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Abstract: Modern wireless networks are notorious for being very dense, uncoordinated, and selfish,
especially with greedy user needs. This leads to a critical scarcity problem in spectrum resources.
The Dynamic Spectrum Access system (DSA) is considered a promising solution for this scarcity
problem. With the aid of Unmanned Aerial Vehicles (UAVs), a post-disaster surveillance system
is implemented using Cognitive Radio Network (CRN). UAVs are distributed in the disaster area
to capture live images of the damaged area and send them to the disaster management center.
CRN enables UAVs to utilize a portion of the spectrum of the Electronic Toll Collection (ETC) gates
operating in the same area. In this paper, a joint transmission power selection, data-rate maximization,
and interference mitigation problem is addressed. Considering all these conflicting parameters, this
problem is investigated as a budget-constrained multi-player multi-armed bandit (MAB) problem.
The whole process is done in a decentralized manner, where no information is exchanged between
UAVs. To achieve this, two power-budget-aware PBA-MAB) algorithms, namely upper confidence
bound (PBA-UCB (MAB) algorithm and Thompson sampling (PBA-TS) algorithm, were proposed to
realize the selection of the transmission power value efficiently. The proposed PBA-MAB algorithms
show outstanding performance over random power value selection in terms of achievable data rate.

Keywords: unmanned aerial vehicles; dynamic spectrum access; quality of service; reinforcement
learning; multi-armed bandit

1. Introduction

The fast development of UAVs, which are commonly known as drones, has received
much attention in various domains [1,2]. Recently, UAVs have been leveraged for future
civil applications although their usage was restricted to military applications only during
the last few years. This is considered a promising direction since UAVs have unique
properties that can support this goal. UAVs are capable of various functions as they are
able to fly, are maneuverable, and are easy to deploy. Hence, UAVs can handle different
tasks as delivery services, traffic monitoring, aerial photography, disaster management,
rescue operations, and wireless communications [1,2]. In recent years, major disasters have
occurred around the world such as the great Tohoku earthquake and tsunami, which hit
Japan in 2011; Hurricane Sandy on the northeastern coast of the USA in 2012; the Nepal
earthquake in 2015, the massive explosion in the port of Beirut, Lebanon, in 2020; and the
global wildfires in North America and Europe in 2021. All these natural disasters caused
terrible damage to infrastructure and loss of human lives. The first few hours after the
disaster are considered the golden relief time to provide support and emergency aid to save
these precious lives. Therefore, this paper focuses on wireless communications applications
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for UAVs to support a post-disaster area surveillance system. Specifically, UAVs can fly
over the post-disaster areas to collect live photos of the current situation and send this
collected information to a disaster management center to be analyzed. This will enable
rescue teams to get information promptly about the actual situation in the affected area,
which will enhance their response time [3].

On the other hand, and due to the persistent increase in demand for mobile services,
spectrum resources are becoming more and more scarce [4]. Therefore, it is expected that
future mobile networks will host a modern communications technology that supports
unsurpassed networking architecture and energy-efficient devices. To realize these novel
concepts, new fundamental challenges have appeared on the surface. Unlike wired commu-
nications systems, due to the national spectrum regulations and the hardware limitation,
the wireless world has limited links to distribute. Consequently, it will be mandatory
for the traditional regulation of the spectrum to have a fundamental reform so that it
can allow more efficient use of spectrum resources. Spectrum inefficiency has become a
major concern; hence it is imperative to search for an effective solution to deal with the
resource allocation problems from the spectrum and power-efficiency points of view. This
solution should achieve three main goals. Firstly, it should be amenable to the distributed
implementation. Secondly, it should be capable of dealing with the uncertainty caused by
the lack of information. Thirdly, it should deal with users’ selfishness. One of the most
promising solutions is the DSA system [5], which can be implemented as a CRN [6]. A DSA
system has the ability to enhance the spectrum utilization efficiency [7]. Hence, CRN allows
unlicensed Secondary Users (SUs) to coexist with the licensed Primary Users (PUs) in the
licensed band without causing any harmful impact on PUs in terms of different Quality
of Services (QoS) aspects. In other words, SUs can utilize a portion of the licensed PUs
spectrum under certain QoS constraints [6]. Therefore, to enhance the network efficiency,
SUs’ spectrum utilization should be maximized while keeping an eye on the QoS level of
the high-priority traffic, i.e., the PUs traffic, to avoid any services interruption to the highly
prioritized data transmission.

The concept of this resource allocation issue is considered a challenging problem for
two reasons. First, the resource allocation process can be made with a large number of
orthogonal communication dimensions such as time, frequency, code, space, and antenna
direction [8]. Second, in order to enhance the spectrum utilization, QoS for both PUs and
SUs should be maximized. To achieve this, there are different conflicting parameters that
need to be jointly optimized as transmitted power, channel occupation, total throughput,
and mutual interference level between simultaneous users. Therefore, for a certain number
of PUs and SUs, there are indispensable targets for the optimization algorithm such as the
interference threshold for each PU, the channel state information, and the geographical lo-
cation for both of PUs and SUs. Moreover, this optimization scenario can be decentralized,;
in other words, there is no need to deploy a fusion center to collect enough information
from the environment and complete the optimization process to the end. Since energy
levels are not observed in general, and both PUs and SUs form a distributed network, it
can benefit from that distribution to sense the available energy at each node. From this
point of view, the design of an efficient future wireless network needs to deal with the
uncertainty of information besides different users’ competition and selfishness. Hence, it
becomes mandatory to search for a powerful mathematical tool that can deal with such
unprecedented network problems.

Machine learning (ML) algorithms, more precisely reinforcement learning (RL) algo-
rithms, are leveraged to deal with these kinds of optimization problems [9]. The reason
behind selecting RL algorithms is their capability to achieve tremendous results in general-
ization and efficiency, leading to their capability to tackle real-life problems, and especially
in field of wireless communications [9]. Furthermore, RL algorithms are able to deal with
conflicting optimization parameters of the resource allocation problem for the DSA sys-
tem [10]. Without prior information about the environment, an agent can learn to enhance
its future actions based on its past experience. MAB algorithms are considered one of such
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RL algorithms. MAB algorithms can be described as a set of actions (arms) of a bandit
machine that each arm leads to a certain reward [11]. A player needs to maximize their
accumulated reward over the playing epoch by choosing one arm to pull in each playing
round. Moreover, this player has no idea about the reward behind each arm. So, this
instantaneous reward behind each arm is revealed once the player decides to select this
arm. Therefore, for this hidden setting, the player may lose some reward in each trial due
to not selecting the arm that leads to the highest reward value instead of the chosen arm.
This loss is denoted by regret [12]. Thus, each player should select a sequence of arms to
pull to maximize their total reward over horizon, in other words, to minimize their total
regret over horizon. This is a common dilemma faces MAB algorithms and it is called the
exploration–exploitation trade off [13–15].

Over the last decade, with the rapid increase in the number of natural disasters
occurring throughout the world, there has become an urgent need to develop a smart post-
disaster surveillance system. This smart system should operate in a fully decentralized
manner, i.e., without having a controlling center, to speed up collection and analysis of data
for a post-disaster area to enhance the performance and reduce the response time of the
rescue operations. DSA systems are considered a rich topic that was deeply investigated in
the early 2000s for some quite old applications such as analog TV white spaces, especially
in the Very High Frequency (VHF) and the Ultra High Frequency (UHF) bands [16]. Hence,
we aimed to refurbish the well-known DSA system by exploiting the benefit of using ML
algorithms as a modern optimization tool. Furthermore, UAVs, which are capable of flying
and capturing high-resolution videos using attached cameras, were leveraged recently to
support various applications in the civilian life. All these ideas motivated us to develop a
smart and cheap post-disaster surveillance system by combining the advantages of DSA
system, UAVs, and ML algorithms. In addition, this system is presented as unconventional
method to solve the spectrum scarcity problem. In this way, DSA-system-aided ML
algorithms can open the gate to unprecedented applications in the field of UAVs wireless
communication networks.

In this paper, we aim to design and evaluate a spectrum allocation for a DSA system
using MAB algorithms to support a post-disaster surveillance system. From a MAB
perspective, UAVs, which are considered SU transmitters, will act as the player who aims
to maximize their long-term reward, i.e., data rate. Furthermore, this player is constrained
by a limited power budget. On the other hand, different transmitting power levels will
act as arms of the bandit machine. The MAB algorithm is considered the most suitable
algorithm for our optimization problem as it can deal with online optimization problems
without any prior information about the environment except the player’s observations of
the achieved reward while playing. Our paper adapts two different MAB algorithms, the
Upper Confidence Bound (UCB) [15] and Thompson Sampling (TS) [17], to address such an
optimization problem. In this paper, a modified version of MAB algorithms is proposed to
treat our optimization problem. This is called the Power-Budget-Aware PBA-MAB (MAB)
algorithm. The key idea behind the PBA-MAB algorithm is to include the available power
budget for each UAV in the decision-making process when choosing the most appropriate
transmitting power value.

From the point of view of the DSA system, the SU network, which consists of UAVs
and temporary base stations, shared the spectrum resources as a CRN with the PU network,
which consists of highway Electronic Toll Collection (ETC) gates and cars passing these
ETC gates, under certain QoS constrains. Hence, SU transmitters are allowed to send
their data without causing a harmful interference to the most precious data of the PU
network. It should be mentioned that our design allows both the PU network and the
SU network to coexist at the same time under a certain signal-to-interference-plus-noise
ratio (SINR) threshold. Furthermore, we need to utilize the multi-objective formulation.
Given the location of each PU and the power budget of each SU, we seek to design for a
joint optimization problem considering different conflicting objects such as interference
coordination, sum-rate maximization, and total number of active SUs in the network,
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subject to QoS constraints for both PUs and SUs. Despite the adversarial problem definition
and the selfish behavior of each UAV toward achieving its maximum data rate, modified
MAB algorithms learn how to select the most suitable action over time to enhance the
overall system performance as discussed in [18–20] and illustrated in our paper. The main
contributions of this paper can be summarized in the following points:

• The selection of the transmitted power value for UAVs aiding a post-disaster area
surveillance system is formulated as an optimization problem aiming to maximize the
achievable data rate while considering the limited available power budget for each
UAV. This is done in a decentralized manner as there is no exchange of information
among UAVs.

• Integrating the post-disaster surveillance system as a CRN is considered an uncon-
ventional solution for the spectrum scarcity problem. Furthermore, it can reduce the
overhead cost of renting dedicated frequency channels for post-disaster surveillance
operations, while they are rarely used just when a disaster occurs.

• Despite the nature of original MAB algorithms to maximize the long-term reward, i.e.,
the achieved data rate, MAB algorithms are modified to take into account the limited
power budget for transmission. Therefore, the selection of the transmitted power not
only aims to maximize the data rate for the current channel but also considers the
remaining power budget to maximize the data rate for the next available channel.

The rest of the paper is organized as follows. Section 2 overviews the related work.
Section 3 introduces the system model and the power value selection optimization problem.
Section 4 introduces proposed PBA-MAB algorithms and how these algorithms can deal
with this kind of optimization problem. Section 5 gives simulation and analysis of the
proposed optimization scenario. Finally, we summarize the result and point out the future
research in Section 6.

2. Related Works

Since the early 21th century, the idea of DSA gained increasing attention, especially
in the US and Europe, due to the spectrum congestion [21]. An overview of the ma-
jor technical and regularity issues of DSA systems was presented in [21]. The authors
of [22] introduced the concept of multi-dimensional spectrum sensing and discussed the
challenges associated with it. They developed prediction algorithms based on the past
multi-dimensional spectrum utilization information to predict the future usage of the
spectrum. With the aid of the DSA system, CRN can be established to support different
applications as public safety, smart grid, broadband cellular, and medical applications.
Ref. [23] discussed some challenges that faced the practical application toward this idea.
An overview of CRN design layers, such as the physical layer (PHY), the medium-access
control layer (MAC), and the network layer, is presented in [24]. Furthermore, the authors
showed how these layers can interact with each other. The authors of [25] investigated the
throughput improvements in a CRN using different channel selection techniques such as
frequency hopping, frequency tracking, and frequency coding. Ref. [26] investigated the
CRN formed by the incorporating radio capabilities of a Wireless Sensor Network (WSN).
It addressed both advantages and limitations of CRN for WSN in conjunction with the
existing applications and techniques. A continuous-time Markov chain model is imple-
mented in [27] for a DSA system in an open spectrum wireless network. The authors of [28]
examined how CRN devices can find an available spectrum channel under different system
capabilities, spectrum policies, and environmental conditions. They defined this problem
as a “rendezvous” problem. With the aid of RL algorithms, the authors of [29] proposed a
framework for Internet of Things (IoT) devices to capture and model the traffic behavior
of short-time spectrum occupancy in order to determine the existing interference in the
shared bands. In [30], a novel information and energy cooperation method were introduced
for cognitive Heterogeneous Networks (HetNets). This method aimed to enhance energy
efficiency by solving an energy efficiency maximization problem with respect to joint time
allocation and power control. The authors of [31] proposed an enhanced fusion center rule
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for soft decision cooperative spectrum sensing using energy detection to mitigate the noise
uncertainty effect and to enhance the sensing performance of CRNs.

In recent years, there have been research efforts for using UAVs to support post-
disaster area applications. In [32], the authors used UAVs with conjunction with cellular
network and WSN to aid disaster management applications. A genetic algorithm was used
in [33] for UAV location optimization to enhance the overall coverage and data rate of
the wireless network. The authors of [34] proposed an effective method to support rescue
operations in locating victims of a natural disaster. This was done with the aid of lidar and
infrared depth cameras attached to UAVs to build a detecting system independent of the
illumination intensity. A video recorder and a geolocation module attached to UAV were
used in [35] to search for survivors in a post-disaster area. In [36], the authors examined
flying communication services using Wi-Fi, video camera, and web servers attached to
UAVs. They aimed to enable affected users after a disaster to use their smartphones for tex-
ting and video communication in real-time. The authors of [37] proposed a mobility model
based on self-deployment of an aerial ad hoc network based on the Jaccard dissimilarity
metric for a post-disaster area. The software simulation integrates the mobility of victims
and generate a corresponding UAVs mobility model to trace those victims. In [38], authors
proposed an energy efficient task scheduling for the collected data by UAVs from ground
IoT network to support a disaster management system.

In [39], UAVs were used as on-demand airborne relays to connect remote users with a
cellular BS when they were separated by vast obstacles. Furthermore, UAVs can be used in
WSNs to distribute and collect information in both of Control Plane (CP) and Data Plane
(DP) from wireless sensors deployed on the ground level [40,41]. UAVs are being used to
assist the management and control of Vehicle Ad hoc NETworks (VANETs) and extend
its coverage [42]. All the above existing research works assume a full awareness of the
network parameters, which is not the case of our paper, where there is no information
change among UAVs while trying to maximize the achievable data rate, as the network is
fully decentralized.

On the other hand, RL algorithms have become a promising optimization technique
for solving chronic UAV problems that have occurred as a result of integrating UAVs in
wireless communication applications. RL algorithms are well known for their capability
to achieve near optimal results in generalization and efficiency. Therefore, they are used
to tackle real-time problems in the field of wireless communications. Detailed discussion
about different MAB algorithms can be found in [43,44]. It has been shown in several works
that MAB algorithms can be adapted to tackle such problems related to DSA systems. The
authors of [45] proposed MAB learning algorithms for CRN, and particularly for spectrum
sensing in a DSA system in licensed bands [7]. Different MAB algorithms, such as UCB and
TS, have been used to improve the spectrum access in unlicensed Wi-Fi networks [45,46].
The authors of [47] considered a set of policies for multiple-user-independent and identical
distributed (iid) and rested MAB problems with the assumption that each SU declares
its action to others, e.g., the selected channel, which is considered a strong constraint. A
disputed learning and spectrum access policy for iid rewards is discussed in [48], and
it was proven that this policy has a logarithmic order regret. In [49], the decentralized
learning for DSA system with multiple SUs spectrum access has been studied. The authors
of [50] proposed a modified MAB algorithm to solve the gateway selection in UAV wireless
network for post-disaster area applications. These algorithms are considering the battery
life while searching for the most suitable gateway UAV to maximize the total system
throughput. A dynamic wireless channel selection based on the MAB algorithm with
laser chaos time sequence is proposed in [51]. The adaptive channel selection achieved
a higher throughput using four channels Wireless Local Area Network (WLAN) based
on IEEE802.11a system. The authors of [52] proposed a simple and powerful tug-of-war
MAB algorithm. Since this algorithm is very simple, it can be applied in wireless network
selection for devices with small processing capabilities as IoT devices and smartphones.
Ref. [53] studied the millimeter-wave (mmWave) two-hop relaying as a single-player MAB
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problem in order to enable one relay probing while maximizing the achievable spectral
efficiency. This was done by using modified versions of MAB algorithms. The authors
of [54] studied the problem of joint neighbor discovery and selection in mmWave device to
device (D2D) networks using a stochastic budget-constraint MAB algorithm.

3. System Model

This section discusses the network architecture of the post-disaster area surveillance
system using UAVs and the used channel model for transmitting the collected data.

3.1. Post-Disaster Area Surveillance System Architecture

Figure 1 shows a simplified version of the system architecture of the UAV wireless
network in a metropolitan post-disaster area. Since the first few hours after the occurrence
of the natural disaster (such as flood or earthquake) are considered the golden relief
time to save human lives, as discussed in the introduction section, UAVs should collect
pivotal information about victims in the damaged area using an attached high-definition
camera. The collected data can be further analyzed by the disaster management center
to identify victim’s exact location, number, age, gender, and injury status. On the other
hand, temporary base stations are deployed in the disaster area to collect this information
from surveillance UAVs and send them to the disaster management center to aid rescue
teams. These temporary base stations are used as charging stations for UAVs. Furthermore,
they are considered the starting flying points. UAVs fly over the disaster area to capture
live photos of certain points at the damaged area. The way in which these temporary base
stations transmit the collected data to the disaster management center, and the method for
selecting surveillance points, are outside the scope of this paper. Moreover, we assumed
in this paper that the different locations in the affected area have the same weight of
importance, so these points were chosen on random bases.

ETC gate

SU Tx

SU Rx

Figure 1. UAV surveillance-system-assisted DSA for a metropolitan post-disaster area.

On the other hand, our system aims to build this surveillance system using CRN.
Therefore, the SU network, which is represented by UAVs and temporary base stations,
will utilize the same frequency band of the PU network. The PU network is represented
by ETC gates and bypassing vehicles in a nearby highway. In this way, we aimed to
reduce the cost of reserving dedicated channels for surveillance system while it is being
used during the time of natural disasters only. Each UAV collects and sends data to its
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corresponding temporary base station. Furthermore, each UAV should not deal harmful
interference to the transmitted data between ETC gates and vehicles on the nearby highway.
It should be mentioned that our optimization problem design is considered a soft-spectrum
allocation. The difference between conventional spectrum allocation that have been studied
in [55,56] and our optimization problem is that the conventional optimization problem
treats the spectrum allocation as a hard allocation problem; i.e., no two users (PU and
SU) can share same channels at the same time. However, our design introduces other
orthogonal dimensions of the threshold to enable more than one user to coexist at the
same frequency band if their QoS constraints are not violated. Furthermore, for the sake
of generalization, we supposed that all PU channels, which connect every ETC gate and
nearby vehicles which are passing this ETC gate, are always active and occupied with the
PU network traffic. In this way, we considered the worst-case design scenario in which the
QoS constraints should be carefully verified during the optimization process.

3.2. Problem Formulation

In the following, our design employs the physical model proposed in [57], which
provides a path-loss model to realize the communication environment. It is assumed UAVs
can communicate to temporary base station via air-to-air wireless communication link.
Basically, this type of link can be called a Line of Sight (LoS) wireless communication
link. Since the design is built using CRN, which shares the spectrum between PU network
and SU network, this shared frequency band is split into Q independent sub-bands, and
each sub-band has a bandwidth W in Hertz. Each primary and secondary transmitter
receiver pair, referred to as primary and secondary users, is numbered by indices ψ ∈ Ψ =
{PU1, . . . , PUΨ} and ω ∈ Ω = {SU1, . . . , SUΩ}. Hence, at any time r, the general path-loss
formula between any transmitter α and any receiver β can be expressed by:

Lαβ,q(r) =
GTx,αGRx,β

dξ
αβ

(
c

4π fq(r)

)2
(1)

where GTx,α and GRx,β are the transmit and receive antenna gains, respectively, dαβ is
the distance between α transmitter and β receiver, c is the speed of light, fq(r) is the
carrier frequency of sub-band q, and ξ is the attenuation constant for the LoS wireless
communication link. For the current design, it is assumed that the pass loss is the dominant
loss factor for the received power. Hence, the effect of multi-path fading and shadowing is
ignored. Furthermore, we assumed the transmitted signal is affected by an Additive White
Gaussian Noise (AWGN) channel with zero mean and N0 variance. Therefore, the SINR of
SU ω in carrier q at time r can be given by:

γω,q(r) =
pω,q(r)Lωω,q(r)

N0 + ∑λ∈Ψ∪Φ,λ 6=ω pλ,q(r)Lλω,q(r)
(2)

where pω,q(r) and pλ,q(r) denote the transmitted power of the ω-th SU and the λ-th PU or
SU, respectively. For a successful established communication link, the SINR should satisfy
a condition that the achievable SINR must be greater than the threshold SINR, which is
given by γω,q(r) > γωTH,q(r). Under these assumptions, the achievable data rate can be
calculated by:

Rω,q(r) =

W
Q
∑

q=1
log2

(
1 + γω,q(r)

)
, if γω,q(r) > γωTH,q(r)

0, otherwise
(3)

where W is the bandwidth of the communication channel.
Since the data rate is measured from the receiver side, we assumed this value is

reported to the SU transmitter through a feedback channel. The concept behind this
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assumption comes from how modern communication systems are supposed to offer high
flexibility in different ways. One of these ways is to split user and control planes to
support software defined networking applications to allow flexible placement of processing
function between different network nodes [58]. For PUs, it is assumed that they operate in
a narrowband network, which means a pre-determined power value is assigned to each
PU. This design criterion is suitable when licensed users have to operate on narrowband
channels. On the other hand, for a wideband PU network, straightforward extension can
be done without affecting this methodology. Since SUs need to utilize these multiband
channels, where each sub-band is previously assigned to a certain PU, each SU has a
power budget denoted by Pmax. Whereas it is assumed that our PUs and SUs networks use
omnidirectional antennas, the communication channel can be established according to (1)
with considering antennas gain GTx,α = GRx,β = 1, ∀α, β. Furthermore, it is assumed that
each PU transmits using only single sub-band, and PUs operate in disjoint sub-bands. As a
result, we have the number of PUs equal to number of channels and hence Ψ = Q. The
main target of the optimization algorithm is to maximize the sum-rate, the total throughput,
for the SUs network. This can be achieved by optimizing the power levels allocated for
each SU within each shared traffic channel. The power allocation vector can be defined
as pω = [pω,1, . . . , pω,Q]

T, where each element represents the power value for SU ω for
each sub band q. In case that a SU has a power vector equal to zero, it means that this
SU in inactive. On the other hand, for PUs, it is allowed for a single PU to transmit
only on a single sub-band so that they are operating in disjoint sub-bands. Moreover,
during data transmission of SUs, they should avoid causing any harmful interference
to the high priority traffic that belongs to PUs network. It is mandatory for each SU to
satisfy this condition and not exceed its allowed power budget during transmission as well.
Considering all these power budget limitations and interference constraints, the sum-rate
maximization problem can be formulated as:

max
1
R∑

r
∑
ω

∑
q

Rω,q(r)

s.t. γψ,q(r) > γψTH,q(r)

γω,q(r) > γωTH,q(r)

(4)

whereR is the total time spent for data transmission , r = 1, . . . ,R, and γψ,q(r) > γψTH,q(r),
γω,q(r) > γωTH,q(r) are the SINR constraint conditions for all PUs and all SUs, respectively.
Thus, for SUs, it is mandatory to satisfy both SINR conditions to utilize a sub-band channel
from PUs channels.

Since our network is designed in a decentralized way with no information exchange
between different network elements, the only information available to UAVs are the
location, the channel frequency and the transmission power of each ETC gate system.
Therefore, we have developed a method to let UAVs estimate the interference caused by
self-transmission and calculate the corresponding SINR value for each PU’s receiver. With
the aid of Equations (1) and (2), each UAV will calculate the expected SINR value at each
ETC gate under the interference effect of its own data transmission. Then, each UAV can
check individually for the satisfaction of SINR conditions for both the PU network and
the SU network. In such a way, there is no need to deploy a fusion center to share the
SINR information between different SU network nodes, and therefore the network can be
implemented in a decentralized way.

4. Proposed Power Budget Aware MAB Algorithm

This section discusses two proposed algorithms to tackle this rate maximization
problem. These algorithms are called Power Budget Aware Upper Confidence Bound
(PBA-UCB) and the Power Budget Aware Thomson Sampling (PBA-TS).
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4.1. Proposed PBA-UCB Algorithm

UCB is considered one of the efficient MAB algorithms that can achieve balancing for
the exploration-exploitation dilemma of the MAB algorithm. UCB enhances the confidence
of the arm selection by decreasing the uncertainty behind the reward that will be revealed.
Algorithm 1 illustrates a modified version of the UCB algorithm, which is called the
PBA-UCB algorithm. This algorithm is applied to each UAV to select the most suitable
transmission power in a selfish way to maximize the system rate. It is assumed that
each UAV has information about the location of surrounding ETC gates operating in the
surveillance area. Furthermore, they know the transmitting frequency for each ETC gate.
The method of how UAVs can detect the location and the operating frequency of each ETC
gate is behind the scope of this paper. Hence, each UAV tries to maximize its own data rate
while competing with other UAVs to increase its transmission power while keeping an
eye on the SINR threshold. At the beginning, i.e., the first N rounds, PBA-UCB algorithm,
which is enabled on each UAV, tests the data rate that can be achieved by transmitting on
all available channels with random transmission power and observes the achievable data
rate. Afterwards, for the remaining rounds, N + 1 ≤ r ≤ R, the PBA-UCB algorithm picks
a power value in a way that satisfies:

p∗ω,q(r) = arg max
pω,q∈pω

(
µ̂ω,q(r− 1) +

√√√√ η ln(r)

T(p)
ω,q(r− 1)

−
pω,q

pω,M

)
(5)

where pω,q ∈ pω is the average reward obtained for transmission power value p in channel
q up to the last previous round (r− 1), µ̂ω,q(r− 1) is the average achievable data rate to
the last previous round (r− 1) using transmission power value p in channel q, and it can
be calculated as:

µ̂ω,q(r− 1) =
1

T(p)
ω,q(r− 1)

T(p)
ω,q(r−1)

∑
m=1

Rω,q(m) (6)

where Rω,q(m) is the achievable data rate, which can be obtained from Equation (3).

T(p)
ω,q(r− 1) is a count of the number of selections of this transmitting power value until the

last previous round (r− 1). pω,q is the selected power value for transmission and pω,M
is the total available power budget for UAV that can be used. This equation illustrates
how PBA-UCB works. If a transmission power value is selected many times, which makes

T(p)
ω,q(r− 1) become large, the confidence bond term

√
η ln(r)

T(p)
ω,q(r−1)

decreases, and that causes

the UAV to seek to explore other power values that are less selected in the previous rounds.
On the other hand, when a transmission power value achieved a high reward, i.e., high
data rate, during the past rounds, which means µ̂ω,q(r− 1) becomes large, the UAV seeks
to exploit this high-gain arm in order to achieve the maximum achievable reward during
this round. Originally, the PBA-UCB algorithm sets parameter η to a positive value of 2 in
most cases [13], but empirically, when it is set to η = 0.5, the performance is improved [12].
In that way, the PBA-UCB algorithm can solve the exploration–exploitation trade-off in an
efficient way. Furthermore, the term pω,q

pω,M
shows how a UAV can balance between selecting

a power value to achieve a high data rate and consider for the remaining power budget to
be used in transmission on next available channels. It should be mentioned that this last
term defines the contribution behind our proposed PBA-UCB algorithm. Since the original
UCB algorithm could achieve only balancing between exploration and exploitation, our
proposed PBA-UCB algorithm enables a novel way to keep an eye on the remaining power
budget while balancing between exploration and exploitation. Furthermore, when selecting
a transmission power, the PBA-UCB algorithm checks for the satisfaction of both PU and
SU SINR conditions. Once it is satisfied, the algorithm confirms the use of this transmission
power value, starts to transmit data, and calculates the corresponding rate. Otherwise, it
sets the transmission power to zero and also sets the corresponding data rate to zero. In this
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way, the PBA-UCB algorithm can make sure there is no harmful interference that affects
the PU data transmission. On the other hand, it also counts for the interference threshold
on other SUs data transmission. Since the SINR condition is considered a critical design
issue, this operation is done in both of the initialization phase and the rate maximization
phase to ensure the feasibility of the proposed PBA-UCB algorithm. Algorithm 1 illustrates
the proposed PBA-UCB algorithm.

Algorithm 1 PBA-UCB transmission power selection

1: for ω ← 1 to Ω do
2: for 1 ≤ r ≤ N do . initialization phase
3: for q← 1 to Q do
4: Select a random value for pω,q(r)
5: if γψ,q(r) > γψTH,q(r) then
6: if γω,q(r) > γωTH,q(r) then
7: Obtain Rω,q(r)

8: T(p)
ω,q(r)← 1

9: else
10: pω,q(r)← 0
11: end if
12: else
13: pω,q(r)← 0
14: end if
15: end for
16: end for
17: for r ← N + 1 toR do . rate maximization phase
18: Set pω,M max SU Tx power
19: for q← 1 to Q do

20: p∗ω,q(r) = arg max
pω,q∈pω

(
µ̂ω,q(r− 1) +

√
η ln(r)

T(p)
ω,q(r−1)

− pω,q
pω,M

)
21: if γψ,q(r) > γψTH,q(r) then
22: if γω,q(r) > γωTH,q(r) then
23: Obtain Rω,q(r) using p∗ω,q(r)

24: T(p∗)
ω,q (r)← T(p∗)

ω,q (r− 1) + 1

25: µ̂ω,q(r)← 1
T(p∗)

ω,q (r)
∑

T(p∗)
ω,q (r)

m=1 Rω,q(m)

26: pω,M ← pω,M − p∗ω,q
27: else
28: p∗ω,q(r)← 0, Rω,q(r)← 0
29: end if
30: else
31: p∗ω,q(r)← 0, Rω,q(r)← 0
32: end if
33: end for
34: end for
35: end for

4.2. Proposed PBA-TS Algorithm

TS algorithm copes with the exploration–exploitation dilemma using a different
method than the previously discussed UCB algorithm. Basically, the reward gained by
laying with different arms using the TS algorithm is drawn from a pure Bayesian prob-
abilistic model [59]. In the beginning, TS uses a prior distribution for the reward based
on the initialization of parameters of the probabilistic model. Afterward, it tries to keep
tracking of the reward posterior distribution using the observation from the environment
during the learning process. Thus, it can randomly choose a suitable arm that is matched
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to be optimal according to the probability model. Thus, at each round, random samples are
drawn from the constructed reward’s posterior distribution. TS selects an arm to play that
can maximize the selected sampled value. Then, the arm’s posterior distribution is updated
by modifying its model parameters. This updated distribution will be used for the arm
selection of the upcoming rounds. It is known that TS has a superb empirical performance
and even better than the achieved performance of the UCB algorithm.

In our proposed PBA-TS algorithm, it is assumed that the reward, i.e., the achieved
data rate, is affected by AWGN noise and mutual interference from other PUs and SUs
occupying the same channel. Hence, the assumption of the Gaussian distribution is
compatible with our problem formulation. The selection of the most suitable power value
for transmission, which can maximize the achieved data rate, can be expressed as:

p∗ω,q(r) = arg max
pω,q∈pω

(
ϕω,q(r− 1)−

pω,q

pω,M

)
(7)

where ϕω,q(r− 1) is a sample for the previously constructed posterior distribution from the
achieved data rate by a UAV ω at channel q with transmission power pω,q. The posterior
distribution is constructed from the Gaussian distributionN

(
µ̂ω,q(r), σ2(r)

)
, where µ̂ω,q(r)

and σ2(r) are the mean and the variance of the distribution according to the model in [20],
and they can be calculated as:

µ̂ω,q(r) =
1

T(p)
ω,q(r)

T(p)
ω,q(r)

∑
m=1

Rω,q(m) (8)

σ2(r) =
1

T(p)
ω,q(r) + 1

(9)

where Rω,q(m) is the achievable data rate and can be obtained from Equation (3), T(p)
ω,q(r) is

the counted number of selections of this transmitting power value until the last previous
round (r− 1), and Rω,q(m) is the achieved data rate. The term pω,q

pω,M
is deduced form the

distribution to balance between the rate maximization process and the remaining power
budget that should be used to transmit data over the next channels. At each round r, a
sample ϕω,q(r− 1) is taken from the previously constructed Gaussian distribution. Then,
the optimum power value p∗ω,q that maximizes Equation (7) will be selected for transmis-
sion. After that, UAV ω starts to transmit over a channel q using p∗ω,q, its corresponding

number of selections T(p∗)
ω,q (r) is updated, and the achievable data rate Rω,q(r) is observed

to construct the Gaussian distribution for the next round r + 1. This process is conducted
till the last roundR. Furthermore, along with the PBA-UCB algorithm, the SINR conditions
of both of PU and SU networks are examined at each time when choosing a certain power
value for data transmission. If both SINR conditions are satisfied, the PBA-TS algorithm
starts to use this transmission power value and counts the corresponding data rate. Oth-
erwise, the PBA-TS algorithm sets the transmission power to zero, which leads to zero
achievable data rate. The whole process of the proposed PBA-TS algorithm is summarized
in Algorithm 2.

4.3. Complexity Analysis of the Proposed Algorithms

In this paper, we spotlight the task of UAVs to build a post-disaster surveillance system
as a CRN by finding the optimal policy for each UAV. In Algorithms 1 and 2, learning
processes can find the optimal transmission power value for both PBA-UCB and PBA-TS
by examining various transmission power values over every channel for all UAVs using
different policies. On the other hand, it tries to keep the interference level under certain
thresholds. Let Ξ represent the total number of available arms, i.e., total elements of the
power vector p. It is assumed that the action space is deterministic; i.e., all actions are
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well known to each UAV. Therefore, the number of iterations of PBA-UCB is at most of the
order of O(Ω · Q · Ξ) steps. In particular, the complexity of PBA-UCB can be expressed
as O(Ω · Q2), if the total number of the available power levels Ξ in the power vector p
is equal to the total number of channels Q. This means the complexity of the PBA-UCB
algorithm is a polynomial in Ω and Q. Moreover, the PBA-TS has the same computational
complexity O(Ω · Q2) as the PBA-UCB algorithm. However, the update strategy in the
PBA-TS algorithm is based on sampling from the Gaussian distribution N

(
µ̂ω,q(r), σ2(r)

)
;

hence it may impose a slightly higher complexity depending on the sampling process.

Algorithm 2 PBA-TS transmission power selection

1: for ω ← 1 to Ω do
2: Set µ̂ω,q ← 0, σ2 ← 1
3: for r ← 1 toR do
4: Set pω,M= max SU Tx power
5: for q← 1 to Q do
6: Draw a sample ϕω,q(r− 1) from the distribution

N
(
µ̂ω,q(r), σ2(r)

)
7: p∗ω,q(r) = arg max

pω,q∈pω

(
ϕω,q(r− 1)− pω,q

pω,M

)
8: if γψ,q(r) > γψTH,q(r) then
9: if γω,q(r) > γωTH,q(r) then

10: Obtain Rω,q(r) using p∗ω,q(r)

11: T(p∗)
ω,q (r)← T(p∗)

ω,q (r− 1) + 1

12: µ̂ω,q(r)← 1
T(p∗)

ω,q (r)
∑

T(p∗)
ω,q (r)

m=1 Rω,q(m)

13: σ2(r)← 1
T(p∗)

ω,q (r)+1
14: pω,M ← pω,M − p∗ω,q
15: else
16: p∗ω,q(r)← 0, Rω,q(r)← 0
17: end if
18: else
19: p∗ω,q(r)← 0, Rω,q(r)← 0
20: end if
21: end for
22: end for
23: end for

5. Simulation Results

In this section, the simulation results of our proposed algorithms are evaluated in
terms of solution performance. We distributed each PU and SU transmitter randomly in a
5 km × 5 km area, while PUs and SUs receivers are deployed in a certain area from PUs
and SUs transmitters to comply with the SINR constraint. The SINR threshold is chosen to
be 30 dB for the PUs network, which is relatively high to ensure that the accumulated data
transmission from SUs will not cause any harmful interference to the most valuable traffic.
On the other hand, the SINR value for SUs network is set to 5 dB to ensure a successful
data transmission. The transmission powers for PUs and SUs networks are set to 24 dBm
and 30 dBm, respectively. We deployed 10 armed bandits to represent 10 different levels of
UAVs’ transmission power. These power levels are uniformly distributed with separation
equal to the maximum transmission power divided by number or armed bandits. Both
PU and SU networks operate at 5.8 GHz band with a bandwidth equal to 10 MHz. Since
both PUs and SUs networks operate in an open area, the attenuation constant parameter
is set to 3 for a free-space communication in a metropolitan area. Table 1 summarizes the
system’s parameters which are used for simulation.
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Table 1. Simulation parameters.

Notation Value

No. of armed bandits 10
Simulation area 5 km × 5 km

PU Tx power 24 dBm
Pmax 30 dBm
W 10 MHz
fq 5.8 GHz
c 3× 108 m/s
ξ 3

γψTH,q 30 dB
γωTH,q 5 dB

N0 −100 dBm
η 0.5

Figure 2 shows an example of PUs and SUs transmitter/receiver pairs deployment.
The deployment of PU receivers, i.e., cars, in the simulation area was done in a random
way within δ distance from their corresponding transmitters, while δ is chosen to achieve
30 dB at the boundary of their deployment region. The number of sub-bands is set to be
equal to the number of PUs, and hence Ψ = Q, as described previously in Section 3.

Figure 2. Distribution of PUs and SUs Tx/Rx pairs.

5.1. Average Total System Rate

This section shows the performance of the total average system rate in bps/Hz against
different values of UAVs and ETC gates.

Figure 3 shows the total average system rate using 10 UAVs while increasing the num-
ber of ETC gates. It is shown in this figure that the PBA-TS algorithm achieved the highest
data rate performance compared to both the PBA-UCB algorithm and transmission using a
random power value. The reason behind this is that PBA-TS algorithm is constructed using
posterior distributions for the obtained data rates through the integrated Bayesian strategy.
On the other hand, transmission using a random power value has the worst performance
due to the randomness in the selection of this power value for transmission in each round.
Thus, each UAV experiences random interference from not only ETC gates but also other
UAVs that share these channels. Furthermore, when the number of ETC gates increases and
each ETC gate has its own separate channel, the number of available spectrum resources
increases as well. This leads to each UAV becoming able to transmit data over a wider
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band of channels and causes the total achievable average system rate to increase for both
the PBA-TS algorithm and the PBA-UCB algorithm. On the other hand, and due to the
randomness illustrated in this section, the increase in the achievable total average system
rate using a random power value data transmission is not as high as the achievable data
rate using either the PBA-TS algorithm or the PBA-UCB algorithm.

Figure 3. Normalized average sum rate against number of ETC gates using 10 UAVs.

Figure 4 shows the performance of the achievable total average system rate against
an increasing number of UAVs while keeping the number of ETC gates equal to 10. It
is interesting that at the beginning with a few increments of the number of UAVs, the
achievable data rate, using our proposed PBA-MAB algorithms, is increased till a certain
point. Then, the achievable data rate begins to decrease with any increment in the number
of deployed UAVs. The reason behind that is that while increasing the number of UAVs, the
mutual interference between UAVs increases as well. Our proposed PBA-MAB algorithms
succeeded in mitigating the interference effect, which is reflected in the achievable data rate
reduction. Furthermore, the proposed PBA-TS algorithm can still achieve the highest data
rate performance compared to the proposed PBA-UCB algorithm and the transmission
using a random power value.

Figure 4. Normalized average sum rate against number of UAVs using 10 ETC gates.



Sensors 2021, 21, 7855 15 of 19

5.2. Convergence Rate

The convergence rate is considered one of the most important parameters to judge the
efficiency of online learning algorithms such as MAB algorithms; the faster the algorithm
can converge, the better the reward that can be gained in just a few attempts. Hence,
this section studies the convergence rate of the achievable total average system rate for
our proposed PBA-MAB algorithms with different settings. Figures 5 and 6 show the
convergence rate of the achievable total average system rate using 10 ETC gates while
changing the number of UAVs to be 10 and 30. This can show the convergence rate for
each algorithm under different network setup and different interference values. As shown
in these figures, the horizontal axis indicates the count for rounds. Each algorithm runs its
iterative process over counts till the algorithm converges toward a higher data rate. The
proposed PBA-TS algorithm can converge faster than the PBA-UCB algorithm due to the
fact that it uses Bayesian strategy over the posterior distributions of the reward. On the
other hand, the PBA-UCB fluctuates during the few beginning rounds, and it takes more
time to converge than the PBA-TS algorithm. Furthermore, it has a less convergence rate
that the PBA-TS algorithm when both of the algorithms saturate by the end of the simulation
rounds. These results can be concluded that both proposed PBA-MAB algorithms can deal
with the adversarial network setup and selfish behavior of the UAVs. Hence, it means that
every UAV learns how to select the most suitable transmission power value to enhance
the overall system performance at every round. Furthermore, without loss of generality, it
keeps an eye on the interference level while choosing this most suitable action.

Figure 5. Convergence of normalized average sum rate using 10 ETC gates and 10 UAVs.

Figure 6. Convergence of normalized average sum rate using 10 ETC gates and 30 UAVs.
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6. Conclusions

In this paper, we have investigated the radio resource allocation for a CRN through
DSA system to support a disaster surveillance system using UAVs wireless networks.
To tackle this problem, we proposed two MAB algorithms, i.e., the PBA-UCB algorithm
and the PBA-TS algorithm. The idea behind deploying MAB algorithms, as a class of
RL algorithms, is the ability of MAB algorithms to solve online optimization problems
with conflicting parameters that need to be jointly optimized. Since there is no informa-
tion exchange between all UAVs, multi-player PBA-MAB algorithms were introduced to
deal with this selfish configuration. Proposed PBA-MAB algorithms show outstanding
performance over transmission using a random power value selection. Furthermore, the
proposed algorithms showed a moderate convergence rate. The obtained results showed
the capability of different MAB algorithms to deal with such problems with a high degree
of randomness. Therefore, it can open the way for applying ML algorithms and more
precise MAB algorithms to handle various wireless communication problems.
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Abbreviations
The following abbreviations are used in this manuscript:

DSA Dynamic Spectrum Access
UAV Unmanned Aerial Vehicle
CRN Cognitive Radio Network
ETC Electronic Toll Gate
MAB Multi-armed Bandit
PBA-MAB Power-Budget-Aware Multi-armed Bandit
UCB Upper Confidence Bound
TS Thompson Sampling
PBA-UCB Power-Budget-Aware Upper Confidence Bound
PBA-TS Power-Budget-Aware Thompson Sampling
PU Primary User
SU Secondary User
QoS Quality of Service
ML Machine Learning
RL Reinforcement Learning
SINR Signal-to-Interference-Plus-Noise Ratio
WSN Wireless Sensor Network
CP Control Plane
DP Data Plane
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VANET Vehicle Ad hoc NETwork
iid independent and identical distribution
WLAN Wireless Local Area Network
LoS Line of Sight
AWGN Additive White Gaussian Noise
HetNets Heterogeneous Networks
PHY Physical layer
MAC Medium Access Control layer
IoT Internet of Things
VHF Very High Frequency
UHF Ultra High Frequency
mmWave millimeter-wave
D2D Device to Device
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