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Economic evaluations conducted alongside randomized controlled trials are a popular vehicle for generating high-
quality evidence on the incremental cost-effectiveness of competing health care interventions. Typically, in these stud-
ies, resource use (and by extension, economic costs) and clinical (or preference-based health) outcomes data are col-
lected prospectively for trial participants to estimate the joint distribution of incremental costs and incremental
benefits associated with the intervention. In this article, we extend the generalized linear mixed-model framework to
enable simultaneous modeling of multiple outcomes of mixed data types, such as those typically encountered in trial-
based economic evaluations, taking into account correlation of outcomes due to repeated measurements on the same
individual and other clustering effects. We provide new wrapper functions to estimate the models in Stata and R by
maximum and restricted maximum quasi-likelihood and compare the performance of the new routines with alterna-
tive implementations across a range of statistical programming packages. Empirical applications using observed and
simulated data from clinical trials suggest that the new methods produce broadly similar results as compared with
Stata’s merlin and gsem commands and a Bayesian implementation in WinBUGS. We highlight that, although these
empirical applications primarily focus on trial-based economic evaluations, the new methods presented can be gener-
alized to other health economic investigations characterized by multivariate hierarchical data structures.
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Economic evaluations conducted alongside randomized
controlled trials (RCTs) are a popular vehicle for gener-
ating high-quality evidence on the incremental cost-
effectiveness of competing health interventions. Typi-
cally, in these studies, resource use (and by extension,
economic costs) and clinical or preference-based health
outcomes data are collected prospectively for trial parti-
cipants to estimate the joint distribution of incremental
costs and incremental benefits associated with the inter-
vention, taking into account fixed and random sources of
variation.1,2 The term fixed and random source of varia-
tion, as used in this article, refers to the set of explanatory
variable(s) whose effect on the response is either assumed

to be constant (fixed source of variance) or to vary
randomly (random source of variance) across different
realizations of the explanatory variable.3 Both sources of
variance are commonly encountered in cost-effectiveness
data generated from clinical trials, the former because
of differences in patient characteristics and the latter
as a consequence of study design, such as decisions
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to randomly allocate patients in clusters rather than indi-
vidually (as in cluster-randomized trials), to recruit
across multiple locations (as in multicenter and multina-
tional trials), or to measure outcomes at multiple time
points during follow-up (repeated measures).

Joint modeling of treatment costs and benefits, in
cost-effectiveness analyses based on data from clinical
trials, is often motivated by a desire to properly charac-
terize uncertainty around estimates of incremental cost-
effectiveness and display results graphically as cost-
effectiveness planes and cost-effectiveness acceptability
curves. If the outcomes are sufficiently correlated, there
may be additional benefit from being able to borrow
information across outcomes and estimate variance com-
ponents and standard errors around parameter values
more efficiently than in separate univariate analyses.4

However, joint modeling of multiple outcomes is a com-
plicated statistical task if the data are not normally dis-
tributed and the outcomes are of different data types,
such that a single probability distribution cannot wholly
characterize their joint distribution.5,6 In such situations,
the simplest and most straightforward approach is to
model outcomes separately by assuming appropriate dis-
tributional forms for each data type but allow the under-
lying parameters to be correlated or related in some way.
This approach requires flexible software for implementa-
tion, something that has not been readily available in
general-purpose statistical programming packages, such
as Stata and R, familiar to many analysts working on
trial-based economic evaluations. As an example, the
methodology for analyzing economic data from clinical
trials of the type described above has received substantial
attention in the literature: published methodological
papers include bivariate regressions for economic evalua-
tions based on multicenter and multinational clinical

trials (see references 7–9 and the citations therein),
cluster-randomized trials,10–12 and methods for modeling
hierarchical cost data,13–15 including extensions to allow
for modeling health care costs and cost-effectiveness in
the presence of structural zeros.14,15 In all but the most
straightforward situations where it is reasonable to
assume normality of outcomes,11 implementation of the
methods outlined in these articles requires modeling on
the net benefit scale8 or familiarity with specialized Baye-
sian and multilevel modeling software packages, such as
WinBUGS,16 JAGS,17 MLwiN,18 or the SAS GLIM-
MIX procedure.6 An alternative approach that can be
implemented in most statistical packages is the boot-
strap.1,19 It has the advantage of avoiding parametric
assumptions about the data; however, it is computation-
ally intensive, especially for complex analytic and miss-
ing data problems, as it requires repeated resampling of
the data many times to accurately approximate the
empirical distribution of the parameters of interest.1,19

Recently, 2 new functions have become available
(Stata gsem20 and merlin21 in both Stata and R) that
allow increasingly complex analysis to be conducted,
including modeling multiple outcomes of mixed data
types and their extensions to longitudinal and time-to-
event outcomes.21,22 The new functions use more accu-
rate numerical integration techniques such as the adap-
tive Gaussian-Hermite quadrature to approximate the
model and estimate parameters by maximum likelihood.
However, maximum likelihood is known to underesti-
mate variance components in mixed-effects models as
well as standard errors of parameter values more gener-
ally in small to moderate sample size applications (i.e.,
the data for the analysis is small in relation to the number
of parameters to be estimated).23,24 The bias in the maxi-
mum likelihood estimate of variance components can
often be corrected by restricted maximum likelihood,23,24

but this can be difficult to implement via methods that
approximate the likelihood for the data numerically.

In this article, we extend the generalized linear mixed-
model framework to enable simultaneous modeling of
multiple outcomes of mixed data types based on pseudo
or quasi-likelihood methods previously proposed by Bre-
slow and Clayton,25 Wolfinger and O’Connell,26 and
Lindstrom and Bates27 for nonlinear mixed-effects esti-
mation. These methods have been implemented in the
SAS GLIMMIX procedure for univariate and multivari-
ate cases, R using nmle for nonlinear mixed effects
(nlme),28 and also in R using glmmPQL for the univari-
ate case.29 The new models may be viewed as multivari-
ate extensions of the standard linear and generalized
linear mixed-model that has been proposed and refined
over the past 3 to 4 decades.25–27,30–34 The proposed
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models are easy to implement and permit maximum like-
lihood and restricted maximum likelihood estimation.
However, they may generate less accurate parameter esti-
mates in comparison with methods based on numerical
integration for certain data types such as binary data
when the sample size is small.25,26 We compare the per-
formance of the new routines with alternative implemen-
tations across a range of statistical programming
packages such as gsem and merlin in Stata, and Markov
Chain Monte Carlo (MCMC) simulation in WinBUGS
with minimally informative prior distributions placed on
all parameters of the model.

The remainder of the article is structured as follows.
The next section outlines the statistical methods for
mixed-effects modeling of multiple outcomes of mixed
data types and the functions to estimate the model. This
is followed by a simulation to compare the performance
of the new routines in terms of estimation bias, root
mean square error, and confidence interval coverage. We
also illustrate applications of the methods using observed
and simulated economic data from clinical trials. The
article ends with concluding remarks and pointers for
future research.

Methods

This section outlines the statistical model for analyzing
multiple outcomes of mixed data types such as those typi-
cally encountered in trial-based economic evaluations of
interventions. We consider models with a single grouping
factor or random-effect such as study center, cluster, or
country and note that extensions to multiple levels of
nesting are relatively straightforward. In addition, for
ease of notation, we assume the data set available for
analysis is balanced with an equal number of observa-
tions for all individuals included in the analysis and again
note that the same modeling logic applies to unbalanced
data sets with partially observed information on some
individuals.

Multivariate Generalized Linear Mixed-Effects
Model

We consider a generalized linear mixed model of the form

yijk = g�1
k hijk

� �
+ eijk ð1Þ

where yijk denotes the kth observation on the jth patient
in the ith cluster, gk :ð Þ is a differentiable monotonic link
function of the expectation mijk =E yijk

� �
with g�1

k :ð Þ
denoting the inverse of gk :ð Þ, and hijk is an unobserved

or latent variable modeled on the link scale such that
gkðmijkÞ=hijk. Examples of the form that gk :ð Þ can take
include the identity link function for a normally distribu-
ted response, the logit and probit functions for a binary
response, and the logarithmic function for a gamma or
Poisson distributed response. Following Hadfield,35 we
assume that there exists a probability density function
fk :ð Þ in the exponential family such that fkðyijk jmijk =
g�1

k ðhijkÞÞ denotes the probability of predicting yijk with
error eijk from

hijk = xT
ijkbk + zT

ijkbik ð2Þ

where xijk and zijk with the superscript T denoting a
matrix transpose are known (pk 3 1) and (qk 3 1) design
matrices for fixed and random-effect covariates associ-
ated with observation yijk, bk is a vector of unknown
population fixed-effect parameters for the kth observa-
tion of length pk , and bik is the associated qk dimensional
vector of random effects in cluster i. The residual error
term eijk captures any remaining variance in the response
not accounted for by the fixed and random covariates
included in equation (2). For densities in the exponential
family, this variance can be expressed in the form
Var yijkjbik

� �
=fkaijkykðmijkÞ,26,37 where yk :ð Þ is a speci-

fied variance function, aijk is a known constant, and fk is
a dispersion parameter associated with the kth measure.
Suppressing the dependence of quantities on the sub-
scripts j and k identifying individuals and outcome mea-
sures to aid clarity, equations (1) and (2) may be
combined for all observations in the ith cluster to form

yi = g�1 Xib+Zibið Þ+ ei

i= 1, 2, � � � ,M ð3Þ

where yi is a vector of multivariate responses (stacked on
top of one another) of length ni, ei is the corresponding
vector of stacked residual errors, g :ð Þ is a collection of
link functions applied such that a different form is
assumed for the different data types in yi, and M is the
total number of clusters, repeated measurements, study
sites, or locations. The design matrices Xi and Zi of
dimensions (p 3 ni) and (q 3 ni) are block diagonal, with
each block carrying covariate information specific to
each measure, b is a p-dimensional vector of fixed effect
parameters to be estimated, and bi is the q-dimensional
vector of random effects across all measures. Because the
data set is balanced (i.e., every study participant is
assumed to have data points for all measures of interest)
and bi is a single-level random-effect, ni is simply the
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total number of outcome measures multiplied by the
number of individuals in cluster i.

Following the standard formulation of mixed-effects
models, we assume that bi is uncorrelated with b and dis-
tributed multivariate normal with mean E bijbð Þ= 0 and
covariance Cov bijbð Þ=G, where G is a positive-definite
matrix (of dimension equal to the number of random-
effect terms in the model) whose diagonal and off-
diagonal entries carry, respectively, between-cluster var-
iance and covariance terms to be estimated from the
data. Similarly, we assume that the residual error vector
ei with mean E eijbið Þ= 0 and covariance Cov eijbið Þ=Ri

is uncorrelated with b and bi, where Ri is a (ni 3 ni)
variance-covariance matrix for the residual errors in clus-
ter i. To complete the specification, this residual variance-
covariance matrix is decomposed into a product of sim-
pler matrices of standard deviations and correlations26,32:

Ri =V
1=2
i CiV

1=2
i

i= 1, 2, � � � ,M ð4Þ

where Vi is a diagonal matrix of known variance func-
tions evaluated at mi and Ci is a known positive definite
matrix of correlations for the within-cluster errors ei.
Usually, both Vi and Ci are large square matrices of
dimension (ni 3 ni) parameterized using fewer variance
and correlation terms to make them identifiable.32

It is common in the parameterization of mixed-effects
models to assume that observations from the same clus-
ter are conditionally independent given the random
effects in univariate and multivariate models and across
outcome measures in the multivariate setting (see Gueor-
guieva and Agresti,37 Gueorguieva,38 and Crowther22).
This assumption is equivalent to setting the off-diagonals
of Ci to zero. Thus, the above specification explicitly
allows for the conditional independence assumption to
be relaxed through formulating a correlation structure
for the within-cluster errors, similar to the population-
average approach of generalized estimating equations.39

Quasi-likelihood Estimation

The model specified above reduces a multidimensional
problem to a unidimensional one by stacking outcome
measures to form a univariate response followed by
appropriate parameterization of fixed and random effects
and the variance components. Maximum likelihood esti-
mation of the univariate model has been studied exten-
sively6,27,27,32 and requires evaluating a (potentially) high
dimensional integral of the form

p yið Þ=
ð

p(yijbi)p(bi)dbi

i= 1, 2, � � � ,M ð5Þ

where p yið Þ is the marginal density of yi, p(yijbi) is the
conditional density of yi given the random effects bi, and
p(bi) is a prior density for bi. This integral does not gen-
erally have a closed-form solution because the expecta-
tion Xib+Zibi defined in equation (2) is nonlinear in the
random effects for nonnormally distributed response mod-
eled on a nonidentity link scale.25,27,32 Instead, estimation
usually proceeds via approximate methods such as lineari-
zation or numerical integration. Numerical integration
techniques provide a more accurate approximation of the
integral than methods based on linearization but are com-
putationally intensive and allow only maximum likelihood
estimation, which is known to underestimate variance and
covariance terms in small-sample situations.23,24 Lineariza-
tion methods can be less accurate than numerical integra-
tion for certain data types such as binary responses.
However, they are easy to implement, and maximum like-
lihood and restricted maximum likelihood estimation are
possible. The restricted maximum likelihood criterion is
desirable as a method for unbiased estimation of variance
parameters when the sample size is small relative to the
number of parameters to be estimated.23,24

Linearization-based methods have been implemented
in mixed-effects packages such as glmmPQL from the R
package MASS,29 nlme from the R package of the same
name that fits nonlinear mixed-effects models to nor-
mally distributed response,28 the menl command for non-
linear mixed effects in Stata,40 and the SAS GLIMMIX
procedure.41 In Supplementary Appendix A, we show
how these methods can be used to estimate the model
specified in equations (1) to (4) by penalized quasi-likeli-
hood25–27 based on a 2-step algorithm. In the first step, a
linearized response is generated separately for each data
type as a first-order Taylor series approximation to the
response variable on the link scale. The stacked vector of
linearized responses is then jointly estimated in the sec-
ond step. The algorithm involves iterating between these
2 steps until convergence. Because outcome measures are
modeled jointly on the scale of the link functions, the
model can be fitted in any statistical software package
that permits mixed-effects modeling of a normally dis-
tributed response with heteroscedastic error structures to
enable the variance of the stacked vector of responses to
vary across outcomes.

We provide wrapper functions to implement these rou-
tines by maximum likelihood and restricted maximum
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likelihood in Stata and R, which themselves call the func-
tions mixed and linear mixed-effects (lme), respectively
(see Supplementary Appendix B). The implementation in
R can fit models that satisfy the conditional indepen-
dence assumption as well as make use of the extensive
library of variance and correlation structures available in
the nlme package to fit models that relax this assumption
based on the decomposition in equation (4). In contrast,
only models that assume conditional independence given
the random effects are possible with the Stata implemen-
tation because the mixed command does not appear have
an equivalent library of correlation structures and func-
tions available in the nlme package. We compare the per-
formance of these routines with the new Stata commands
merlin and gsem for fitting multivariate linear and gener-
alized linear and nonlinear mixed-effects models. Table 1
summarizes the type of distribution and link functions
currently available within each package. The Stata com-
mand merlin (and an R package of the same name21)
offers additional functionality in allowing users to define
any distribution of interest, thus providing flexibility to
model increasingly complex problems that are unavail-
able in the other packages.

Simulation

Simulation Model

We simulated data to represent a 2-arm cluster RCT that
recruited a relatively small sample of 200 patients across
10 clusters (study site or country in the case of a multi-
center or multinational trial, respectively). In the simula-
tion, we consider a bivariate response Yij = yij1, yij2

� �T
,

with observation yij1 and yij2 denoting measurements of
total costs and effects, for patient j in cluster i generated
from

Yijk ;Gamma mik,fk

� �

log mijk

� �
=b0k +b1k 3 tij + bik, i= 1, 2, � � � , n

j= 1, 2, � � � , ni k = 1, 2 ð6Þ

where E Yijk

� �
=mik is the mean effect observed in the ith

cluster of size ni with variance Var Yijk

� �
=s2

wik
=fkm2

ik

and dispersion fk specific to outcome k (k = 1 for costs
and 2 for effects). In a cluster randomized trial, patients
in the same cluster receive the same treatment so that tij
is an indicator variable that equals 1 if cluster i receives
the new treatment and 0 otherwise. The random-effects
bik are assumed to be drawn from a bivariate normal dis-
tribution with mean zero, between-cluster standard var-
iance s2

bk on the log-scale and between-cluster correlation
rb:

bi1

bi2

� �
;Normal 0,G=

s2
b1 rbsb1sb2

rbsb1sb2 s2
b2

� �� �

i= 1, 2, � � � ,M

where M is the total number of clusters.
In the simulation, we compared the performance of

parameter estimation by maximum likelihood and
restricted maximum likelihood via penalized quasi-
likelihood in terms of the mean bias, confidence interval
coverage, and root mean square error. We assume the
true net benefit is £1000 in favor of the new treatment if
the cost-effectiveness threshold is £20,000 per unit of
effectiveness. Simulated costs and effects from the above
model will appear as a right-skewed distributional shape
with a lower boundary at zero. This is the distributional
shape that is typical of health care costs but is unlike the
distributional shape of health utilities (from which
quality-adjusted life-years [QALYs] can be derived),

Table 1 Examples of Stata, R, and SAS Functions that can fit Multivariate Generalized Linear Mixed-Effects Models

Common Link
Stata R

SAS

Distribution Functions Supported mixed
a,b

gsem merlin gllamm lme
a

merlin MCMCglmm glimmix

Gaussian Identity, log � � � � � � � �
Gamma Identity � � � �
Gamma Log � � � � � �
Binomial Logit, probit � � � � � � �
Poisson Log � � � � � � �
User defined � �

aImplemented via a wrapper function that calls mixed or lme as described in Supplementary Appendix A.
bA wrapper function to fit non-Gaussian models using the Stata mixed command is currently under development.
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which typically appear left skewed. Assuming the effec-
tiveness outcome is the QALY, the simulated effects rep-
resent QALYs on a transformed scale, such that the
corresponding QALY value on the natural scale of mea-
surement can be obtained by applying a straightforward
linear transformation:

QALYij = 1� rQALYij i= 1, 2, � � � , n j= 1, 2, � � � , ni ð7Þ

where rQALYij is the simulated QALY value for patient
j in cluster i and QALYij the linear transformation of
rQALYij to generate the corresponding QALY value that
would be observed in practice and left-skewed in
distribution.

Simulation Parameters and Algorithm

Parameter values used to inform the simulation specified
above were taken from the final case model of a simula-
tion study by Gomes et al.,11 in which the authors
assessed the performance of various statistical methods
for cost-effectiveness analysis alongside cluster RCTs.
The underlying parameter values in the Gomes et al.
study were based on a systematic review the authors
have undertaken to identify plausible estimates of para-
meter values for economic evaluation alongside cluster
RCTs. Table 1 of their paper summarizes these data and
the justification for each value used in their simulation.
Because the simulation model in equation (6) is a multi-
plicative treatment-effect model, each parameter value
used in the simulation by Gomes et al. needs to be trans-
formed to generate the corresponding estimate on the
logarithmic scale. Table 2 displays the data from Gomes
et al. and the corresponding log-transformed value gen-
erated for the simulation model above. Based on a
description of their simulation, we set b01 = log (£100),
b11 = log (£600)� log (£100), b02 = log (0:125), b12 =
log (0:125)� log (0:20), representing overall mean incre-
mental costs of £500, incremental mean effects of 0.075,
and a mean incremental net monetary benefit of £1000
at a cost-effectiveness threshold of £20,000 per QALY
considered by Gomes et al.

To derive the required variance and dispersion terms
on the log-scale, we first reconstructed the data from
Gomes et al. using their additive treatment effects gener-
alized mixed-effects model assuming the errors follow a
gamma distribution. From the reconstructed data, we
took the logarithm of the patient-level costs and effects
(QALYs). We used this log-transformed data to estimate
the between-cluster variance (defined as the variance of
the cluster-mean costs and cluster mean effects on the
log-scale) and the error variance (defined as the mean of

the squared within-cluster patient-level errors or devia-
tions). Based on these calculations, we set the between-
cluster standard deviations on the log-scale sb1 = 0:152

and sb2 = 0:121, corresponding to sb1 =£11:47 and
sb2 = 0:014 on the natural scale of measurement for
costs and effects, respectively. Finally, the degree of
skewness of the gamma-distributed random variable is a
function of the dispersion factor that can be derived
from the coefficient of variation. From the reconstructed
data, we estimated the coefficient of variation on the log-
scale to be 0.65, corresponding to a coefficient of varia-
tion of 0.5 assumed for both costs and QALYs on the
natural scale of measurement. A step-by-step outline of
the simulation algorithm is given below:

1. Simulate costs and QALYs for a 2-arm cluster RCT
from an additive treatment effect generalized mixed-
effects model with gamma-distributed error structure
based on data from Gomes et al.

2. Calculate log (costs) and log (QALYs) for each
patient and use this to estimate the between-cluster
variance s2

b (variance of the cluster means) and the
within-cluster or error-variance s2

w on the log-scale.
3. Estimate the dispersion factor f from the s2

w using
the fact that the intraclass correlation coefficient
(ICC) of a gamma-distributed random variable on

the log-scale is given by ICCgamma-log =
s2

b

s2
b
+c1

1
f

� �),
where c1 is the trigamma function, which is the second
derivative of the gamma function (Nagakawa et al.42).
From the above definition of the ICC, it is clear that

c1
1
f

� �
estimates the error variance s2

w on the log-scale

and that the dispersion is given by f= 1

c�1
1 s2

wð Þ, where

c�1
1 is the inverse-trigamma function.

4. Simulate costs and effects data using the simulation
model described by equation (6) based on the para-
meter values generated in steps 1 to 3 above, and fit
the different models to the data. Obtain the para-
meter vector and the associated covariance matrix
from the fitted mixed-effects regression model.

5. Use Monte Carlo simulation to estimate standard
errors and confidence intervals for the incremental
costs, incremental effects, and the incremental net
benefit on the natural scale of measurement for costs
and effectiveness outcomes. This involves generating
1000 replicates of the regression parameters, assum-
ing a multivariate normal distribution for the para-
meter estimates on the log-scale.

6. Repeat steps 3 to 5 for a total of 2000 times, each
time calculating cost-effectiveness parameters and
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their associated standard errors and confidence
intervals.

We compared the performance of parameter estimation
by maximum likelihood and restricted maximum likeli-
hood via penalized quasi-likelihood in terms of the mean
bias, confidence interval coverage, and root mean square
error, assuming that the true net benefit is £1000 at a
cost-effectiveness threshold of £20,000 per QALY or unit
of effectiveness. Maximum likelihood estimates were
obtained by numerical integration via the gsem function
in Stata and by penalized quasi-likelihood via mixed and
lme functions in Stata and R, respectively. The vce
option in Stata was used to obtain robust estimates of
the covariance matrix of the regression parameters in the
maximum likelihood models. Restricted maximum likeli-
hood estimates were available only via penalized quasi-
likelihood using the mixed and lme functions.

Simulation Results

The simulation results are presented in Table 3 for the
base-case parameter values (Table 2) and 3 simulated sce-
narios. The scenarios tested the performance of the meth-
ods when 1) the total number of clusters is decreased
from 10 to 5, 2) the cluster size is increased from 20 to 50
individuals, and 3) the coefficient of variation is increased
from 0.5 to 1.0, reflecting a higher degree of skewness in
distribution (Figure 1). For the base-case simulation with
a sample size of 200 individuals recruited across 10 clus-
ters, the mean bias was small in all implementations of
the 2 estimation procedures. The restricted maximum
likelihood estimates (mean bias ranged from £1.11 to
£1.31 assuming the true net benefit is £1000) were, how-
ever, less biased on average than the corresponding esti-
mates obtained by maximum likelihood (range in mean
bias £3.00 to £5.85; Table 3). Similarly, all models pro-
duced 95% confidence interval coverage probabilities

Table 2 Parameters Used in the Simulation

Parameter

Final Case
(Gomes et al).

Natural Scale

Value Used in
the Simulation

(Log-Scale) Justification

Total number of clusters N 30 10 Test performance of methods when
number of clusters is small

No. of individuals per cluster ni 50 20 Test performance of methods when sample
size is small

Level of imbalance 0.5 0 Set to zero in the present simulation to
check the impact of sample size only on
performance of estimation procedures

ICC for costs ICCc 0.05 0.5 Used only to reconstruct final case of
Gomes et al.

ICC for outcomes ICCq 0.02 0.02 Used only to reconstruct final case of
Gomes et al.

Coefficient of variation (CV) for costs CVc 0.5 0.65 Coefficient of variation on log-scale based
on reconstructed final case data (Gomes
et al. 2012)

Coefficient of variation for outcomes CVq 0 0.65 Not reported in Gomes et al. as outcomes
modeled using a normal distribution; we
reconstructed their data assuming a CV
of 0.5

Individual-level correlation
of costs and effects

rw1
20.2 0 Assumed outcomes are independent given

the random effects
Cluster-level correlation rb1

0.1 0.1 Justification given in Gomes et al. (2012)
Mean costs placebo — — £100 Mean treatment and control group costs

were taken to give a difference of £500
assumed in Gomes et al. (2012)

Mean costs of new treatment — — £600

Mean effects of placebo — — 0.8 Mean effects for the treatment and control
groups were taken to give a difference of
0.025 assumed in Gomes et al. (2012)

Mean effects of new treatment — — 0.875

ICC, intraclass correlation coefficient; CV, coefficient of variation (dispersion equal to CV squared).
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greater than 0.90, but the restricted maximum likelihood
estimates were closer to the desired 0.95 nominal value
than the corresponding coverage probabilities obtained
via maximum likelihood.

For a reduced sample size of 100 individuals across 5
clusters (scenario 1) of equal size, the estimation bias
increased as compared with the base-case simulation
assumptions, but the impact on model performance was
more pronounced for confidence interval coverage (sce-
nario 1, Table 3). At this small number of clusters and
sample size, maximum likelihood generated coverage
probabilities that are less than 0.85. In contrast, the cov-
erage in the restricted maximum likelihood models
remained relatively unaffected by the reduction in sample
size. Figure 2 shows the relationship between model per-
formance and sample size by varying the number of clus-
ters but keeping the cluster size fixed at 20 individuals.
Estimation bias decreased toward zero with an increas-
ing number of clusters, and the confidence interval cov-
erage converged to 0.95.

Increasing the sample size to 500 individuals spread
across the 10 clusters by increasing the cluster size to 50
(scenario 2) produced less biased estimates of the incre-
mental net benefit and better confidence coverage for all

Table 3 Simulation Results Based on a True Net Monetary Benefit Value of £1000 at a Cost-Effectiveness Threshold of £20,000
per Quality-Adjusted Life-Year

Simulation Parameters and Method Mean (SE) Bias, £ 95% CI Coverage RMSE, £

Base case simulation (N = 200 from 10 clusters each of size 20, CV = 0.5 for costs and effects, ICCcosts = 0.05,
ICCeffects = 0.02)

Stata gsem, ml vce robust 5.85 (13.57) 0.93 331.13
Stata mixed, ml vce robust via pql 3.00 (13.53) 0.93 329.87
Stata mixed, reml via pql 1.31 (13.49) 0.95 329.09
R lme, ml via pql 2.78 (13.52) 0.94 329.79
R lme, reml via pql 1.11 (13.49) 0.96 329.04
Scenario 1 (base case with no. of clusters changed from 10 to 5)
Stata gsem, ml vce robust 6.40 (26.04) 0.82 481.54
Stata mixed, ml vce robust via pql 3.91 (25.97) 0.81 480.22
Stata mixed, reml via pql 4.71 (25.9) 0.96 479.11
R lme, ml via pql 3.94 (25.97) 0.93 480.33
R lme, reml via pql 4.64 (25.9) 0.96 479.11
Scenario 2 (base case with cluster size changed from 20 to 50)
Stata gsem, ml vce robust 0.43 (10.14) 0.92 265.5
Stata mixed, ml vce robust via pql –1.26 (10.12) 0.92 265.0
Stata mixed, reml via pql –2.14 (10.11) 0.94 264.7
R lme, ml via pql –1.44 (10.12) 0.91 264.9
R lme, reml via pql –2.20 (10.11) 0.94 264.7
Scenario 3 (base case with CV changed from 0.5 to 1.0 for both costs and effects)
Stata gsem, ml vce robust 13.77 (23.42) 0.93 593.9
Stata mixed, ml vce robust via pql 4.73 (23.19) 0.93 588.2
Stata mixed, reml via pql 0.47 (23.09) 0.94 585.9
R lme, ml via pql 4.42 (23.18) 0.93 588.1
R lme, reml via pql 0.31 (23.09) 0.94 585.9

Figure 1 Simulated distribution of costs and quality-adjusted
life-years for different coefficients of variation (CVs) defined
as the ratio of the standard deviation to the mean.
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models as compared with the base-case simulation. Maxi-
mum likelihood estimation via the gsem command in Stata
was the least biased as compared with maximum likelihood
and restricted maximum likelihood estimation by penalized
quasi-likelihood. Figure 3 shows the relationship between
sample size and model performance when the total number

of clusters is fixed at 10. The plot suggests the estimation
bias decreases as the sample size is increased by increasing
the cluster size from 10 to 100 individuals per cluster, but
the confidence interval coverage remains relatively unaf-
fected, falling below the desired nominal 0.95 value cover-
age value for all tested estimation procedures.

Figure 2 Mean bias and 95% confidence interval (CI) coverage versus number of clusters assuming a true net benefit of £1000 at
£20,000 per quality-adjusted life-year cost-effectiveness threshold. PQL, penalized quasi likelihood, ml, maximum likelihood;
reml, restricted maximum likelihood estimation.

Figure 3 Mean bias assumes a true net benefit of £1000 at £20,000 per quality-adjusted life-year cost-effectiveness threshold and
95% confidence interval (CI) coverage versus cluster size (i.e., number of individuals per cluster). The total number of clusters is
fixed at 10. PQL, penalized quasi likelihood; ml, maximum likelihood; reml, restricted maximum likelihood estimation.
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In the final simulated scenario, the coefficient of varia-
tion was increased from 0.5 (base-case simulation) to 1.0
(scenario 3) to reflect greater skewness in the data (Fig-
ure 1) for a sample size of 200 individuals spread equally
across 10 clusters. This increased the bias in the estima-
tion of the incremental net benefit by maximum likeli-
hood but decreased the bias in the estimates generated by
the restricted maximum likelihood models.

Application to Data from Clinical Trials

Example 1: UK FASHION Trial

UK FASHION was a pragmatic 2 parallel-arm multi-
center randomized controlled trial that evaluated the
clinical and cost-effectiveness of arthroscopy surgery ver-
sus physiotherapy as treatment options for hip pain
resulting from femoroacetabular impingement syn-
drome.43 The trial recruited a total of 348 patients across
23 hospitals and randomly assigned 171 to surgery and
177 to physiotherapy. Participants were followed up for
12 mo, and data were collected prospectively at baseline
and at 6 and 12 mo after randomization. The primary
outcome was the hip-related quality of life, measured by
the International Hip Outcome Tool (iHOT-33),44 a vali-
dated patient-reported hip-related quality-of-life measure
for young, active patients with hip disorders. At each
assessment point, participants were asked to report this
outcome and their health-related quality of life measured
by the EQ-5D-5L and SF-12 version 2, as well as health
and social care resource use and costs. The clinical out-
comes data were analyzed based on intention-to-treat
principles and took the form of a mixed-effects multivari-
able linear regression that included treatment allocation,
impingement type, gender, and baseline scores for rele-
vant outcomes as fixed covariates and a random term for
study site.45 A prospective within-trial cost-utility analysis
was also conducted from a UK National Health Service
and Personal Social Services (NHS/PSS) perspective and
a 12-mo time horizon.45 The base-case analysis closely
mirrored the analytic model for the clinical outcomes and
took the form of bivariate seemingly unrelated regres-
sions using imputed attributable costs and EQ-5D-gener-
ated QALYs as outcomes and treatment allocation,
gender, impingement type, and baseline scores as fixed
effects. Also, study site was included as a fixed covariate,
unlike the clinical outcomes model, which included this
variable as a random effect. Including study site as a
fixed effect in the economic analysis was done partly for
practical reasons and partly because it was not expected a
priori for the treatment effect to differ markedly across
NHS centers. Further details of the study design,

conduct, and findings are available from the published
study protocol43 and the main trial paper.45

To illustrate the methods outlined in this article, we
restrict ourselves to 263 (132 in the surgery group and
131 in the physiotherapy group) of the 348 total trial
sample with complete outcome and covariate informa-
tion for the economic analysis (note that the remaining
85 participants had missing covariates; hence, it was not
possible to include these individuals in the regressions).
In this illustration, we assigned a nominal total cost value
of £1.00 to 2 patients in the physiotherapy group who
had reported a zero-cost observation. This was done to
avoid problems with zero costs when modeling costs
using the gamma distribution as the 2 patients did not
receive any intervention or report health and social care
service use during the 12 mo of follow-up.

Figure 4 displays the distribution of total costs and
QALYs by treatment group during the 12-mo follow-up
period. The plots suggest a departure from normality in
distribution for both outcomes, with health care costs
exhibiting a degree of skewness to the right and QALYs
in the opposite direction. Residual diagnostic plots
obtained from fitting linear mixed-effects regressions
with covariate adjustment are presented in Figure 5. The
normal QQ plots do not suggest marked deviations from
the normality of the errors, and the scatter plots of the
residuals versus fitted values suggest the means of the
residuals are not too far from zero to invalidate the
results of a normally distributed error fit. However, the
scale-location plots suggest the equal variance (homosce-
dasticity) assumption might be inappropriate for these
data.

Nevertheless, to illustrate the methods presented here,
we fit 3 bivariate mixed-effects random intercept models
with treatment allocation, gender, impingement type,
baseline costs (cost model), and baseline health-related
quality-of-life scores (QALYs model) as fixed effects and
study site as a random effect. In the first 2 models, a nor-
mal distribution with identity link function was assumed
for QALYs, but costs were modeled using normal and
gamma distributions with identity and log-link functions,
respectively. In the third model, the distribution of
QALYs was converted from left skew to right skew by
applying the transformation specified in equation (7).
Costs and the transformed QALY variable were then
jointly modeled assuming a gamma distribution with
log-link function similar to the simulation model speci-
fied in equation (6). Note that because equation (7) maps
values from left to right, individuals with higher QALYs
on the untransformed (observed QALY scale) will have
lower values on the transformed scale and vice versa.
Therefore, parameter estimates should be interpreted
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Figure 4 Distribution of total health and social care costs and quality-adjusted life-years accrued over 12 mo of follow-up in the
UK Fashion study displayed by treatment group. HA, hip arthroscopy; PHT, personalized hip therapy.

Figure 5 Regression diagnostic plots from fitting normal error regression to total National Health Service/ Personal Social
Services costs (4 plots on the top) and quality-adjusted life-years (4 bottom plots) for the UK FASHION study.

Achana et al. 677



with care. In particular, estimates of the treatment effect
on the transformed QALY scale when modeled using
gamma regression (equation (6)) should be reversed such
that the treatment effect favoring active/new treatment
on the transformed scale should favor the control on the
untransformed scale and vice versa.

The results for the FASHION data are presented in
Table 4. Estimates of incremental costs and incremental
QALYs were broadly similar across platforms and esti-
mation procedures. The associated standard errors of the
incremental costs estimated by different packages were
also similar across statistical software packages and plat-
forms with maximum likelihood, generally producing
smaller standard errors than the restricted maximum
likelihood and the WinBUGS implementations. The
model that assumed normally distributed errors for costs
and QALYs (model F1) generated mean (standard error)
incremental costs ranging from £2573 (£198) to £2609
(£249) and incremental QALYs ranging from 20.012
(0.0184) to 20.025 (0.026) in the WinBUGS model.
Parameter estimates from model F2 and F3 in which the
costs were modeled using a gamma distribution with log
link are additive on the log-scale and multiplicative on
the natural scale of measurement. Therefore, log-cost
and log-QALY differences generated from the 2 models
were combined with the intercept-term for each outcome

and back-transformed to generate incremental costs and
incremental QALYs for surgery as compared with phy-
siotherapy on the natural scale of measurement.46 This
produced incremental costs ranging from £3220 (£584)
to £3281 (£567) and incremental QALYs ranging from
0.0036 (0.019) to 0.0012 (0.042) in favor of the surgery.

Example 2: GRACE Trial

GRACE was a multinational, randomized placebo-
controlled trial that assessed the clinical and cost-
effectiveness of amoxicillin for acute lower respiratory
tract infection in people aged 60 y or older.47,48 Two
thousand sixty patients were recruited from primary care
practices in 12 European countries (Belgium, England,
France, Germany, Italy, the Netherlands, Poland, Slova-
kia, Slovenia, Spain, Sweden, and Wales) and rando-
mized to amoxicillin (n = 1037) or placebo (n = 1023).
Follow-up was 28 d from randomization. The primary
clinical outcome was the duration of symptoms dichoto-
mized to generate a binary response, reflecting mild to
moderate versus severe cough. Cost-effectiveness was
assessed from the perspective of society with costs
expressed in Euros and in 2012 prices. QALYs were cal-
culated from EQ-5D-3L data collected at baseline and
weekly over the 28-d follow-up period. The trial

Table 4 Illustrated Example from Clinical Trials Using the UK FASHION Trial Data (Random-Intercepts Model)a

Model
Package, Function, and
Method of Estimation

Difference in Mean
Costs (SE), £

Difference in Mean
QALYs (SE)

Model F1: bivariate mixed-effects
regression with

Costs ; normal
QALYs ; normal

Stata mixed, ml via PQL 2575 (196) –0.012 (0.0184)
Stata mixed, reml via PQL 2573 (198) –0.012 (0.0187)
Stata merlin, ml 2597 (193) –0.012 (0.018)
Stata gsem, ml 2601 (194) –0.013 (0.019)
R lme, ml via PQL 2600 (194) –0.010 (0.019)
R lme, reml via PQL 2600 (197) –0.010 (0.019)
WinBUGS MCMC 2609 (249) –0.025 (0.026)

Model F2: Bivariate mixed-effects
regression with

Costs ; gamma (link = log)
QALYs ; normal

Stata mixed, ml via PLQ 3192 (357) –0.011 (0.0799)
Stata mixed, reml via PQL 3178 (352) –0.011 (0.0825)
Stata merlin, ml 3246 (484) –0.013 (0.019)
Stata gsem, ml 3246 (483) –0.012 (0.019)
R lme, ml via PQL 3246 (483) –0.013 (0.019)
R lme, reml via PQL 3248 (490) –0.013 (0.019)
WinBUGS MCMC 3220 (584) –0.013 (0.019)

Model F3: Bivariate mixed-effects
regression with

Costs ; gamma (link = log)
1-QALYs ; gamma (link = log)

Stata mixed, ml via PQL 3223 (383) 0.00092 (0.0072)
Stata mixed, reml via PQL 3212 (387) 0.00089 (0.0073)
Stata merlin, ml
Stata gsem, ml robust se 3227 (557) 0.0012 (0.042)
R lme, ml via PQL 3247 (489) 0.0037 (0.019)
R lme, reml via PQL 3247 (497) 0.0036 (0.019)

ml, maximum likelihood/maximum quasi-likelihood; reml, restricted maximum likelihood/restricted maximum quasi-likelihood; MCMC,

Markov Chain Monte Carlo simulation; SE, standard error.
aEmpty cells indicate either that the routine is not available or the model did not converge.
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methods, results, and the subsequent economic evalua-
tion are published elsewhere.47,48 We use the GRACE
data here to illustrate simultaneous modeling of 3 out-
comes (costs, QALYs, and proportion with a severe
cough), each of which is of a different data form. These
types of analyses can be useful for economic evaluations
conducted alongside multinational, multicenter, or clus-
ter randomized controlled trials, where the aim is to
express cost-effectiveness using alternative measures of
benefit or effectiveness. For example, cost-effectiveness
and cost-utility analyses can be conducted simultane-
ously in a single analytic model. If outcomes are suffi-
ciently correlated, there may be gains in precision from
modeling the between-outcome and between-cluster
correlations.

Figure 6 displays the distribution of total costs and
QALYs accrued over the 28-d follow-up by treatment
group. The plots suggest a departure from normality in dis-
tribution for both outcomes, with health care costs exhibit-
ing the typical skewness to the right and QALYs in the
opposite direction. The scale-location plots show evidence
of heteroscedasticity, suggesting the constant variance
assumption implied in a linear mixed-effects model may be
inappropriate for the GRACE data (Figure 7). We fit 3 tri-
variate mixed-effects random coefficient regressions with
treatment allocation, age, gender, and baseline utility as
fixed-effect covariates and study country as random effect.
In the first analysis (model G1), we assumed costs and
QALYs follow a normal distribution, whereas the
severity of cough was modeled using a binomial distri-
bution. For the second model (model G2), costs were
modeled using a gamma distribution with a log link

function to accommodate skewness in the data, whereas
the distributions for QALYs and severity of cough
remained the same as in model G1. The third model
assumed that costs and QALYs follow a gamma distri-
bution with the transformation implied by equation (7)
applied to the QALY variable.

Adjusted estimates of the incremental mean costs,
incremental mean QALYs, and an incremental mean
reduction in the proportion with a severe cough for
amoxicillin compared with placebo, together with the
associated standard errors from fitting these models, are
presented in Table 5. Estimates of incremental costs and
incremental QALYs and the corresponding standard errors
were broadly similar across alternative estimation proce-
dures. In this example, the sample size of 2060 patients
from 12 countries is large, such that all 3 estimation proce-
dures (maximum likelihood, restricted maximum likeli-
hood, and the Bayesian MCMC implementation) produced
similar estimates of the standard errors associated with
incremental costs and incremental outcomes.

To illustrate the impact of alternative distributional
assumptions on within-trial cost-effectiveness, we chan-
ged the distribution of costs (a normal distribution in
model G1 to a gamma distribution with log-link in mod-
els G2 and G3) while maintaining the same distributional
assumptions for QALYs and the probability of severe
cough. This has minimal impact on incremental QALYs
but changed the incremental mean costs from e135.87
(standard error e11.22) in model G1 to e107.65 (stan-
dard error e14.41) in model G2 and e108 (standard error
e14.41) in model G3. For this particular example, the
distribution of health care costs was skewed to the right,

Figure 6 Distribution of costs and quality-adjusted life-years accrued over 28 d displayed by treatment group.
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the model with gamma-distributed error structure pro-
duced a lower estimate of the mean cost difference com-
pared with assuming a normal distribution for the costs.

Discussion

In this article, we have shown how the generalized linear
mixed-model framework may be extended to model mul-
tiple outcomes of mixed data types typically encountered
in many health economic investigations. We developed
easily implementable tools to estimate the models in the
statistical programming packages Stata and R and illu-
strated their applications using observed and simulated
data from clinical trials. These models may be usefully
employed, for example, as part of sensitivity analyses to
assess the robustness of multinational and cluster rando-
mized trial–based cost-effectiveness analyses for depar-
tures from assumed normality of the error structure. The
new tools will also make it possible to implement meth-
ods in Stata and R for cost-effectiveness analyses that
use data from multinational trials (previously proposed

and implemented in WinBUGS and MLwiN8,9,49,50)
for normally and nonnormally distributed data. Thus,
the proposed methods can be employed to assess the
generalizability of cost-effectiveness results from multi-
national trials where concerns about between-country
heterogeneity in health care resource use, costs, and
preference-based health outcome measures (see, for
example13,17,54–56 for a detailed discussion of these issues)
makes it increasingly unrealistic to pool health care costs
across countries directly.

The new methods permit restricted maximum likeli-
hood estimation of a mixed-effects regression with
more than 1 dependent variable via a penalized quasi-
likelihood algorithm. This may be advantageous in small
to moderate sample size applications, as demonstrated in
our simulations, in which restricted maximum likelihood
was found to produce 95% confidence intervals with
better coverage probabilities than maximum likelihood
estimation. Our simulations suggest that in studies
with moderate sample sizes of 200 individuals spread
equally across 10 clusters, both maximum likelihood and

Figure 7 Diagnostic plots from fitting normal error regression to total costs (4 plots on the top) and quality-adjusted life-years (4
bottom plots) for the GRACE study.
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restricted maximum likelihood generated estimates of
incremental net benefit with low bias but only restricted
maximum likelihood produced 95% confidence intervals
with coverage probabilities close to the desired 0.95 nor-
mal value. Estimation bias increased when the sample
size was decreased to 100 individuals spread equally
across 5 clusters, but the confidence interval coverage
generated via restricted maximum likelihood remained
relatively unaffected (scenario 1, Table 3).

Preliminary results from the simulation and applica-
tions to the observed clinical trial data also suggest that
the new routines produced broadly similar point esti-
mates of parameter values as compared with estimates
obtained from Stata’s merlin and gsem and the Bayesian
implementation in WinBUGS. Estimates of variance
components and standard errors of parameter values
were broadly comparable across platforms when the
same method of estimation was used, and the data set
was relatively large both in terms of the number of clus-
ters and number of individuals per cluster. However, as
shown in the simulation, for small to moderate sample
size applications (i.e., 100 to 200 patients recruited across
5 to 10 clusters), maximum likelihood can underestimate

the variance components (confidence intervals and stan-
dard errors around parameter values) as compared with
restricted maximum likelihood. Underestimation of var-
iance components will propagate toward underestima-
tion of the uncertainty around final economic endpoints
of interest and therefore has implications for characteriz-
ing uncertainty in cost-effectiveness analysis. This is
important in trial-based economic evaluations as clinical
trials often recruit from a relatively small number of
study sites, centers, or clusters.

The methods outlined in this article are not novel in
that they are based on extensions of pseudo and quasi-
likelihood linearization methods25,26 proposed over 2 to
3 decades ago. However, the implementation in R and
Stata for modeling mixed outcomes and applications to
the analysis of economic data from clinical trials is a
novel and useful addition to the tools available for ana-
lysts working in clinical trials research. The new routines
are easy to implement and can estimate variances and
standard errors by restricted maximum likelihood that
are useful for generating confidence intervals with desired
coverage in small-sample situations but unavailable
in gllamm, merlin, and gsem, which implement more

Table 5 Illustrated Example from Multinational Clinical Trial with 3 Outcomes Using GRACE Data (Random-Coefficient
Model)a

Model

Package, Function, and

Method of Estimation

Incremental
Costs;

Mean (SE), e

Incremental
QALYs;

Mean (SE)

Incremental
Proportion with

Severe Cough (SE)

Model G1: Bivariate mixed-effects
regression with

Costs ; normal
QALYs ; normal
Cough ; binomial (link = log)

Stata mixed, ml
Stata mixed, reml
Stata merlin, ml 154.34 (2.70) 0.0003 (0.0310) –0.0202 (0.0138)
Stata gsem, ml 154.34 (2.69) 0.0003 (0.0312) –0.0202 (0.0140)
R lme, ml via PQL 154.34 (2.71) 0.0003 (0.0311) –0.0202 (0.0137)
R lme, reml via PQL 135.87 (11.22) 0.0003 (0.0312) –0.0202 (0.0137)
WinBUGS MCMC 131.90 (14.59) 0.0004 (0.0007) –0.0046 (0.0291)

Model G2: Bivariate mixed-effects
regression with

Costs ; gamma (link = log)
QALYs ; normal
Cough ; binomial (link = logit)

Stata mixed, ml via PQL
Stata mixed, reml via PQL
Stata merlin, ml 108.97 (14.36) 0.0003 (0.0311) –0.0044 (0.0227)
Stata gsem, ml 108.96 (14.36) 0.0003 (0.0311) –0.0044 (0.0227)
R lme, ml via PQL 108.96 (14.36) 0.0003 (0.0311) –0.0044 (0.0227)
R lme, reml via PQL 107.65 (14.41) 0.0003 (0.0311) –0.0018 (0.0259)
WinBUGS MCMC 113.00 (13.21) 0.0002 (0.0005) –0.0073 (0.0267)

Model G3: Bivariate mixed-effects
regression with

Costs ; normal
1. QALYs ; gamma (link = log)
Cough ; binomial (link = log)

Stata mixed, ml via PQL
Stata mixed, reml via PQL
Stata merlin, ml
Stata gsem, ml
R lme, ml via PQL 108 (1400) 0.0002 (0.062) –0.0040 (0.02278)
R lme, reml via PQL 108 (14.39) 0.0002 (0.062) –0.0011 (0.02605)
WinBUGS MCMC 107 (12.65) –0.0001 (0.0047) –0.0090 (0.0282)

ml, maximum likelihood/maximum quasi-likelihood; reml, restricted maximum likelihood/restricted maximum quasi-likelihood; MCMC,

Markov Chain Monte Carlo simulation; SE, standard error.
aEmpty cells indicate the model did not converge or the particular routine was currently unavailable.
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accurate numerical integration techniques. For more
complex problems, these other functions may therefore
have advantages in being able to estimate the model more
accurately. In the meantime, further simulation-based
research is required to understand their statistical proper-
ties and performance under different modeling assump-
tions such as in applications involving clusters of unequal
sizes and alternative specification of the error structure
and link functions.

The parameterizations outlined in the Methods sec-
tion require data in long format for the analysis, with
outcome measures stacked on top of one another to form
a single response. This parameterization ensures that indi-
viduals with partially observed outcomes data (such as
missing costs but not clinical outcomes) can be included in
the analysis under the missing-at-random assumption, in
which covariate information is fully observed. Case-wise
deletion of partially observed outcome data is avoided in
this case, and imputation is not required under the
missing-at-random assumption, similar to the full informa-
tion maximum likelihood approach of structural equation
modeling (see, for example, Mehta and Neale50 and the
references therein). Further research should focus on iden-
tifying strategies for handling more complex missing data
problems such as missing covariates and nonignorable
missingness problems in which explicit modeling of the
missingness mechanism may need to take into account
hierarchical structures within the data.

Finally, cost-effectiveness analysis requires estimates
of incremental costs and incremental benefits in the natu-
ral unit of measurement. Except for modeling on the
identity link scale, estimates of incremental costs and
effects generated on the scale of the link function should
be transformed back onto the natural scale of measure-
ment for use in cost-effectiveness analysis. This can be
achieved by taking random draws from the joint distri-
bution of the parameter estimates on the scale of the link
function and then back-transforming the simulated out-
put onto the natural scale of measurement.
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