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Cancer-associated fibroblasts (CAFs) are the most important component of the stromal
cell population in the tumor microenvironment and play an irreplaceable role in
oncogenesis and cancer progression. Exosomes, a class of small extracellular vesicles,
can transfer biological information (e.g., proteins, nucleic acids, and metabolites as
messengers) from secreting cells to target recipient cells, thereby affecting the
progression of human diseases, including cancers. Recent studies revealed that CAF-
derived exosomes play a crucial part in tumorigenesis, tumor cell proliferation, metastasis,
drug resistance, and the immune response. Moreover, aberrant expression of CAF-
derived exosomal noncoding RNAs and proteins strongly correlates with clinical
pathological characterizations of cancer patients. Gaining deeper insight into the
participation of CAF-derived exosomes in tumorigenesis may lead to novel diagnostic
biomarkers and therapeutic targets in human cancers.
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INTRODUCTION

Approximately one and a half centuries ago, fibroblasts were first defined as spindle-shaped cells
capable of collagen synthesis in connective tissues. Activated fibroblasts associated with cancer are
called cancer-associated fibroblasts (CAFs) (1). Although CAFs are mainly transformed from
normal fibroblasts (NFs), some can also arise from bone marrow–derived mesenchymal stem cells
or as a result of conversion of adipocytes, pericytes, or endothelial cells under some rare conditions
(2). The tumor microenvironment (TME) is the medium integral for tumor initiation and survival
and having complex structure and functions. In recent years, aside from cancer cells, researchers
Abbreviations: CAFs, cancer-associated fibroblasts; circRNA, circular RNA; CRC, colorectal cancer; ECM, extracellular
matrix; EMT, epithelial–mesenchymal transition; ESCC, esophageal squamous cell carcinoma; EVs, extracellular vesicles;
HCC, hepatocellular carcinoma; HSP, heat shock protein; IL-6, interleukin 6; lncRNA, long noncoding RNA; miR; miRNA,
microRNA; mRNA, messenger RNA; MVB, multivesicular body; ncRNA, noncoding RNA; NFs, normal fibroblasts; NSCLC,
non–small cell lung cancer; PD-L1, programmed death ligand 1; PMN, premetastatic niche; SHH, sonic hedgehog; TGF-b,
transforming growth factor b; TME, tumor microenvironment.

org January 2022 | Volume 12 | Article 7953721

https://www.frontiersin.org/articles/10.3389/fimmu.2021.795372/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.795372/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.795372/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ouchunlin@csu.edu.cn
mailto:wang-jp2013@csu.edu.cn
https://doi.org/10.3389/fimmu.2021.795372
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.795372
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.795372&domain=pdf&date_stamp=2022-01-04


Peng et al. CAFs-Derived Exosomes in Tumorigenesis
focused on the role of the TME in tumorigenesis (3). Tumors
occur in the TME, which includes not only tumor cells but also
surrounding CAFs, mesenchymal stem cells, bone marrow–
derived cells, regulatory T cells, benign endothelial cells, the
extracellular matrix (ECM), and tumor-associated macrophages
(4). Fibroblasts have been proven to be the most important
matrix component of the TME. CAFs have been found in the
tumor stroma of various cancers and identified as a special type
of fibroblast (5, 6). As a key component of the TME, CAFs can
promote malignant tumor behaviors mainly through the activity
of some metabolic pathways and secretion of various biological
factors, such as growth factors, chemokines, cytokines, and
exosomes (7, 8).

In 1981, Trams et al. first described exosomes as cell-shed
vesicles (with an average diameter of 30–150 nm) that can be
isolated from various normal and tumor cells. In 1987, Johnstone
et al. defined and named these small vesicles with membrane-
based structure as exosomes (9). Exosomes are a type of
extracellular vesicles (EVs) that exist in almost all kinds of
body fluids, e.g., saliva, urine, and amniotic fluid (10–12).
These EVs, including exosomes, were once considered cell
waste products, but several studies have revealed that they can
carry various cellular gene products, such as proteins, and a
series of metabolites, which can be transferred to recipient cells
(13). Therefore, exosomes take part in biological information
exchange, thus regulating the local and distant TME, which are
considered essential for tumor progression (14–17). Exosomes
can be secreted by almost all cell types (18), including CAFs. The
latter communicate with neighboring cells, such as tumor cells in
the TME, mainly by releasing vesicles, and the most important of
these vesicles are exosomes (19).

As newly studied EVs in the TME, CAF-derived exosomes
have been proven to play a substantial role in tumorigenesis,
including tumor cell proliferation (20), metastasis (21), drug
resistance (8), and the immune response (22). Research suggests
that CAF-derived exosomes regulate oncogenesis and tumor
progression mainly by means of their biologically active
contents (23, 24), e.g., noncoding RNAs (ncRNAs) (25),
proteins (26, 27), and some metabolites.

In this review, we summarize major roles of CAF-derived
exosomes in tumorigenesis and describe their molecular
mechanisms of action and the relation between CAF-derived
exosomal bioactive factors and clinical pathological
characterizations of cancer patients. Our aim is to explore new
biological markers of cancers and to outline new prospects for
CAF-derived exosomes in cancer treatment.
CAFS

Biological Characteristics of CAFs
CAFs are a special type offibroblast. In normal tissues, fibroblasts
usually rest and are considered resting mesenchymal cells
embedded in the ECM of interstitial fibers. Fibroblasts can be
activated in an environment-dependent manner during wound
healing, tissue inflammation, and organ fibrosis. Fibroblasts
include many different subtypes that are involved in the
Frontiers in Immunology | www.frontiersin.org 2
initiation and development of different diseases. For example,
papillary fibroblasts are essential for the coordination of the hair
cycle and formation of hair follicles after injury. Reticulocytes
mediate the early wound repair response (28). Wound repair
can benefit from the proliferation of preadipocytes (29).
Furthermore, myofibroblasts can be found in organs affected
by fibrosis (30, 31).

CAFs can originate from NFs, bone marrow–derived
mesenchymal stem cells, adipocytes, pericytes, and endothelial
cells (2). The precursor fibroblasts may be resposible for the
diversity of CAFs. For example, similar to myofibroblasts, CAFs
from local tissue NFs are reported to highly express cytoskeletal
proteins such as a-smooth muscle actin for cell contraction,
whereas CAFs derived from perivascular cells are believed to be
related to metastasis (32). Among these precursor fibroblasts,
NFs are the main progenitors of CAFs. Several biological factors
present in the TME can modulate the development of CAFs from
NFs; for example, the most common mechanism of this process
involves signal transduction mediated by transforming growth
factor b (TGF-b) (33). Cytotoxic stimuli, such as DNA damage
induced by radiation, can cause gene mutations in NFs and
consequently lead to the emergence of CAFs, which is exactly the
process of malignant transformation of cells (34). Moreover,
cancer cell–derived exosomes have been shown to induce the
conversion of NFs into CAFs by shuttling cargos, such as
ncRNAs (35–39). For example, Hu et al. have demonstrated
that melanoma-derived exosomal long noncoding RNA
(lncRNA) Gm26809 can induce reprogramming of fibroblasts
into tumor-promoting CAFs, thereby facilitating melanoma cell
proliferation and migration (39).

CAFs originating from NFs are unique in many aspects. The
expression of “CAF markers,” such as fibroblast activation
protein a and a-smooth muscle actin, distinguishes them from
NFs (5). In terms of the morphological features discernible under
a light microscope, CAFs have larger volume, richer cytoplasm,
and a serrated nucleus, whereas under an electron microscope,
one can see an abundant rough endoplasmic reticulum, free
ribosomes, Golgi apparatus, and stress fibers (40). Functionally,
NFs are crucial for the repair of tissue defects and participate in
the protection of cells from necrosis and degeneration to various
degrees (5). In contrast to NFs, activated CAFs exhibit enhanced
proliferative and migratory properties and can remodel the
ECM, mediate immune escape, and contribute to tumor drug
resistance in the TME (41) (Figure 1).

Biological Role of CAFs
As the most important component of the stromal cell population
in the TME, CAFs have attracted the attention of many
researchers. Numerous studies indicate that CAFs are closely
related to almost all stages of tumor progression. For example,
CAFs can promote malignant tumor characteristics including
cancer cell proliferation, metastasis, drug resistance, and
immune response by directly secreting various cytokines or
chemokines (42–45) and in many other ways, such as
stimulation of metastasis through the regulation of ECM
remodeling and of relevant genes (46–48). Metabolic
reprogramming, immune regulation, and exosome secretion are
January 2022 | Volume 12 | Article 795372
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three other mechanisms by which CAFs influence the malignant
behaviors of various tumors (25, 49, 50).

Metabolic reprogramming may be one of the mechanisms by
which CAFs promote tumor drug resistance and has become an
important way to help cancer cells acquire treatment resistance.
The metabolism of CAFs is similar to that of highly proliferating
cells and is based on aerobic glycolysis (51), which provides
additional pyruvate and lactic acid to tumor cells and is thought
to ultimately induce tumor resistance (52). Additionally, the
metabolic reprogramming induced by CAFs to increase the
proliferation rate of cancer cells has been verified in many
studies. For example, Becker et al. have demonstrated that
breast CAFs in breast cancer exhibit activated metabolism with
enhanced glycolytic activity, which stimulates the growth of
tumor cells (53).

CAFs can interact with various immune cells in the immune
microenvironment by secreting many biological factors such as
growth factors, proinflammatory cytokines, and chemokines (e.g.,
TGF-b and interleukin [IL]-6), thereby regulating the tumor
immune response to speed up tumor progression (50, 54, 55). For
instance, Harryvan et al. have found that as a cytokine capable of
regulating antigen presentation, TGF-b can indirectly reduce the
activation of T cells. This effect is mainly related to the role of CAFs
in dendritic cells (45). Feig et al. have shown that CXCL12 from
CAFs can limit the movement and/or recruitment of T cells, and
plays a key role in the immune resistance of pancreatic cancer (56).
In hepatocellular carcinoma (HCC), CAFs that overexpress IL-6 can
induce strong immunosuppression in the TME by recruiting
immunosuppressive cells such as bone marrow-derived
Frontiers in Immunology | www.frontiersin.org 3
suppressor cells and can impair the function of tumor-infiltrating
T cells by upregulating suppressive immune checkpoints (27).
Besides, CAFs can induce the transdifferentiation of M1
macrophages into the M2 phenotype by secreting monocyte
chemotactic protein 1 and stromal cell-derived factor 1, leading to
immunosuppression and increased cancer cell proliferation (57).
Notably, immunomodulatory cytokines secreted by CAFs, such as
IL-10, tumor necrosis factor (TNF), and interferon g, are reported to
be involved in the regulation of tumor cell immune responses by
recruiting and polarizing macrophages (58, 59).

In addition, as key TME-associated mediators that have
attracted much interest in recent years, exosomes secreted by
CAFs are essential for the regulation of malignant tumor
behaviors, mainly owing to biologically active contents of
exosomes, including ncRNAs and proteins (60, 61).
EXOSOMES

Biological Characteristics of Exosomes
Exosomes are nano-microvesicles with an average diameter of 30–
150 nm (62). They originate from the intracellular endosomal
compartment (15), arise from the membranes of multivesicular
bodies (MVBs) (18), and are formed mainly through three steps—
formation of intraluminal vesicles inMVBs, transport of theMVBs
to the plasma membrane, and fusion of the MVBs with the plasma
membrane (63). After a successful release into the extracellular
environment, exosomes can be taken up by target cells thereby
transmitting biological signals between parental or distant cells. In
A

B C D E

FIGURE 1 | Roles of CAF-derived exosomes in tumorigenesis. (A) Activated NFs can be converted into CAFs. (B) CAF-derived exosomes can regulate tumor cell
proliferation; (C) CAF-derived exosomes can facilitate the conversion of drug-sensitive cancer cells into drug-resistant cancer cells; (D) CAF-derived exosomes are
able to enhance the metastatic capacity of cancer cells; (E) CAF-derived exosomes can induce an antitumor immune response by regulating the activity of immune
cells, including T cells, M1 macrophages, M2 macrophages, and dendritic cells.
January 2022 | Volume 12 | Article 795372
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this way, communication between tumor cells and neighboring
cells, including CAFs in the TME, can be implemented
successfully (64).

Recently, exosomes were investigated as suitable nanocarriers
because of their biocompatibility, circulatory stability, low
immunogenicity, low toxicity, and particularly small size. As an
effective drug delivery platform, exosomes have aroused
considerable interest regarding their usefulness for transferring
anticancer drugs. For example, biocompatible tumor-cell-
exocytosed exosome-biomimetic porous silicon nanoparticles
have been constructed to function as a drug carrier for targeted
cancerchemotherapy;whenporous siliconnanoparticles are loaded
with doxorubicin in the exosomal sheath, they exert anticancer
action in tumor models (65).

Exosomes can be isolated by various separation and
purification methods. It is imperative for researchers to find a
way to obtain high-purity exosomes to advance this field of
research. Therefore, the separation and purification of exosomes
have always been a concern. Currently, the techniques for
isolating exosomes include ultracentrifugation techniques, size-
based isolation techniques, immunoaffinity capture-based
Techniques, and exosome precipitation. Among them,
ultracentrifugation techniques are the most popular and
mainly include differential ultracentrifugation and density
gradient centrifugation. Such methods as ultrafiltration,
magneto-immunoprecipitation, and polyethylene glycol
precipitation are often used too in size-based isolation
techniques, in immunoaffinity capture–based techniques, and
in exosome precipitation, respectively (66–72). Currently, there
are no recognized effective extraction method for exosomes. To
help researchers select the most appropriate extraction scheme,
Frontiers in Immunology | www.frontiersin.org 4
we have summarized the most commonly used Exosome
isolation techniques (Table 1).

Functions of Exosomes
EVs, including exosomes, have been thought to represent cellular
waste; for example, platelet-derived EVs were once called “platelet
dust” (73). In recent years, many studies have shown that EVs,
particularly exosomes, are not cellular waste. They can carry
proteins, a series of metabolites and cellular gene products
including messengerRNAs (mRNAs) and ncRNAs such as
microRNAs (miRNAs), lncRNAs, and circular RNAs
(circRNAs) (74). These molecules can be transferred to recipient
cells; therefore, exosomes participate in biological information
exchange in vivo. Furthermore, exosomes carry specific proteins
and nucleic acid cargo that can serve as biomarkers of many
diseases, including various potentially critical illnesses (such as
acute lung injury, acute kidney injury, acute myocardial injury,
and sepsis), neurodegenerative diseases, tissue fibrosis, diabetes,
human retroviral infections, cerebrovascular diseases, and
ischemic diseases (75–82). Nonetheless, the role of exosomal
contents in tumorigenesis has attracted the most attention. To
date, several databases have been established to provide the latest
and comprehensive information on exosomes (Table 2). To give
an example, the ExoCarta database (www.exocarta.org) lists at
least 41,860 proteins, 3,408 mRNAs, and 2,838 miRNAs that have
been identified in exosomes from different species and tissues by
independent studies.

Exosomes can be involved in malignant tumor characteristics,
including tumor cell proliferation, metastasis, drug resistance,
and immune response mainly owing to their ability to carry and
secrete these biologically active contents (14, 15). After studying
TABLE 1 | Overview of the most popular exosome isolation techniques.

Exosome isolation
techniques

Methods Advantages Limitations Ref.

Ultracentrifugation
techniques

Differential
ultracentrifugation

Easy to use Time consuming (69)
Little sample pretreatment Requires large starting sample volumes
Affordability over time Low exosome recovery

Density gradient
centrifugation

Effective for exosomes from protein aggregates
and non-membranous particles

Low exosome recovery (70)

Useful for separating exosomes and other EVs
from body fluids

Size-based isolation
techniques

Ultrafiltration Less time consuming Particle deformation (67)
Requires no special instrumentation Lysis of exosomes

Sequential filtration Automatable Rigid components associated with cellular debris are
filtered away

(72)
Produces intact and biologically active exosome
material

Size exclusion
chromatography

Preserves vesicle structure, integrity, and
biological activity

Requires run times of several hours (68,
71)Not easily scalable

Cannot be used for high throughput applications.
Immunoaffinity capture-
based techniques

Magneto-
immunoprecipitation

Higher isolation efficiency Protein/antigen used to capture the exosomes must be
expressed on the surface of exosomes

(66,
67)Can handle large sample volumes

Preserves the activity of exosomal proteins Specificity of the assay is limited to specificity of the
antibody.

Exosome precipitation Polyethylene glycol
precipitation

Quick Lack of selectivity (69)
Simple
Requires little technical expertise or expensive
equipment
Can be used for various starting volumes
January 2022 | Volume 12 | Article 79
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the function of exosomes (derived docetaxel-resistant prostate
cancer cells) in tumor cell proliferation and drug resistance,
Corcoran et al. proposed for the first time that exosomes may be
a means of transferring docetaxel-resistance between cells, which
is crucial for cell communication (91). Those authors further
speculated that this effect may be related to ncRNAs carried by
exosomes. A series of studies have confirmed that ncRNAs
carried by exosomes play an indispensable part in
tumorigenesis (92). Yin et al. (93) have revealed that exosomes
upregulating miR-135b-5p promoted in vivo growth, in vitro
proliferation, migration, and invasion, and suppressed the
Frontiers in Immunology | www.frontiersin.org 5
apoptosis of colorectal cancer (CRC) cells. As a key
component, exosomal proteins also perform vital functions in
tumorigenesis. Several studies have shown that exosomal
proteins, such as programmed death ligand 1 (PD-L1) and
heat shock protein (HSP), participate in T-cell–mediated
cellular immune responses and can activate the corresponding
signaling pathways to directly influence cell apoptosis; these data
make these proteins relevant for tumor resistance and tumor
immunotherapy (94). Additionally, exosomal proteins help with
communication between target cells through ligand–receptor
interactions, is thought to be related to the participation of
TABLE 2 | Exosome-related databases.

Database Introduction Characteristics Website Ref.

ExoCarta The first comprehensive database of exosomal markers, containing 286
research results on several species, e.g., humans, rats, mice, sheep, guinea
pigs, fruit flies, horses, rabbits, and cattle; data on various tissue-derived
exosomal proteins, mRNA, miRNAs, and lipids and other information from
organ sources are available.

ExoCarta covers the protein–protein interaction
network and biological pathways with exosomal
protein dynamics. Users can download the most
commonly used protein data from a large number of
studies. The downloaded file can be directly
imported into the FunRich tool for other function
enrichment analysis and correlation network
analysis.

http://www.
exocarta.org/

(83)

ExoRBase A long-chain RNA-seq database of human blood exosomes. Currently, the
database includes 92 blood samples, 58,330 circRNAs, 15,501 lncRNAs
and 18,333 mRNAs, with annotations, expression levels and possible source
tissues.

ExoRBase integrates and visualizes the RNA
expression profiles based on normalized RNA-seq
data spanning both normal individuals and patients
with various diseases.

http://www.
exorbase.org/

(84)

EVmiRNA A miRNA database of EVs, curating and analyzing 462 miRNA expression
profile datasets on EVs in 17 tissues/diseases. EVmiRNA provides several
functional modules—miRNA expression profiles and the sample information
about EVs from different sources; specifically expressed miRNAs in different
EVs that would be helpful for biomarker identification; miRNA annotations,
including miRNA expression in EVs and TCGA cancer types, miRNA pathway
regulation mechanisms, and miRNA functions and literary references.

EVmiRNA provides detailed miRNA expression
profiles in EVs as well as valuable and
comprehensive resources, including EV samples
classification (source/cancer and exosome/MV),
miRNA expression profile for each sample, the most
expressed miRNAs, specifically expressed miRNAs
for each EV type, and miRNA functions and
regulation mechanisms.

http://bioinfo.
life.hust.edu.
cn/EVmiRNA

(85)

EV-TRACK A crowdsourcing knowledge base that centralizes data on EV biology and
methodology and comprises methodological specifications on 3,383 EV
experiments in 1,699 documents. EV-TRACK evaluates EV separation and
identification-related parameters based on Minimum Experimental
Requirements for EV Research.

EV-TRACK collects the original data on EV
separation and characterization and increases the
authenticity and repeatability of the data. For each
experiment, the website explains and sort out
general and specific method information to help
reproduce the experiment and evaluate it.

http://www.
evtrack.org/

(86)

EVpedia A high-throughput comprehensive database of prokaryotic and eukaryotic
EVs. EVpedia provides databases of prokaryotes, nonmammalian eukaryotes
and mammalian vesicular mRNAs, miRNAs, and lipids.

EVpedia is an integrated and comprehensive
proteome, transcriptome, and lipidome database of
EVs derived from archaea, bacteria, and eukaryotes,
including humans. EVpedia may serve as a useful
community resource to trigger the advancement of
systematic and comprehensive studies on EVs and
for unveiling the fundamental roles of EVs

http://
evpedia.info

(87)

Vesiclepedia A manually curated compendium of molecular data on lipids, RNAs, and
proteins identified in various classes of EVs. Currently, Vesiclepedia
comprises 35,264 protein, 18,718 mRNA, 1,772 miRNA, and 342 lipid
entries encompassing 341 independent studies published in the past several
years.

Users can query and download EV cargo data, EV
separation details, characterization methods,
biophysical and molecular characteristics, and EV-
METRIC according to various search criteria. This
information helps biomedical scientists evaluate the
quality of EV preparations and obtain the
corresponding data. FunRich can help users directly
analyze data.

http://www.
microvesicles.
org/

(88)

EMBL-EBI A comprehensive annotation database for the functional analysis of human
exosomal proteins according to Gene Ontology information.

EMBL-EBI can identify the target protein used for
focus annotation and annotation of exosomal
experimental methodology.

http://www.
ebi.ac.uk/
GOA/
exosome

(89)

ExRNA
Atlas

A data repository of the Extracellular RNA Communication Consortium
(ERCC). This database includes small RNA sequencing and RT-qPCR-
derived extracellular-RNA profiles from human and mouse biofluids.

All RNA-seq datasets are processed using version 4
of the exceRpt small RNA-seq pipeline, and ERCC-
developed quality metrics are uniformly applied to
these datasets.

http://
exrnaatlas.
org/

(90)
January 2022 | Volume
 12 | Article 79
5372

http://www.exocarta.org/
http://www.exocarta.org/
http://www.exorbase.org/
http://www.exorbase.org/
http://bioinfo.life.hust.edu.cn/EVmiRNA
http://bioinfo.life.hust.edu.cn/EVmiRNA
http://bioinfo.life.hust.edu.cn/EVmiRNA
http://www.evtrack.org/
http://www.evtrack.org/
http://evpedia.info
http://evpedia.info
http://www.microvesicles.org/
http://www.microvesicles.org/
http://www.microvesicles.org/
http://www.ebi.ac.uk/GOA/exosome
http://www.ebi.ac.uk/GOA/exosome
http://www.ebi.ac.uk/GOA/exosome
http://www.ebi.ac.uk/GOA/exosome
http://exrnaatlas.org/
http://exrnaatlas.org/
http://exrnaatlas.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Peng et al. CAFs-Derived Exosomes in Tumorigenesis
exosomes in tumorigenesis (95). Moreover, exosomes can carry
immunosuppressive factors (96) and antigenic molecules (97)
that can cause the immune system to mount an antitumor
response (15) through various mechanisms, including
regulation of the functions of different types of immune cells
and control over antigen-dependent pathways (98).

In recent years, CAF-derived exosomes have been widely
explored because of their roles as EVs in the regulation of
tumorigenesis via secretion of various biologically active
factors. On the basis of their special status as a type of small
vesicle capable of information exchange in the TME, we can
speculate that CAF-derived exosomes are a promising cancer-
related topic and deserve deeper research. Accordingly, in the
text below, we have discussed the specific molecular mechanisms
of CAF-derived exosomes in tumorigenesis and their
specific functions.
THE UNDERLYING MOLECULAR
MECHANISM OF CAF-DERIVED
EXOSOMES IN TUMORIGENESIS

CAF-Derived Exosomal Proteins
Proteins are an important component of CAF-derived exosomes
(99). The roles of CAF-derived exosomal proteins in tumor cell
Frontiers in Immunology | www.frontiersin.org 6
proliferation, invasion, immunity, and increased metastasis have
been explored extensively. The proteins seen in exosomes
normally correspond to the source of exosomes, varying from
different environmental conditions, with specificity. For
example, antigen-presenting-cell–derived exosomes are usually
rich in major histocompatibility complex molecules (96).
Platelet-derived exosomes contain many hemophilia factors
and integrin CD41a, while CAF-derived exosomes usually
carry large amounts of death receptor ligands (such as PD-L1),
and inhibitory cytokines (such as TGF-b) (100). In a study on
breast cancer, the expression of PD-L1 increased after cancer
cells were treated with CAF-derived exosomes, and this
phenomenon may be related to the transfer of PD-L1 from the
CAF-derived exosomes to cancer cells (22).

The involvement of CAF-derived exosomal proteins in
tumorigenesis is mainly based on the activation of signaling
pathways in recipient cells (Figure 2), such as the Smad andWnt
signaling pathways. For example, CAF-derived exosomal sonic
hedgehog (SHH) promotes the growth and progression of
esophageal squamous cell carcinoma (ESCC) by binding to the
Patched protein to activate the SHH signaling pathway (60). Li
et al. (101) have found that CAF-derived exosomal TGF-b1 can
induce epithelial–mesenchymal transition (EMT) through the
TGF-b–SMAD cascade and hence promotes the progression and
metastasis of ovarian cancer. In breast cancer, after CD81-
containing CAF-derived exosomes are endocytosed by cancer
A B C D

FIGURE 2 | Roles of CAF-derived exosomal proteins in tumorigenesis. (A) CAF-derived exosomal TGF-b can activate the TGF-b–SMAD signaling pathway to
promote EMT in ovarian cancer. (B) CAF-derived exosomal CD81 can trigger the WNT signaling cascade contributing to the metastasis of breast cancer. (C) CAF-
derived exosomal CD9 can activate MMP2 signaling enhancing the migration and invasiveness of gastric cancer cells. (D) CAF-derived exosomal SHH can launch
the SHH signaling pathway thus increasing the proliferation and metastasis of esophageal squamous cell cancer (ESCC) cells.
January 2022 | Volume 12 | Article 795372
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cells, the Wnt signaling pathway can be triggered to speed up
metastasis (102). In addition, scirrhous-type gastric cancer cells
can uptake CD9-positive exosomes released from CAFs; these
exosomes promote cancer cell migration and invasion by
activating the MMP2 signaling pathway (103).

CAF-Derived Exosomal ncRNAs
In recent years, accumulating evidence revealed that ncRNAs play
a crucial role in tumor progression. NcRNAs mainly include
miRNAs, lncRNAs, and circRNAs. MiRNAs are endogenous
ncRNAs with a length of 20–24 nucleotides (104, 105), which
mainly binds to the 3′ untranslated region of a target mRNA to
inhibit its translation and expression of the target gene, thereby
affecting the initiation and progression of tumors. LncRNAs are a
class of RNA molecules with sequences >200 nucleotides that lack
a translated open reading frame and an encoding ability. They are
also located in the nucleus or cytoplasm (106, 107). The functions
of lncRNAs vary according to their subcellular location (108).
When lncRNAs are located in the cytoplasm, they participate in
the regulation of tumor progression by competitively adsorbing
miRNAs or binding to proteins thus affecting protein
modifications such as phosphorylation and can be translated
into polypeptides to regulate tumorigenesis. When lncRNAs are
located in the nucleus, they can bind to transcription factor–
related proteins to regulate the transcriptional expression of
tumor-related genes. CircRNA is a type of ncRNA (with a
length of approximately 200–2000 bp; the mean length is ~500
bp) that has a closed loop structure with no free 5′ and 3′ ends and
is not easily degraded by an exonuclease called RNase R (109, 110).
Compared to miRNAs and lncRNAs, circRNAs are stabler, more
conserved, and have cell- or tissue-specific expression patterns,
indicating that they can be used as gene regulators as well as
molecular diagnostic and prognostic biomarkers (111). CircRNAs
are mostly expressed in the cytoplasm of eukaryotic cells, with
functions similar to those of lncRNAs.

Studies suggest that ncRNAs can be secreted by CAF-derived
exosomes (112). As mediators of cell communication, exosomes can
transfer ncRNAs from one cell or cell line to another, thereby
regulating tumorigenesis. MiRNA is a type of ncRNA that has been
given the most attention. Hu et al. have reported that CAF-derived
exosomes can be directly transferred to CRC cells, which
significantly increases the level of miR-92a-3p, contributing to cell
stemness, EMT, metastasis, and fluorouracil/oxaliplatin resistance
in CRC (25). In this cancer, exosomal miR-17-5p has also been
found to contribute to tumor metastasis after delivery from parental
CAFs (113). In addition, Zhang et al. (114) have documented a
significantly low level of miR-320a in CAF-derived exosomes by
next-generation sequencing. Those authors next demonstrated that
miR-320a overexpression significantly inhibits the proliferation,
migration, and invasiveness of liver cancer cell lines, suggesting
that augmentation of the exosomal transfer of miR-320a from
stromal cells is a new strategy to suppress HCC progression. In a
study on HCC, after CAF-derived exosomal miR-150-3p was
transferred to HCC cells, these cancer cells were found to exhibit
attenuated migration and invasiveness properties (61). Similarly,
CAF-derived exosomal miR-139 inhibits the progression and
metastasis of gastric cancer by repressing MMP11 expression
Frontiers in Immunology | www.frontiersin.org 7
(47). Studies on the participation of lncRNAs and circRNAs in
tumorigenesis are in full swing too. A recent report showed that
lncRNA H19, which was found to be enriched in CAF-derived
exosomes, can act as a competing endogenous RNA (an miRNA
sponge), thus taking part in tumor progression and chemoresistance
(115). Likewise, CAF-derived exosomes can transfer a CRC-
associated lncRNA to recipient cells to effectively induce
chemotherapy resistance in CRC (116). Research on CAF-derived
exosomal circRNAs is limited at present. Zhan et al. (117) have
found that circHIF1A from CAF-derived exosomes can be taken up
by breast cancer cells and thus plays an important role in the
regulation of cancer stem cell properties by sponging miR-580-5p
and therefore changing CD44 expression. In addition, exosomal
circsl7a6 secreted by CAFs is reported to promote the initiation of
CRC. Those authors reasonably theorized that this effect might be
linked to the role of circsl7a6 in tumorigenesis mediated by
sponging of tumor-related miRNAs such as members of the miR-
21 and miR-200 families (118).

CAF-Derived Exosomal Metabolites
CAF-derived exosomal metabolites are a class of small-molecule
compounds that are capable of influencing malignant tumor
behaviors. These metabolites include proteins, ncRNAs, lipids,
amino acids, and nucleic acids that are indispensable for
metabolic programming of tumors. Altered cell metabolism is
a marker of cancer. Investigators have mainly focused on CAF-
derived exosomal ncRNAs and proteins. To date, few studies
have addressed the functions of other CAF-derived metabolites.

Supplementation of cellular nutrition through the secretion of
metabolites is one of the two metabolism-regulatory mechanisms
of CAF-derived exosomes affecting recipient tumor cells (119).
Exosomes have been shown to stimulate the sharing of
metabolites between tumor cells and CAFs, which is pivotal for
tumor progression (120). In a research article on prostate cancer,
Zhao et al. (119) proved that exosomes contain complete “ready-
made” metabolites, including amino acids such as glutamine,
threonine, serine, and valine; lipids such as palmitate and
stearate; and tricarboxylic-acid cycle intermediates such as
citrate, pyruvate, a-ketoglutarate, fumarate, and malate. In the
case of nutritional deficiencies, these CAF-derived exosomal
metabolites can be transported to cancer cells through
exosomes by fibroblasts to provide fuel for the tricarboxylic
acid cycle and thus to maintain the viability of tumor cells and
promote tumor growth (121). The specific roles of CAF-derived
metabolites in oncogenesis and progression need to be
determined. Nevertheless, metabolic disorders have been
observed in tumors. CAF-derived metabolites may be related
to tumor metabolism, and may have the ability to regulate tumor
biological behaviors, which have the potential to become a
promising tumor characteristic marker in the future.
CAF-DERIVED EXOSOMES IN
CANCER PROGRESSION

Lately, more and more studies indicate that CAF-derived
exosomes play a crucial role in tumorigenesis, including tumor
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cell proliferation, metastasis, drug resistance, and immune
responses (Figure 3).

Tumor Proliferation
The proliferation of cancer cells plays a seminal part in tumor
proliferation. Altered control of cell proliferation is the
primary phenotypic feature of a malignant neoplastic cell
population (122).

Various substances secreted by CAF-derived exosomes have
been shown to be crucial for tumor cell proliferation. Among
them, CAF-derived exosomal miRNAs are currently the focus
of attention. For instance, in non–small cell lung carcinoma
(NSCLC), CAF-derived exosomal miR-210 can promote EMT
by targeting UPF1 and activating the PTEN/PI3K/AKT
pathway and therefore can accelerate the growth of NSCLC
(20). Chen et al. (123) have found that miR-93-5p contained in
CAF-derived exosomes can enhance tumor growth in
irradiated nude mice possibly by downregulating FOXA1 and
upregulating TGFB3. In breast cancer, the proliferation of
cancer cells is significantly accelerated after miR-500a-5p is
transferred through CAF-derived exosomes (124). Aside from
promoting tumor cell proliferation, CAF-derived exosomes can
also inhibit tumor cell proliferation. Li et al. have demonstrated
that exosomal miR-34a-5p was transferred from fibroblasts to
Frontiers in Immunology | www.frontiersin.org 8
oral squamous cell carcinoma cells and can bind to its direct
downstream target AXL to suppress oral squamous cell
carcinoma cell proliferation (125). Similarly, miR-3188 can be
transferred from fibroblasts to head and neck cancer cells by
exosomes and can influence the proliferation and apoptosis of
head and neck cancer cells by directly targeting B-cell
lymphoma 2 in vitro and in vivo (126). After being taken up
by gastric cancer cells, gastric cancer fibroblast–derived
exosomal miR-34 can inhibit gastric cancer cell proliferation
(127). Investigation into the role of CAF-derived lncRNA is in
progress. For example, CAF-derived exosomal lncRNA SNHG3
serves as a molecular sponge of miR-330-5p in breast cancer
cells, which can enhance breast tumor cell proliferation (128).
In CRC, LINC00659 transferred by CAF-derived exosomes
directly interacts with miR-342-3p to increase the expression
of ANXA2 in CRC cells, thereby promoting the proliferation of
cancer cells (129). The role of CAF-derived exosomal proteins
in tumor cell proliferation has also attracted much attention. As
mentioned above, SHH-enriched exosomes secreted by CAFs
can accelerate the growth and progression of ESCC by
activating the SHH signaling pathway (60). Exosomal CD97
is responsible for mediating cancer cell proliferation through
the mitogen-activated protein kinase pathway, as confirmed in
a study of gastric cancers (130).
FIGURE 3 | CAF-derived exosomes can regulate tumorigenesis. (A) CAF-derived exosomal ncRNAs (such as miR-210, miR-93-5p, miR-500a-5p, and lncRNAs
LINC00659 and SNHG3) or proteins (such as SHH, CD97, CD81, and CD9) affect the proliferation of tumors. (B) CAF-derived exosomal ncRNAs (such as miR-
181d-5p, miR-148b, and miR-369) or proteins (TGF-b) control the metastasis of tumors. (C) CAF-derived exosomal ncRNAs (such as miR-106b, miR-423-5p, miR-
21, miR-130a, and lncRNAs UCA1 and H19) or proteins (TGF-b) influence drug resistance of tumors. (D) CAF-derived exosomal miR-92 and PD-L1 regulate the
immune response to tumors by inducing apoptosis and impairing proliferation of T cells.
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Tumor Metastasis
Metastasis is the process by which tumor cells disseminate to distant
tissues and adapt and survive in a foreign microenvironment (131,
132). The process of metastasis mainly includes several stages—local
invasion, intravasation, survival in the circulation, extravasation,
and finally colonization of a new site (133). Accumulating evidence
shows that CAF-derived exosomes have a broad impact on tumor
metastasis (114, 134, 135).

Metastasis requires the invasion of the primary tumor to
break through the basement membrane and then to enter the
circulation, and epithelial cells at the invasive front of carcinoma
surmount this physical barrier by acquiring migratory and
invasive properties through EMT (136). Accordingly, EMT of
recipient cells is necessary for tumor invasion and metastasis,
which can be enhanced by CAF-derived exosomes. Hu et al. (25)
have demonstrated that CRC cells treated with CAF-derived
exosomes overexpress mesenchymal markers (N-cadherin and
vimentin) and underexpress epithelial markers (E-cadherin),
suggesting that CAF-derived exsomes can induce EMT in CRC
cells. Li et al. (101) have also found that TGF-b1 in CAF-derived
exosomes can be transferred to ovarian cancer cells and promote
EMT via the Smad signaling pathway, thereby contributing to
metastasis. In breast cancer, by promoting the EMT of cancer
cells via CDX2 and HOXA5, CAF-derived exosomes containing
miR-181d-5p can enhance tumor metastasis and invasion (137).
In endometrial cancer, CAF-derived exosomal miR-148b can be
transferred to cancer cells and functions as a tumor suppressor
by directly binding to its downstream target gene, DNMT1, to
repress tumor metastasis by inducing EMT (21). Similarly, miR-
369 promotes lung squamous cell carcinoma metastasis in vivo
by inducing EMT (138).

Furthermore, CAF-derived exosomes may influence the
metastasis of some tumors by establishing a premetastatic niche
(PMN), which is an early event in cancer. Circulating tumor cells
form a PMN before real metastasis to improve the chances of
successful survival and settlement in a foreign microenvironment
(139, 140). In salivary adenoid cystic carcinoma, CAF-derived EVs
can induce lungPMNformation inmice and consequently increase
lungmetastasis of salivary adenoid cystic carcinoma; this process is
associated the upregulation of plasma integrin b1 (141). It can also
be hypothesized that as a significant type of EVs, CAF-derived
exosomes may have the potential to form a PMN. However, only
limited data are available on the ability ofCAF-derived exosomes to
stimulate the formation of a PMN. Therefore, the role of CAF-
derived exosomes in PMN formation is unclear.

Tumor Drug Resistance
Various methods can be used for cancer treatment, such as
chemotherapy, drug therapy, and immunotherapy. Nonetheless,
some types of cancer remain insensitive to these traditionally
adjuvant treatments. The use of CAF-derived exosomes may be a
promising strategy for overcoming a tumor’s treatment resistance.

CAF-derived exosomes mainly induce drug resistance by
transferring miRNAs to adjacent cancer cells. For instance, Fang
et al. have found that CAF-derived exosomes upregulatemiR-106b;
they confirmed that after direct transfer from CAFs to pancreatic
cancer cells throughexosomes,miR-106b canpromote gemcitabine
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resistance of cancer cells by targeting TP53INP1 (142). In ovarian
cancer, miR-21 can be transferred from CAFs to ovarian cancer
cells, where it suppresses apoptosis and confers chemoresistance by
binding to its recently discovered direct target,APAF1 (143). Zhang
et al. (8) have demonstrated that CAF-derived exosomes can confer
cisplatin resistance upon NSCLC cells by transferring miR-130a.
Prostate-cancer-associated-fibroblast–derived exosomes carrying
miR-423-5p are reported to increase taxane resistance in prostate
cancer through the TGF-b signaling pathway by targeting GREM2
(144). Just as miRNAs, CAF-derived exosomal lncRNAs are
implicated in increased chemoresistance. Gao et al. (145) have
shown that, as an miR-103a sponge, lncRNA UCA1 can confer
resistance to cisplatin upon vulvar squamous cell carcinoma cells in
vitro and in vivo through the miR-103a–WEE1 axis. Similarly, in
CRC, lncRNA H19 functions as a competing endogenous RNA of
miR-141 and contributes to the stemness of cancer stemcells, in this
way leading to the activation of the Wnt–b-catenin signaling
pathway. The transmission of exosomal H19 from CAFs to
neighboring cells may be closely related to oxaliplatin
resistance (115).

Tumor Immune Response
The ability of tumors to escape surveillance by the immune system
has long been considered an obstacle to the success of cancer
immunotherapy. In recent years, immunotherapy emerged as a
major breakthrough in cancer treatment. As described above, CAF-
derived exosomesplay a significantpart in tumorigenesis, including
tumor cell proliferation, metastasis, and drug resistance. Studies on
the involvement of CAF-derived exosomes in tumor immune
response are being actively conducted at present.

Immune cells include T cells, regulatory T cells, B cells,
dendritic cells, natural killer cells, and others. We propose that
the role of CAF-derived exosomes in the tumor immune
response might be achieved by interacting with these immune
cells. For example, in an experiment on cultured and isolated
human breast CAF-derived exosomes, Dou et al. revealed that
after treatment with CAF-derived exosomes, breast cancer cells
overexpress PD-L1, accompanied by higher miR-92 levels,
significantly promoting apoptosis and impairing the
proliferation of T cells. This finding uncovered a novel
mechanism to induce immune suppression in the TME (22).

So far, the effects of CAF-derived exosomes on immune cells in
the TME have not been extensively studied, but on the basis of the
role of CAFs in tumor immune response and the relation between
CAFs and exosomes, we speculate that the participation of CAF-
derived exosomes in tumor immune response is a promising
research field, which would provide new targets for tumor
prognostic indications and therapeutic strategies in the future.
CLINIC VALUE AND APPLICATION OF
CAF-DERIVED EXOSOMES

CAF-Derived Exosomes as
Diagnostic Biomarkers
Cancer is a public health problem worldwide that is yet to be
alleviated. In recent years, investigators revealed that aberrant
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levels of CAF-derived exosomal substances such as ncRNAs and
proteins are closely associated with clinical pathological
characterizations of cancer patients, including tumor–node–
metastasis stage, lymph node metastasis status, and patient
prognosis. Accumulating evidence indicates that various CAF-
derived exosomal ncRNAs can be considered useful tumor-
related biomarkers. Therefore, an increasing number of
researchers are trying to devise breakthrough cancer
treatments and to elucidate patients’ prognostic indicators.

To better understand the relation between CAF-derived
exosomal contents and cancer, we provide a summary table
(Table 3) with the aim of proposing new promising areas for the
research on CAF-derived exosomes in cancer.
CAF-Derived Exosomes as
Therapeutic Target
CAF-derived exosomes have been proven to be helpful in
predicting the prognosis of patients with tumor and providing
potential targets for cancer treatment, but their clinical
applications are currently limited. Recent studies on the role of
CAF-derived exosomes in tumorigenesis are mainly at the stage
of animal experiments (Figure 4). For example, in a xenograft
nude-mouse model of head and neck cancer, injection of CAF-
derived exosomal miR-3188 resulted in a smaller tumor burden
(126). In a mouse model of gastric cancer, exosomal miR-139 has
been shown to inhibit the metastasis of gastric cancer cells (47).
A report on a nude-mouse model indicates that tumorigenicity
including proliferation and metastasis of oral squamous cell
carcinoma cells is significantly enhanced by the delivery of
CAF-derived exosomal miR-34a-5p into cancer cells (125). In
a nude-mouse model of lung metastasis from endometrial cancer
cells, the metastasis is strongly reduced by overexpression of
exosomal miR-148b in CAFs (21).
FUTURE PERSPECTIVES

CAFs, a key component of the TME, have received increasing
attention in recent years. Exosomes can be regarded as mediators
of information exchange in the TME mainly because of their
biologically active contents, including ncRNAs, proteins, and
metabolites. Clarifying the role of CAF-derived exosomes—i.e.,
newly studied EVs with special biological characteristics believed
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to be essential for tumorigenesis regulation—is important for the
identification of novel diagnostic biomarkers and therapeutic
targets in human cancers.

Previous studies on tumors have mainly focused on the study
of cancer cells. Lately, aside from cancer cells, researchers have
been focusing on the relation between the TME and
tumorigenesis. An increasing number of studies have indicated
that as a key mediator in the TME, CAF-derived exosomes play
crucial roles in cancer initiation and progression. CAF-derived
exosomes are EVs with distinct biological characteristics. First,
exosomes can be considered nanocarriers (i.e., carriers with very
small size) and have already been tested as nanomaterials for drug
delivery. Because of the membrane-based structure of exosomes,
their contents can be better protected from degradation. This
property makes CAF-derived exosomes a crucial carrier of
biological substances for information exchange in the TME.
Second, exosomes are a type of EVs present in all types of body
fluids with good biocompatibility and circulatory stability.
Therefore, when CAF-derived exosomes are used in clinical
treatment, we speculate that they can stably exist in the targeted
site and cause no immunological rejection in vivo. Third, CAFs are
key components of the TME. After secretion by CAFs into the
TME, exosomes containing bioactive factors such as ncRNAs,
proteins, and some metabolites perform indispensable roles in
oncogenesis and cancer progression. They can be taken up by
surrounding recipient cells and trigger a series of responses inside
these recipient cells, including regulating signaling pathways and
targeting specific genes. In this way, CAF-derived exosomes can
significantly affect tumor cell proliferation, metastasis, drug
resistance, and immune responses. According to the existing
data, we suggest that the role of CAF-derived exosomes in
tumorigenesis is a promising research field for updating tumor
therapeutic strategies (21, 22, 129, 147).

However, there are still some problems in the study of CAF-
derived exosomes. First, the methods for separation and
purification of exosomes vary, and there is no recognized
effective extraction technique for obtaining high-purity
exosomes; this situation means difficulties with the study of
CAF-derived exosomes. Second, the TME is extremely
complex. The specific mechanism of CAF-derived exosomes on
their recipient tumor cells that affects malignant tumor behaviors
needs to be further elucidated. Third, in terms of translational
research and clinical applications, there are not enough animal
experiments verifying the effectiveness of CAF-derived exosomes
TABLE 3 | Correlation between CAF-derived exosomal content and clinical pathological characterizations of cancer patients.

Exosomal contents Tumor type Sample sources Dyregulation Relationship with clinicopathology Ref.

miR-382-5p Oral squamous cell carcinoma Tissue Upregulation TNM stage, lymph node metastasis (135)
miR196a Head and neck cancer Plasma Upregulation Poor prognosis (146)
miR-3188 Head and neck cancer Plasma and tissue Downregulation TNM stage, tumor size, poor survival (126)
miR-150-3p Hepatocellular carcinoma Plasma Downregulation Long survival (61)
miR369 Lung squamous cell carcinoma Tissue Upregulation Poor prognosis (138)
miR-17-5p Colorectal cancer Tissue Upregulation Poor prognosis (113)
lncRNA H19 Colorectal cancer Tissue Upregulation TNM stage (115)
lncRNA UCA1 Vulvar squamous cell carcinoma Tissue Upregulation T stage, Clinical stage, and lymph node metastasis status (145)
MMP11 Gastric cancer Tissue Upregulation Poor prognosis (47)
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in the treatment of cancers, and there are few clinical studies.
Although exosomes have been adapted to serve as nanomaterials
carrying drugs, there is little evidence that they can stably
maintain an ideal functional state of a drug in vivo.

With additional in-depth and innovative research, we believe
that the role of CAF-derived exosomes in tumorigenesis will be
clarified further, and more encouraging progress will be
made soon.
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