevalence. 
This seroprevalence has already reached in many coun-
tries and is sufficient to preclude a traumatic second 
wave, even under pessimistic assumptions about loss of 
humoral immunity endowed by antibodies.

GLOSSARY OF TERMS
Dynamic causal modelling: the application of variational 
Bayes to estimate the unknown parameters of state- space 
models and assess the evidence for alternative models of 
the same data.

See http://www. scholarpedia. org/ article/ Dynamic_ 
causal_ modeling.

Variational Bayes (a.k.a., approximate Bayesian infer-
ence): a generic Bayesian procedure for fitting and 
evaluating generative models of data by optimising a vari-
ational bound on model evidence. See https:// en. wiki-
pedia. org/ wiki/ Variational_ Bayesian_ methods.

Model evidence (a.k.a., marginal likelihood): the prob-
ability of observing some data under a particular model. 
It is called the marginal likelihood because its evaluation 
entails marginalising (ie, integrating) out dependen-
cies on model parameters. Technically, model evidence 
is accuracy minus complexity, where accuracy is the 
expected log likelihood of some data and complexity 
is the divergence between posterior and prior densities 
over model parameters.

Variational bound (a.k.a., variational free energy): 
known as an evidence lower bound (ELBO) in machine 
learning because it is always less than the logarithm 
of model evidence. In brief, variational free energy 
converts an intractable marginalisation problem—
faced by sampling procedures—into a tractable opti-
misation problem. This optimisation furnishes the 
posterior density over model parameters and ensures 
the ELBO approximates the log evidence for a model: 
https:// en. wikipedia. org/ wiki/ Variational_ Bayesian_ 
methods. Crucially, the variational bound includes an 
explicit estimate of model complexity, in contrast to the 
AIC and BIC.22

http://www.scholarpedia.org/article/Dynamic_causal_modeling
http://www.scholarpedia.org/article/Dynamic_causal_modeling
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://en.wikipedia.org/wiki/Variational_Bayesian_methods


12 Friston K, et al. BMJ Global Health 2020;5:e003978. doi:10.1136/bmjgh-2020-003978

BMJ Global Health

Bayesian model comparison: a procedure to compare 
different models of the same data in terms of model 
evidence. The marginal likelihood ratio of two models 
is known as a Bayes factor: https:// en. wikipedia. org/ 
wiki/ Bayes_ factor.

Agent- based simulation models: an alternative 
to equation- based models, usually used to simulate 
scenarios that are richer than models based on popula-
tion dynamics. Agent- based models simulate lots of indi-
viduals to create a sample distribution over outcomes. 
Evaluating the marginal likelihood from the ensuing 
sample distributions is extremely difficult, even with 
state- of- the- art estimators such as the harmonic mean: 
see https:// radfordneal. wordpress. com/ 2008/ 08/ 
17/ the- harmonic- mean- of- the- likelihood- worst- monte- 
carlo- method- ever/.
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