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Objective. The detection of epidermal growth factor receptor (EGFR) mutation and programmed death ligand-1 (PD-L1) ex-
pression status is crucial to determine the treatment strategies for patients with non-small-cell lung cancer (NSCLC). Recently, the
rapid development of radiomics including but not limited to deep learning techniques has indicated the potential role of medical
images in the diagnosis and treatment of diseases. Methods. Eligible patients diagnosed/treated at the West China Hospital of
Sichuan University from January 2013 to April 2019 were identified retrospectively. The preoperative CT images were obtained, as
well as the gene status regarding EGFR mutation and PD-L1 expression. Tumor region of interest (ROI) was delineated manually
by experienced respiratory specialists. We used 3D convolutional neural network (CNN) with ROI information as input to
construct a classification model and established a prognostic model combining deep learning features and clinical features to
stratify survival risk of lung cancer patients. Results. The whole cohort (N =1262) was divided into a training set (N =882, 70%),
validation set (N =125, 10%), and test set (N =255, 20%). We used a 3D convolutional neural network (CNN) to construct a
prediction model, with AUCs of 0.96 (95% CI: 0.94-0.98), 0.80 (95% CI: 0.72-0.88), and 0.73 (95% CI: 0.63-0.83) in the training,
validation, and test cohorts, respectively. The combined prognostic model showed a good performance on survival prediction in
NSCLC patients (C-index: 0.71). Conclusion. In this study, a noninvasive and effective model was proposed to predict EGFR
mutation and PD-L1 expression status as a clinical decision support tool. Additionally, the combination of deep learning features
with clinical features demonstrated great stratification capabilities in the prognostic model. Our team would continue to explore
the application of imaging markers for treatment selection of lung cancer patients.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
and the second most commonly diagnosed cancer around
the world, with around 1.8 million deaths and 2.2 million
new cancer cases in 2020 [1]. Non-small-cell lung cancer
(NSCLC) is the most common subtype of lung cancer, and
the 5-year survival rate is less than 20%. The emergence of
targeted therapy and immunotherapy has revolutionized
the treatment of lung cancer and improved clinical out-
comes among a subset of patients [2, 3]. Tyrosine kinase

inhibitors (TKIs) targeted to epidermal growth factor
receptor (EGFR) could lead to extend progression-free
survival (PFS) compared with conventional chemother-
apy in EGFR-mutated NSCLC patients [4, 5]. Simulta-
neously, immune checkpoint inhibitors (ICIs) targeted to
the programmed death ligand-1 (PD-L1) expressed by
tumor cells would also contribute to prolonged overall
survival (OS) in PD-L1-positive patients with advanced
NSCLC [6, 7]. Therefore, it is extremely essential to
identify the genetic status of patients in the era of pre-
cision medicine.
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At present, molecular genetic testing based on tumor
tissue specimens is the gold standard to determine the ge-
netic status. However, the common methods to obtain these
tissue specimens, such as surgery or biopsy, are invasive,
expensive, and slow, and tumor tissue varies in regard to
time and space. In addition, other limitations including, but
not limited to, the difficulty to obtain materials, the potential
requirement for a secondary biopsy, and poor DNA quality
can delay subsequent treatment decisions [8, 9]. Therefore, a
noninvasive, convenient, and efficient method to predict
genetic status is of imminent need.

As an effective screening tool of lung cancer, computed
tomography (CT) can effectively reduce the mortality of lung
cancer with early detection and is, thus, widely used in clinical
examinations [10, 11]. In the past decade, radiomic methods,
especially the deep learning technology, have unearthed high-
throughput information in medical images [12]. Deep learning
achieved a favorable performance in detecting lymph node
metastases in breast cancer and estimating malignancy risk in
lung cancer and diagnosing quickly in the COVID-19 pan-
demic [13-15]. Previous studies have shown that the features
extracted from CT images of lung cancer cases might be related
to gene expression patterns [16, 17]. Wang et al. used an end-
to-end deep learning model to dissect CT images and to predict
EGFR mutation status [18]. Tian et al. provided a deep learning
model to predict high PD-L1 expression of NSCLC and to infer
clinical outcomes in response to immunotherapy [19]. Based
on these former explorations, to better satisfy the needs of
clinical practice, there still is need for explorations of multigene
expression using deep learning techniques.

Herein, we proposed a new approach to predict EGFR
mutation and PD-L1 expression status in NSCLC patients
based on deep learning technology and selected features to
build a prognostic model. This noninvasive and easy-to-use
method would assist clinicians in making treatment deci-
sions for patients.

2. Materials and Methods

2.1. Data Acquisition and Processing. Eligible patients di-
agnosed/treated at the West China Hospital of Sichuan
University from January 2013 to April 2019 were identified
retrospectively. The inclusion criteria of patients were as
follows: (1) pathologically diagnosed with primary NSCLC;
(2) tested EGFR mutation and PD-L1 expression status; and
(3) available CT images within 1 month before pathological
diagnosis. The exclusion criteria of patients were as follows:
(1) missing critical clinical data; (2) without genetic testing
or having failed in the tests with poor tissue quality; and (3)
without chest CT examination, or with CT images where the
lesion was hard to distinguish and annotate, like being
adhered to the hilar or caused atelectasis.

In total, 1262 patients were collected for this study and
divided into a training set (N = 882), validation set (N =125),
and test set (N=255) with a ratio of 7:1:2. Then demo-
graphic information (age, sex, and smoking history), histo-
pathology reports, therapy (targeted therapy, ICIs), and gene
testing reports were collected from the hospital information
system. Thin-layer (1-3mm) CT scanning images from
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multiple scanners (GE, Philips, Siemens United Imaging
Health) were collected. Our follow-ups for all patients ended
in April 2021. Ethics approval was obtained from the ethics
committee of West China Hospital, Sichuan University.

We collected tumor specimens through biopsy or surgical
resection. Then, EGFR mutation status was determined by
Amplification  Refractory Mutation = System-Polymerase
Chain Reaction (ARMS-PCR) or next-generation sequencing
(NGS). PD-L1 expression status was detected using SP142
antibody in immunohistochemical (IHC) assays performed
on the Ventana Benchmark platform. After being reviewed by
senior pathologists, the testing results of these genes were
regarded as the gold criteria in the current study.

2.2. Development of the Deep Learning Model. The chest CT
images were taken with standard parameters and stored in
DICOM format. Tumor region of interest (ROI) was de-
lineated manually by experienced respiratory medicine
specialists and then adjusted to 48 x 224 x 224 pixels from
original lung window images with the original centers. The
details of the adjustment were as follows: if the original scale
of ROI was larger than 48 x 224 x 224 pixels, the exceeding
part was cut; by contrast, if the original scale of ROI was less
than 48 x 224 x 224 pixels, baseline values would be filled to
standardize the size of the region. These 48 x 224 x 224 ROIs
were then used to develop our deep learning model, during
which they were divided into training, validation, and test
sets with a ratio of 7:1:2 counting by individual patient. In
regard to the genetic features, ROIs were categorized into
four categories: double-negative, EGFR(-) but PD-L1(+),
EGFR(+) but PD-L1(-), and double-positive.

As the previous literature suggested, residual block could
relieve the gradient disappearance problem caused by the
depth of neural network, and three-dimensional residual
network showed a good performance on not only natural
images [20] but also medical images [21-24]. In the current
study, considering the format of CT scans, we constructed a
3D convolutional neural network (CNN) model for classi-
fying the EGFR and PD-L1 status. In Figure 1, the architecture
of our CNN network is shown. More details of layers were
presented in Supplement materials (Table S1 and Table S2).
Additionally, the Gradient-weighted class activation mapping
(CAM) was utilized to localize and visualize the important
regions in the input images for predicting the target concept.

During the training process, the batch size of every training
epoch was 16. Also, the model with the best performance on the
validation dataset was selected for further testing.

2.3. Development of the Prognostic Model. The CNN
extracted 512-dimensional deep learning features of patients
in the training set. Next, the least absolute shrinkage and
selection operator (LASSO) method, commonly applicable
for the regression of high-dimensional data [25], was used
based on glmnet package. We used the “multinomial” option
to adapt to multiclass datasets and changed the value of the
regularization parameter lambda to adjust the LASSO
model. In order to prevent overfitting, 5-fold cross valida-
tion was used to resample the training set. The model with
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FiGure I: The framework of deep learning model for gene mutation classification and prognosis prediction. The deep learning model is
composed of 3D convolutional neural network (CNN) for classifying the EGFR and PD-L1 expression status, and the prognostic model
based on clinical metadata and deep learning features was also implemented.

the smallest misclassification error was selected as the op-
timal model, which contained the best feature set.

Then, a prognostic model combining deep learning (DL)
features and clinical features (age, sex, smoking history,
EGFR-TKI targeted therapy, and ICI therapy) was generated
to divide the patients into high-risk and low-risk groups
according to the cutoff value based on survminer package.
The performance of this model was evaluated in the vali-
dation set and the test set. In addition, we also constructed a
clinical prognostic model for comparison in regard to sex,
age, and smoking, with targeted therapy and ICI therapy.

2.4. Statistical Analysis. The ANOVA test and chi-square test
were used to evaluate the difference between continuous
variables and categorical variables in the basic data, respec-
tively. CNN, one of the most important deep learning models,
was used to construct the prediction model. In developing the
prognostic model, we reduced dimensions by using LASSO
and compare variables in Cox proportional hazards regres-
sion and the log-rank-test. Tumor ROI was outlined with
ITK-SNAP software. All analyses were conducted with R 4.0.2
(R Foundation for Statistical Computing, Vienna, Austria)
and Python 3.10 (Python Software Foundation). Two-sided p
values of <0.05 were regarded as statistically significant.

3. Results

3.1. Clinical Characteristics. The clinical characteristics of
1262 patients are shown in Table 1. The median age at

diagnosis was 57.70 + 10.50 years. 49.13% of patients were
male. 59.35% of patients never smoked. The numbers of
people in the four gene expression groups of double-neg-
ative, EGFR(-) but PD-L1(+), EGFR(+) but PD-L1(-), and
double-positive were 276 (1.87%), 290 (22.98%), 502
(39.78%), and 194 (15.37%), respectively. As for the novel
treatment strategies, 391 patients in the dataset had EGFR-
TKI-targeted treatment while 15 received ICI. 41.91% of
patients were diagnosed as stage I. The median follow-up
was 31 (95%CI: 30-31) months, and the median overall
survival (OS) was 44 (95%CI: 42-49) months. There was no
significant difference among the training, validation, and test
cohorts regarding age (p = 0.95), sex (p = 0.35), smoking
(p = 0.18), gene mutation status (p = 01.00), EGFR-TKI-
targeted therapy (p = 0.39), ICI therapy (p = 0.42), histo-
pathology (p = 0.82), tumor stage (p = 0.22), median fol-
low-up time (p = 0.09), and overall survival (p = 0.20).

3.2. Prediction Model Performance. Table 2 lists the pre-
dictive performance of the deep learning model evaluated
with area under the ROC curve (AUC), accuracy, sensitivity,
and specificity in training, validation, and test sets. The
macro-average AUCs were 0.96 (95% CI: 0.94-0.98), 0.80
(95% CI: 0.72-0.88), and 0.73 (95% CI: 0.63-0.83) in the
training, validation, and test cohorts, respectively. AUC of
either gene classification was greater than 0.95 in the training
set and greater than 0.65 in the test set (Figure 2). Our
prediction system achieved an accuracy of 0.90 (95% CI:



TaBLE 1: Demographic and clinical characteristics of included NSCLC patients.
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Characteristics

Total (N=1262) Training set (N=2882) Validation set (N=125) Test set (N=255) p value

Age at diagnosis (year)
Mean + SD
Sex
Male
Female
Smoking
Current/former
Never
Unknown
Gene mutation status
EGFR(-) PD-L1(-)
EGFR(-) PD-L1(+)
EGFR(+) PD-L1(-)
EGFR(+) PD-L1(+)
EGFR-TKI-targeted therapy
Yes
No
ICI therapy
Yes
No
Histopathology
LUAD
LUSC
Others
Tumor stage
1
1I
11T
v
Unknown
Follow-up

Median follow-up time (month, 95% CI)

Overall survival
Death

Median OS (month, 95% CI)

57.70 £10.50

620 (49.13)
642 (50.87)

452 (35.82)
749 (59.35)
61 (4.83)

276 (21.87)
290 (22.98)
502 (39.78)
194 (15.37)

391 (30.98)
871 (69.02)

15 (1.19)
1247 (98.81)

1185 (93.90)
53 (4.20)
24 (1.90)

529 (41.91)
96 (7.61)
236 (18.70)
367 (29.08)
34 (2.69)

31 (30-31)

412 (32.65)
44 (42-49)

57.69 £10.27

438 (49.66)
444 (50.34)

323 (36.62)
520 (58.96)
39 (4.42)

193 (21.88)
203 (23.02)
350 (39.68)
136 (15.42)

265 (30.05)
617 (69.95)

12 (1.36)
870 (98.64)

824 (93.42)
41 (4.65)
17 (1.93)

378 (42.86)
60 (6.80)

160 (18.14)

262 (29.71)
22 (2.49)

30 (30-31)

283 (32.08)
43 (41-49)

57.48 £9.70

66 (52.80)
59 (47.20)

45 (36.00)
77 (61.60)
3 (2.40)

28 (22.40)
28 (22.40)
50 (40.00)
19 (15.20)

45 (36.00)
80 (64.00)

0 (0)
125 (100.00)

119 (95.20)
4 (3.20)
2 (1.60)

43 (34.40)
9 (7.20)
30 (24.00)
37 (29.60)
6 (4.80)

31 (29-35)

51 (40.80)
41 (33-NA)

57.85+10.27 0.95

116 (45.49)
139 (54.51) 0.35
84 (32.94)
152 (59.61) 0.18
19 (7.45)

55 (21.57)
59 (23.14)
102 (40.00)
39 (15.29)

1.00

81 (31.76)
174 (68.24) 0.39
3 (1.18)
252 (98.82) 0-42

242 (94.90)
8 (3.14) 0.82
5 (1.96)

108 (42.35)
27 (10.59)
46 (18.04) 0.22
68 (26.67)
6 (2.35)

32 (30,33) 0.09

78 (30.59)

46 (40-NA) 0-20

LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; SD: standard deviation; OS: overall survival; CI: confidence interval.

TaBLE 2: Predictive performance in predicting EGFR mutation and PD-L1 expression status.

EGFR ACC (95%CI) AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI)
- 0.92 (0.91-0.93) 0.97 (0.96-0.97) 0.87 (0.83-0.9) 0.93 (0.92-0.95)
- 0.91 (0.89-0.93) 0.96 (0.95-0.97) 0.75 (0.7-0.78) 0.97 (0.95-0.98)
Training set + 0.87 (0.85-0.89) 0.96 (0.95-0.97) 0.96 (0.94-0.98) 0.81 (0.79-0.84)
+ 0.91 (0.90-0.92) 0.95 (0.94-0.96) 0.39 (0.33-0.46) 1 (0.99-1)
Average 0.90 (0.86-0.93) 0.96 (0.94-0.98) 0.74 (0.31-1) 0.93 (0.79-1)
- 0.78 (0.72-0.72) 0.82 (0.75-0.88) 0.57 (0.44-0.7) 0.85 (0.79-0.9)
- 0.76 (0.71-0.71) 0.78 (0.71-0.84) 0.45 (0.33-0.57) 0.86 (0.81-0.91)
Validation set + 0.74 (0.68-0.68) 0.85 (0.79-0.89) 0.78 (0.69-0.87) 0.71 (0.64-0.78)
+ 0.84 (0.79-0.79) 0.75 (0.66-0.82) 0.13 (0.03-0.26) 0.95 (0.92-0.98)
Average 0.78 (0.70-0.86) 0.80 (0.72-0.88) 0.48 (0.01-0.95) 0.84 (0.66-1)
- 0.74 (0.7-0.7) 0.76 (0.72-0.81) 0.45 (0.36-0.54) 0.82 (0.79-0.86)
- 0.68 (0.64-0.64) 0.66 (0.61-0.71) 0.28 (0.21-0.36) 0.83 (0.79-0.87)
Test set + 0.73 (0.69-0.69) 0.79 (0.75-0.83) 0.82 (0.77-0.88) 0.68 (0.63-0.73)
+ 0.83 (0.79-0.79) 0.69 (0.63-0.75) 0.15 (0.07-0.23) 0.95 (0.93-0.97)
Average 0.75 (0.65-0.85) 0.73 (0.63-0.83) 0.43 (0-0.92) 0.82 (0.62-1)

Abbreviation: ACC: accuracy; AUC: area under the ROC curve.
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FIGURE 2: Performance of the deep learning model for the prediction of EGFR and PD-LI expression status in training (a), validation (b),

and test (c) sets by receiver operating characteristic (ROC) curves.

0.86-0.93), a sensitivity of 0.74 (95% CI: 0.31-1), and a
specificity of 0.93 (95% CI: 0.79-1) in the training set for the
overall four-way classification. In Figure 3, as the confusion
matrix of different datasets showed, most errors occurred in
the adjacent groups. The deep learning model generated an
attention map through CAM indicating the importance of
each part in the tumor, and the dark areas might be the tissue
between the tumor and the hilum (Figure 4).

3.3. Prognostic Model Performance. We built a clinical
prognostic model based on several clinical features (Table S3).
The C-index was 0.64 (95%CI:0.60-0.68). Then, we combined
the 8 deep learning features from the softmax layer with the

clinical features to build a new prognostic model, with a C-index
of 0.71 (95%CI: 0.68-0.74). This prognostic model successfully
stratified patients into high-risk and low-risk groups in regard to
the risk of poor prognosis (death) (Figure 5). There was a
significant difference in the overall survival (OS) between these
groups (p <0.05 both in training and test sets).

4. Discussion

Rapid determination of gene mutation status is crucial for the
therapy decision, especially for patients who are potentially
suitable for EGFR-TKI or ICI treatment. In this study, a rapid
approach using deep learning based on CT images was
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FiGure 3: Confusion matrix of prediction model in training (a), validation (b), and test cohorts (c), respectively. The micro-average
accuracies (ACCs) were 0.90 (95% CI: 0.86-0.93), 0.78 (95% CI: 0.70-0.86), and 0.75 (95% CI: 0.65-0.85) in the training, validation, and test

cohorts, respectively.

proposed to predict EGFR mutation and PD-L1 expression
status in NSCLC, with AUCs of 0.96, 0.76, and 0.76 in the
training, validation, and test cohorts. Patients with positive
mutation might be likely to benefit from TKI and/or ICI
treatments, while patients with double-negative mutation can
barely present a promising response to these treatment
strategies and should adopt other therapies as soon as possible.
Furthermore, the predictive model was further developed to
stratify patients based on an evaluation of their risk of poor
prognosis, potentially serving as a critical clinical reference.
In the field of lung cancer, radiomics has developed
rapidly due to the availability of chest CT and the integration
of artificial intelligence (AI) [26]. On the one hand, chest CT
examination is the most routine detection method in the
diagnosis and treatment process of lung cancer, since it is
noninvasive, convenient, and easy to obtain in routine
clinical workflow. Almost all NSCLC patients would un-
dergo multiple CT examinations in order to track the

progression of tumor lesions. On the other hand, in recent
years, Al technology, especially deep learning, has been
widely applied to the interpretation of medical images. Deep
learning technology holds endless potential for lung cancer
screening, diagnosis, and treatment, from the detection of
lung nodules to identify benign and malignant lung nodules
and further subtype classification [14, 27, 28].

A great deal of attention has been paid to studies that
combine genomics and radiomics. In the era of precision
medicine, there is a trend that patients with lung cancer
are treated only after having their gene expression
clarified. Some previous studies have used deep learning
technology to predict EGFR, PD-L1, or ALK gene status,
respectively, and achieved favorable performances (Ta-
ble 3) [18, 19, 29-34]. However, these previous studies
focused specifically on predicting mutation status in only
one gene. Also, the current study has been the first study
to predict the status of EGFR mutation and PD-L1
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FiGure 5: Kaplan-Meier curves in the high-risk and low-risk groups stratified by confusion prognostic prediction model in training (a),
validation (b), and test sets (c). When the patients were stratified into high-risk and low-risk groups, Kaplan-Meier curves of progression to
poor prognosis showed a distinct difference in survival probability in this cohort.

TaBLE 3: Recent representative studies using deep learning to predict gene status in lung cancer patients on CT images.

Author  Year Design Dataset Training  Validation Test Model Outcome Performance
cohort cohort cohort reported
Retrospective 71 SE AUC 0.910 and 0.841
Baihua . 914 internal; L EGFR in internal and
Zhang 2021 multicenter on LUAD 638 NA 205 CNN+ ra(.ilomlcs mutation  external test cohorts,
CT mapping .
external respectively
. EGFR AUC‘ 0.86, 0.8%, .and
Retrospective 681 65 mutation 0.81 in the training,
Wei Mu 2020 multicenter on NSCLCs 429 187 external CNN treatment internal validation,
PET/CT and external test
response .
cohorts, respectively
Five-fold AUC 0.85 in the
Retrospective Cross primary cohort; AUC
f/ifl:r? 2019 multicenter on LIs.;fD 603 validation; NA CNN m]::li::ilj)n 0.81 in the
& CT 241 independent
independent validation cohort
. Retr9spect1ve 616 . 115 CNN 3D EGER AUC 9.758 and 0.750
Wei Zhao 2019 multicenter on LUAD 348 116 internal; DenseNets mutation ™ the internal test set
CT 37 public and public test set
An AUC (CNN) of
Retrospective 0.776 and an AUC (a
Junfeng . 503 EGFR fusion model of
Xiong 2018 sm%:ée; T LuAD 345 158 NA CNN mutation ~ CNNs and clinical
features) of 0.838 in
the validation set
. PD-L1  AUC 0.78, 0.71, and
Panwen Retr.ospecnve 939 expression  0.76 in the training
Tian 2021 multlcg;ter o NSCLCs 750 %3 %6 KNN treatment  validation, and test

response

cohorts
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TaBLE 3: Continued.

Author  Year Design Dataset Training  Validation Test Model Outcome Performance
cohort cohort cohort reported
Retrospective Five-fold
Ying Zhu 2020 single-center 127 NA cross NA CNN 3D PD_L.I AUC more than
LUAD 1 DenseNets expression 0.750
on CT validation
AUC(CNN) 0.8046
and 0.7754 in the
primary and
validation cohorts
. ALK fusion . ’
Zhengbo Retrospective ) 5 CNN 3D status AUC (trained by
2020 multicenter on 651 286 91 both CT images and
Song NSCLCs ResNet10 Treatment . .
CT clinicopathological
response

information) 0.8540
and 0.8481 in the
primary and
validation cohorts

LUAD: lung adenocarcinoma; NSCLC: non-small-cell lung cancer; CNN: convolutional neural network; KNN: k-nearest neighbor; NA: not applicable.

expression simultaneously using chest CT scans from the
so-far largest cohort. At the same time, the CAM method
that we utilized in this study visualized the prediction
model and improved understanding of deep learning,
which once was referred to as the “black box.” Another
advantage of our model was that we had input 3D images,
which might account for the fact that the fusion prognosis
model performed better than the simple clinical model
and the 3D results could fully display the characteristics
of the lesion and provide more abunant image
information.

More and more studies have demonstrated that image
features can predict gene status and treatment response and
might assist clinical practice in the future [35, 36]. Still,
there were several details to be addressed. For example,
when the output layer of this model was set to two cate-
gories, we got two models to predict EGFR mutation and
PD-L1 expression status separately. In spite of these
models’ ability to achieve the research goal, they showed
instability in their performance. Some studies have sug-
gested the correlation between EGFR and PD-L1 expres-
sion [37], which may explain the stability of the four-class
model in this study. Although the four categories could
reflect the relationship between genes, more data from
multi-centers should be needed for further improvement of
model performance. Therefore, how to build a more
clinically practical model will be the focus of our attention
in the future.

Our research has several limitations. Firstly, it was a
single-center retrospective study, but we would, to some
extent, release the problem by testing the generalization
and robustness of the model in an external dataset. Sec-
ondly, we temporarily lacked the assessment of the re-
sponse to the treatment, which was a concern for targeted
therapy and immunotherapy drugs. Thirdly, we mainly
focused on two major valuable molecules: EGFR and PD-
L1 are tested in the routine clinic practice. But, other genes
including, but not limited to, ALK and ROSI and gene
panel are still worth investigating. If deep learning model

predicts the wrong gene expression/mutation status, pa-
tients would receive the inappropriate treatment. Molec-
ular tests are still needed to double make sure the therapy is
secure before Al software will approve. Furthermore, we
would try to incorporate a variety of indicators related to
prognosis, such as tumor size, volume, shape, ground glass
opacity (GGO), or solid components, to optimize the
prognostic model in the future.

5. Conclusions

In conclusion, a noninvasive and effective model was pro-
posed to predict EGFR mutation and PD-L1 expression
status, which can serve as a clinical decision support tool.
Additionally, the combination of deep learning features with
clinical features improved stratification capabilities of the
prognostic model. Later, our team will further dig deep into
the application of imaging markers in the treatment decision
for lung cancer patients.
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