
R E V I EW

Exosomes, the message transporters in vascular calcification
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Abstract

Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and

medial layers of the vascular wall, leading to severe cardiovascular events in patients

with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences

involve complicated mechanism networks, such as matrix vesicles or exosomes pro-

duction, osteogenic differentiation, reduced cell viability, aging and so on. However,

with present therapeutic methods targeting at VC ineffectively, novel targets for VC

treatment are demanded. Exosomes are proven to participate in VC and function as

initializers for mineral deposition. Secreted exosomes loaded with microRNAs are

also demonstrated to modulate VC procession in recipient vascular smooth muscle

cells. In this review, we targeted at the roles of exosomes during VC, especially at

their effects on transporting biological information among cells. Moreover, we will

discuss the potential mechanisms of exosomes in VC.
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1 | INTRODUCTION

Vascular calcification (VC) is attributed to calcium and phosphate (Pi)

metabolic dysfunction, osteogenic differentiation, inflammation and so

on, leading to major adverse cardiovascular events (MACEs), especially

in patients with chronic kidney disease (CKD).1-3 Furthermore, VC

occurs in the intimal and medial layers of vessel wall, which is linked to

atherosclerotic plaque burden and consequent rupture.4 In some clini-

cal trials, moderate or severe calcification contributes to more MACE

occurrences in patients treated with revascularization therapy, com-

pared with non/mild calcification.5 As VC increases MACE occur-

rences, many treatments are designed to counteract with VC, such as

statins, Pi binders and so on. However, with more concentrations driv-

ing into this field, more shortages of such treatments are presented in

the front. A meta-analysis revealed that statins failed to ameliorate

coronary artery calcification procession despite reducing LDL-c level.6

Moreover, Pi binders also enhance VC, which are mediated by calcium

contained in such binders.7,8 Pi binders are also demonstrated to limit

bioavailability of vitamin K2, which further inhibits the activity of min-

eral deposition factor matrix Gla protein (MGP) to enhance VC occur-

rence.9 MGP is an inhibitory factor for VC and inactivated MGP

results in exacerbating VC.9 Due to the limitation of present treat-

ments in VC, novel targets and therapies for VC are demanded.10,11

Importantly, exosomes have been demonstrated to be involved in

VC recently.11,12 Exosomes have up-regulated secretion from vascular

smooth muscle cells (VSMCs) in vivo after pro-calcifying stimulation

and become “calcifying” exosomes to induce VC.11 Calcium binds with

Pi to form hydroxyapatite nodes on the inner and outside of “calcify-

ing” exosomes membranes, which further initializes mineral deposi-

tion.11 Although these studies did reveal that exosomes participated in

the calcification procession through promoting mineral deposition

sites formation, they did not discuss exosomes functioning as media-

tors for RNAs transportation, which is vital for exosome function.13

Exosomes are secreted by diverse cells to mediate cell-to-cell com-

munications.14 However, how exosomes regulating VC is only prelimi-

narily explored recently. It is found that exosomes with diverse origins

mainly mediate microRNAs (miRs) transporting to VSMCs in coronary

artery calcification.15 A bioinformatics analysis revealed that cultured in

osteogenic medium, mesenchymal stem cells secreted exosomes with

alterations of miRs, comparing with normal culturing.16 Such alterations

were suggested to accelerate calcification in other mesenchymal stem

cells to modulate osteogenic phenotype transition.16 Thus, it implies

that besides heterogeneous mineral deposition inside vessel wall,11

exosomes can also promote VC by transporting messages among cells.

In this review, we will summarize the roles of exosomes in VC and anal-

yse the potential mechanisms associated with exosomes in VC.

2 | EXOSOMES PARTICIPATE IN VC

2.1 | Biological characters of exosomes

Widely found in body fluid, exosomes represent a group of extracel-

lular vesicles (EVs) with intracellular contents, such as proteins and

RNAs, which are transported among cells to mediate cell-to-cell

communications under certain situations.17 Exosomes originate from

multivesicular bodies (MVBs) and are loaded with intracellular com-

ponents upon biogenesis.17 It is reported that after shear stress

stimulation, EVs secreted from endothelial cells enriched with miR-

143/145 and control the phenotype of VSMCs.18 Such miRs trans-

portation via exosomes regulates de-differentiation of VSMCs,

which initializes phenotype transition during VC.13,18 Recent study

also revealed that increasing exosomes secreted by VSMCs pro-

mote VC via mineral deposition.12 Attributing to EVs congestion in

vascular wall, the calcification spheres contribute to heterogeneity

of microcalcification formation via mineral deposition.19,20 In the

process of mineral deposition, comparisons based on previous

researches demonstrated that tiny differences existed between exo-

somes and matrix vesicles (MVs) in size, morphology and lipid/pro-

tein contents, indicating that exosomes share characteristics with

MVs during calcification procession.21 Such vesicles secreted by

VSMCs expressing exosome biomarker CD63 are regarded as exo-

somes.11

Moreover, as Clotilde Thery et al suggested, exosomes represent

the mixed population of small EVs which transport information

among cells as the primary function.17 Recently, exosomes derived

from calcified VSMCs were proven to enhance calcification in the

recipient VSMCs via activating mitogen-activated protein kinase.22

Exosomes are also suggested to deliver intracellular contents such as

proteins and RNAs, functioning as message transporters to promote

VC.23 Emerging evidences revealed that exosomal miRs were signifi-

cant in diagnosis, prognosis or even therapeutic target selection in

patients with cancer and heart failure.24,25 Selective enrichments of

miRs in exosomes were due to the alterations in parental or donor

cells, from which exosomes are secreted or originated.26 Of note,

exosomes take part in cellular behaviour changes, such as phenotype

transition and inflammatory reactions via transporting miRs to inter-

fere with several signalling pathways.27,28 Uptake of exosomes by

osteoblasts is accelerated by increased receptors expressed on the

cell surface, with transporting miRs from osteoclasts under osteo-

clastogenesis stimulation.29 All of secretion, congestion and uptake

processions of exosomes modulate VC from different aspects. Thus,

exosomes participate in the procession of VC via partially promoting

mineral deposition sites formation and transporting miRs as informa-

tion among cells (Figure 1).

2.2 | Initializing mineral deposition

Resembling to bone formation, mineral deposition is the characteris-

tic feature of VC and MVs are regarded as the major players of calci-

fication procession.30 Elevated calcium combines with Pi to form

mineral deposition sites which determines the outcome of calcifica-

tion.31 It is reported that MVs derived from macrophages enhanced

ectopic mineralization after culturing in the high calcium/Pi med-

ium.32 During VC, MVs are proven to participate in mineral nucle-

ation sites formation, and decreased MVs secretion results in

amelioration of VC.33,34 It is proven that exosomes, as MVs, obtain
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mineral compounds to maintain the intracellular mineral metabolism

homeostasis, which further aggravates the mineral deposition sites

formation.11,12

It is reported that exosomes secretion pathway is activated dur-

ing VC and modulations on such procession exert as novel targets

for VC prevention.11 Specifically, elevated Pi and calcium and cytoki-

nes, including tumour necrosis factor a (TNF-a) and platelet-derived

growth factor-BB (PDGF-BB) enhance exosomes secretion via ele-

vating sphingomyelin phosphodiesterase 3 (SMPD3, also known as

neutral sphingomyelinase 2, nSMase2) expression.11 Pro-calcifying

stimulation increases the expression of SMPD3/nSMase2 of VSMCs

and leads to enhanced calcification.2 SMPD3/nSMase2 converts sph-

ingomyelin to ceramide which induces the conjunction of clathrin-

coated microdomains and further promote exosomes secretion.35 As

phenotype transiton of VC involving cytoskeleton remodelling, such

intracellular alterations would promote exosomes secretion via cera-

mide.2,36,37

Moreover, the “calcifying” exosomes secreted during VC are

characterized with low MGP contents and high level of hydroxyap-

atite, which initialize mineral deposition as microcalcifiction.11 It is

known that Gla-rich proteins, including MGP, inhibit the nucleation

sites formation on the surface of exosomes via binding with exter-

nalized phosphatidylserine (PS).12 Such inhibitions of mineral-binding

abilities further block calcium deposition in an exosomes-dependent

manner and ameliorate calcification procession.11,12 Besides mineral

contents inside exosomes, externalized PS combines with calcium-

binding protein (such as Annexin A2, A5, A6), which forms hydroxya-

patite deposition inner and outside exosomes.38 Moreover, Annexins

are loaded into exosomes before releasing.39 Extracellular Pi concen-

tration is further enhanced by phosphatases on MVs surface via con-

verting pyrophosphate to provide ectogenic Pi. Choline kinase

mutant also enhances some phosphatase activities as compensatory

mechanism to accelerate Pi production.40 Thus, such evidences indi-

cated that exosomes participated in VC via forming calcium

deposition sites, which are attributed to exosomes contents and cal-

cium-binding abilities.

2.3 | Transporting miRs to modulate VC

Cell-to-cell communication is a key mechanism for VC occurrence.41

Recent findings showed that exosomes played important roles in

transporting information among cells.41 As plenty of works had

focused on the roles of exosomes in mineral deposition during VC,

limited insights into VC do not clearly explain the exact procession

of exosomes as information transporters.11 Exosomes mediate infor-

mation transportation among cells, which are reported to depend on

heparin sulphate proteoglycans (HSPG) for the internalization in can-

cer cells.42 However, HSPG protects VSMCs from various toxic sub-

stances and circulating inflammatory cells to prevent VC.43 Reduced

HSPG expression in the extracellular matrix (ECM) exposes HSPG on

cell surface, which further mediates bone morphogenetic protein 2

(BMP2) internalization to enhance osteogenic phenotype transition

in myoblast cells.44 Inhibition of HSPG expression on the cell surface

leads to decreased efficiency of exosomes uptake.29,45

Functioning as carriers to transport cargos among cells, exo-

somes trigger some reactions in recipient cells. Exosomes cargos

contain RNAs (including mRNAs and miRs), cytokines, lipids and so

on.2 Exosomes released from mineralizing pre-osteoblast MC3T3-b1

cells promote osteogenic differentiation in ST2 cells, which is medi-

ated by the complicated networks formed by exosomal miRs.46

Other research also revealed that miRs expression in MVs during

VC, suggesting that exosomes might transport vital information dur-

ing VC.47 Despite enhancing the exosomes secretion in VC, elevated

SMPD3/nSMase2 expression also modulates miRs sorting into exo-

somes, and quantitative analysis revealed that inhibition of SMPD3/

nSMase2 led to significantly decreased expression of several miRs in

exosomes.48 Alteration of miRs inside exosomes regulates osteogenic

differentiation of human bone-marrow-derived mesenchymal stem

PS

Alterations 
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F IGURE 1 The functions of exosomes
during vascular calcification (VC) as
initializers and transporters for microRNAs
(miRs). Exosomes function as mineral
nucleation sites extracellularly and
transport miRs among cells targeting at
mRNAs in the recipient vascular smooth
muscle cells. Exosomes intake further
promotes miRs transportation among cells,
which is in a heparin sulphate
proteoglycans (HSPG)-dependent manner.
Moreover, under pro-calcific milieu,
exosomes secretion is enhanced by
sphingomyelin phosphodiesterase 3
(SMPD3)
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cells.16 Furthermore, these alterations of miRs inside exosomes could

augment osteogenic phenotype transition via elevating runt-related

transcription factor 2 (Runx2) expressions and activating several sig-

nalling pathways such as Wnt/b-catenin.46

Osteogenic phenotype transition represents as a crucial charac-

teristic of VC, with switching from contractile phenotype to osteo-

blast-like cells.49 And such procession is mirrored by expression of

osteogenic transcription factors such as Runx2 and loss of contrac-

tile phenotype such as a-smooth muscle actin (a-SMA).50 It is

revealed that some miRs with elevated expression during VC pro-

mote osteogenesis via targeting at anti-calcification proteins or con-

tractile markers, whereas some other miRs with decreased

expression suppress osteogenesis of VSMCs through targeting at

osteogenic transcription factors13,51-61 (shown in Table 1). As

described, some of such miRs, including miR-133b,55 miR-204,57

miR-211,55 alter during VC and are also proven to be transported by

exosomes to modulate the biological behaviour in various kinds of

recipient cells.62-64 Such results indicated that exosomes could par-

ticipate in VC through transporting miRs to influence phenotype

transition. However, Ulbing et al65 reported that circulating miR-223

was down-regulated in CKD patients and decreased expression of

miR-223 was regarded as a risk factor for VC occurrence which

might be packaged into exosomes. Moreover, miR-223 expression is

up-regulated in VSMCs under elevated Pi stimulation.56 Such contra-

diction implies that besides message transporters, exosomes function

more than what the present knowledge obtains and more attentions

need to be paid in such field.

3 | POTENTIAL REGULATORY
MECHANISMS OF EXOSOMES IN VC

3.1 | Autophagy

Autophagy is aimed to digest intracellular proteins and organelles

when cells encounter with emergent situations, such as stress

responses.66 A series of studies have focused on the relationship

between autophagy and VC, and it seems that autophagy amelio-

rates such procession through AMP-activated protein kinase

(AMPK) activation under Pi-induced situation.67 Autophagy

involves autophagosomes formation mediated by LC3, Beclin1 and

autophagic flux activated by autophagosomes fusing with lyso-

somes.68 Up-regulating LC3 and Beclin1 expression blocks calcium

deposition in high Pi stimulation, which indicates that autophagy

might have the inhibitory role in VC.67 It is also reported that 7-

ketecholesterol, a VC inducer, promotes VC through lysosomes

dysfunction which blocks the fusion of autophagosomes and lyso-

somes.69

Recently, autophagy is believed to be enhanced by high Pi stimu-

lation and suppresses MVs secretion which further forms mineral

nucleation sites and consequently ameliorates calcification in

VSMCs.34 It is well documented that autophagy accelerates MVBs

degradation and decreases exosomes secretion, which is mediated

by autophagosome-lysosome fusion.21 Briefly, MVBs move to

neighbourhood of the cell membrane and then dock to the mem-

brane for exosomes releasing, which is regulated by Rab GTPases.70

One of such GTPase, Rab11, then induces exosomes secretion by

promoting MVBs docking and fusing to cytomembrane in a calcium-

dependent manner.71 Rab11 also enhances autophagosomes fusing

with MVBs to form amphisomes under interferon-c treatment, which

promotes Annexins loading into exosomes.39

Moreover, autophagy seems to interfere with miRs loading into

exosomes during VC. It is reported that heterogeneous ribonuclear

protein A2/B1 (hnRNPA2/B1) plays a vital role in promoting miRs

loading into exosomes.72 It is believed that small ubiquitin-like modi-

fier (SUMOylation) of hnRNPA2/B1 promotes miRs loading into exo-

somes.72 In addition, Ubc9, the E2-conjugating enzymes mediating

SUMOylation, is degraded in autophagy procession.73 Thus, autopha-

gic flux partially decreases exosomes secretion and miRs loading into

exosomes, which might interfere with mineral deposition and osteo-

genic phenotype transition. However, more researches need to dis-

tinguish the exact function of autophagy in VC.

3.2 | Inflammation

It has been known that inflammation promotes VC, which is modu-

lated by inflammatory cytokines secreted from inflammatory cells,

such as macrophages.74 Expression of TNF-a and interleukin (IL)

family members, such as IL-1b and IL-6, is increased and such cytoki-

nes play pivotal roles in the procession of VC.75 These cytokines

enhanced the expression of BMP2 and reduced MGP expression,

further promoting VC procession in VSMCs.76 It is also reported that

exosomes collected from body fluid promote inflammation.77 Previ-

ous report indicates that ceramide is elevated due to inflammatory

stimulation and promotes VC.78

Moreover, macrophages are involved in inflammatory reaction

during VC. Derived from monocytes, macrophages are recruited and

activated in the calcification area to initialize the mineral deposition,

which further enhances the production of inflammatory cytokines.79

It is reported that in metabolic disorders, exosomes derived from

macrophages shuttle miR-155 among cells to modulate insulin sensi-

tivities in insulin target recipient cells.80 MiRs-223 is also proven to

be transferred by microvesicles from macrophages, and such

microvesicles include exosomes and other kinds of EVs.81 Both miR-

155 and miR-223 are also proven to modulate VC,13,56 suggesting

that besides promoting inflammatory cytokines secretion, macro-

phages participate in VC via an exosomal miRs-dependent manner.

In addition, transforming growth factor b (TGF-b) signalling path-

way is proven to promote VC, which is related to inflammation.82

High Pi induces activation of TGF-b/Smad2/3 in VSMCs and Smads

modulate specific genes transcription, including SMPD3/nSMase2

which converts sphingomyelin to ceramide.48,83,84 However, miR-

29b is proven to inhibit TGF-b/Smad3 axis activation via targeting at

Smad3 and alteration of exosomal miR-29b modulates such mRNAs

expression in the recipient infected cells concerning HIV study.85,86

All these results indicate that exosomes modulate inflammation via

mediating miRs transportation during VC.

ZHANG ET AL. | 4027



T
A
B
L
E

1
T
ar
ge

ts
an

d
ex

pr
es
si
o
n
ch

an
ge

s
o
f
di
ff
er
en

t
m
iR
s
in

V
C
pr
o
ce
ss
io
n

m
iR
(s
)

T
ar
ge

t
m
o
le
cu

le
P
ro
-c
al
ci
fi
c
st
im

ul
at
io
n

C
el
l
So

ur
ce

/T
is
su
e

Fu
nc

ti
o
n

R
ef
er
en

ce
nu

m
be

r
m
iR
N
A

ex
p
re
ss
io
n

m
iR
-2
9
b

A
C
V
R
2
A

C
T
N
N
B
IP

P
i-
in
du

ce
d

R
at

V
SM

C
s

In
hi
bi
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
5
]

↓

m
iR
-3
0
b/
c

R
un

x2
rh
B
M
P
2
-i
nd

uc
ed

H
um

an
co

ro
na

ry

ar
te
ry

SM
C
s

In
hi
bi
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
1
]

↓

m
iR
-3
2

P
T
E
N

b
-g
ly
ce
ro
ph

o
sp
ha

te
-i
nd

uc
ed

M
o
us
e
V
M
SC

s
P
ro
m
o
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
2
]

↑

m
iR
-3
4
b/
c

SA
T
B
2

A
ld
o
st
er
o
ne

-i
nd

uc
ed

R
at

V
SM

C
s

Su
pp

re
ss
io
n
o
f
o
st
eo

ge
n
es
is

tr
an

sd
if
fe
re
nt
ia
ti
o
n

[5
3
]

↓

m
iR
-1
2
5
b

O
st
er
ix

b
-g
ly
ce
ro
ph

o
sp
ha

te
-i
nd

uc
ed

H
um

an
co

ro
na

ry

ar
te
ry

SM
C
s

D
ec
re
as
in
g
A
LP

ex
p
re
ss
io
n
an

d
m
at
ri
x

m
in
er
al
iz
at
io
n

[5
4
]

↓

m
iR
-1
3
3
b

R
un

x2
P
i-
in
du

ce
d

R
at

V
SM

C
s

In
hi
bi
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
5
]

↓

m
iR
-1
4
3
/1

4
5

K
LF

4
/K

LF
5

P
i-
in
du

ce
d

H
A
V
SM

C
s

P
he

no
ty
pe

tr
an

si
ti
o
n
p
re
se
rv
at
io
n

[5
6
]

↓

m
iR
-1
5
5

A
T
1
R

C
K
D
(t
ra
ns
ge

ni
c
ra
t)

R
at

V
SM

C
s

In
hi
bi
ti
o
ns

to
V
C

[1
3
]

↓

m
iR
-2
0
4

R
un

x2
b
-g
ly
ce
ro
ph

o
sp
ha

te
-i
nd

uc
ed

M
o
us
e
V
SM

C
s

In
hi
bi
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
7
]

↓

m
iR
-2
1
1

R
un

x2
P
i-
in
du

ce
d

R
at

V
SM

C
s

In
hi
bi
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[5
5
]

↓

m
iR
-2
2
3

M
ef
2
c/
R
ho

B
P
i-
in
du

ce
d

H
um

an
V
SM

C
s

P
he

no
ty
pe

tr
an

si
ti
o
n
fr
o
m

co
n
tr
ac
ti
le

to

sy
nt
he

si
s
an

d
ca
lc
if
ic
at
io
n
in
d
u
ct
io
n

[5
6
]

↑

m
iR
-7
1
2

N
C
K
X
4

K
lo
th
o
ho

m
o
zy
go

us
m
ut
an

t
M
o
us
e
V
SM

C
s

D
is
ru
pt

ca
lc
iu
m

tr
an

sp
o
rt
er
s
an

d
p
ro
m
o
te

ca
lc
iu
m

de
po

si
ti
o
n

[6
0
]

↑

m
iR
-7
1
4

P
M
C
A
1

K
lo
th
o
ho

m
o
zy
go

us
m
ut
an

t
M
o
us
e
V
SM

C
s

D
is
ru
pt

ca
lc
iu
m

tr
an

sp
o
rt
er
s
an

d
p
ro
m
o
te

ca
lc
iu
m

de
po

si
ti
o
n

[6
0
]

↑

m
iR
-7
6
2

N
C
X
1

K
lo
th
o
ho

m
o
zy
go

us
m
ut
an

t
M
o
us
e
V
SM

C
s

D
is
ru
pt

ca
lc
iu
m

tr
an

sp
o
rt
er
s
an

d
p
ro
m
o
te

ca
lc
iu
m

de
po

si
ti
o
n

[6
0
]

↑

m
iR
-2
8
6
1

H
D
A
C
5

b
-g
ly
ce
ro
ph

o
sp
ha

te
-i
nd

uc
ed

M
o
us
e
V
M
SC

s
P
ro
m
o
ti
o
n
o
f
o
st
eo

b
la
st

d
if
fe
re
n
ti
at
io
n

[6
1
]

↑

m
iR
-3
9
6
0

H
o
xA

2
b
-g
ly
ce
ro
ph

o
sp
ha

te
-i
nd

uc
ed

M
o
us
e
V
M
SC

s
In
cr
ea

si
ng

o
st
eo

bl
as
to
ge

n
es
is

[6
1
]

↑

A
C
V
R
2
A
,
ac
ti
vi
n
A

re
ce
pt
o
r
ty
pe

II
A
;
A
T
1
R
,
an

gi
o
te
ns
in

ty
pe

1
re
ce
pt
o
r;
C
T
N
N
B
IP
,
b
-c
at
en

in
in
te
ra
ct
in
g
pr
o
te
in
;
H
D
A
C
5
,
hi
st
o
ne

de
ac
et
yl
as
e
5
;
H
o
xA

2
,
h
o
m
eo

b
o
x
A
2
;
M
ef
2
C
,
m
yo

cy
te

en
h
an

ce
r
fa
ct
o
r

2
C
;
N
C
K
X
4
,
so
di
um

/c
al
ci
um

ex
ch

an
ge

m
em

be
r
1
;
N
C
X
1
,
so
di
um

/c
al
ci
um

ex
ch

an
ge

m
em

be
r
1
;
P
M
C
A
1
,
pl
as
m
a
m
em

br
an

e
ca
lc
iu
m

pu
m
p
is
o
fo
rm

1
;
P
T
E
N
,
p
h
o
sp
h
at
e
an

d
te
n
si
n
h
o
m
o
lo
gu

e;
R
h
o
B
,
ra
s

ho
m
o
lo
gu

e
fa
m
ily

m
em

be
r
B
;
SA

T
B
2
,
sp
ec
ia
l
A
T
-r
ic
h
se
qu

en
ce
-b
in
di
ng

pr
o
te
in

2
.

4028 | ZHANG ET AL.



3.3 | Oxidative stress

Intracellular calcium overloading triggers disruption of superoxide

metabolism, and further induces oxidative stress. Excessive produc-

tion of reactive oxygen species (ROS) promotes VC via inducing

osteogenic phenotype transition.87 Advanced glycation end-products

(AGEs) are the key factors for ROS production in diabetes mellitus

(DM) patients, which activates the receptors to initialize oxidative

stress procession. It was found that in DM, AGE up-regulated ROS

production, elevated alkaline phosphatase (ALP) activity and pro-

moted VC via receptors for advanced glycation end-products

(RAGEs).88 In another study, Kay et al89 demonstrated that AGE/

RAGE axis accelerated ROS production via nicotinamide adenine din-

ucleotide phosphate oxidase 1 (Nox1) to enhance oxidative stress in

VSMCs and subsequently enhanced VC. It has been shown that exo-

somes are associated with oxidative stress. Patel et al90 previously

found that exosomes from breast cancer cells promoted ROS pro-

duction in the recipient primary mammary epithelial cells. It is also

reported that miR-30 was down-regulated after calcification stimula-

tion, which also targeted at RAGEs to modulate AGE/RAGE activity

and further decreased oxidative stress level.51,91 In fact, miR-30

could be packed into exosomes and transport information among

endothelial cells and mesenchymal stem cells.92 The expression of

miR-210 is also proven to be decreased in VC,52 and exosomal miR-

210 also ameliorated ROS production in the recipient endothelial

cells.93 Such results indicated that exosomes could regulate the

oxidative stress via modulating ROS production.

3.4 | Immune response

Immune response is composed of innate and adaptive immunity,

which is recently regarded as a major player in the occurrence of

cardiovascular disease.94 Regulatory T (Treg) cells are of great signifi-

cance in immune response, which might negatively regulate inflam-

matory reaction.94 In haemodialysis patients, coronary artery

calcification score is negatively correlated with Treg cell frequencies
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and Treg/T-helper cell 17 functional disequilibrium is also vital in

such procession.95,96 Exosomes are proven to be involved in Treg

cells modulation. Exosomes derived from Treg cells transport exoso-

mal contents including miRs to the recipient conventional T cells or

recipient cells in tumour tissue, further modulating immune response

or intracellular translation procession.97 Indeed, Treg cell is regarded

as the suppressive effector in immune system by delivering miRs via

exosomes.98 It is reported that Treg cells transfer miR-155 to recipi-

ent conventional T cells.99 Importantly, miR-155 is vital in VC pro-

cession,13 and exosomal miR-155 derived from Treg cells might

function as an additional source of miRs during VC. Thus, exosomes

might be a novel interaction point between immune response and

VC procession, and such interaction may depend on the miRs trans-

portation.

3.5 | Other mechanism relating to exosomes during
VC

Besides the mechanisms described above, mechanical stretch is

regarded as a potential novel player of VC. Exosomes may regulate

VC procession through this mechanism. Mechanical environment is

recently proven to participate in calcification procession. Balachan-

dran et al100 reported that cyclic mechanical stretch could promote

aortic valve calcification via elevating Runx2 expression and ALP

activity. Mechanical membrane stretch enhanced exosomes secretion

in cardiomyocytes, and contents inside exosomes were altered due to

the mechanical environment.101 Moreover, it was reported that under

shear stress stimulation, BMP4 expression was down-regulated in

endothelial cells, which is vital for osteogenic transition during VC.102

Also, shear stress promotes miR-143 loading into exosomes rather

than other miRs in endothelial cells, indicating that mechanic environ-

ment has effect on selective miRs secretion via exosomes.103 Thus,

mechanical environment is vital in the procession of VC via alter-

ations of miRs inside exosomes and exosomes secretion.

4 | CONCLUSION

Vascular calcification elevates the probabilities for patients to

encounter with MACEs. In this review, we have discussed the roles

of exosomes as message transporters in VC. Exosomes accelerate

VC through mediating miRs transportation among cells to regulate

autophagy, inflammation, oxidative stress, immune response and

other possible mechanisms (Figure 2). Interfering exosomes secretion

and miRs alterations inside might provide novel targets for treating

VC.
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