
entropy

Article

Statistical Characteristics of Stationary Flow of
Substance in a Network Channel Containing
Arbitrary Number of Arms

Roumen Borisov 1, Zlatinka I. Dimitrova 2 and Nikolay K. Vitanov 1,3,*
1 Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria;

r.borisov@outlook.com
2 Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, Blvd. Tzarigradsko

Chaussee 72, 1784 Sofia, Bulgaria; zdim@issp.bas.bg
3 Max-Planck Institute for the Physics of Complex Systems, Noethnitzerstr. 38, 01187 Dresden, Germany
* Correspondence: vitanov@imbm.bas.bg

Received: 19 April 2020; Accepted: 12 May 2020; Published: 15 May 2020
����������
�������

Abstract: We study flow of substance in a channel of network which consists of nodes of network
and edges which connect these nodes and form ways for motion of substance. The channel can have
arbitrary number of arms and each arm can contain arbitrary number of nodes. The flow of substance
is modeled by a system of ordinary differential equations. We discuss first a model for a channel
which arms contain infinite number of nodes each. For stationary regime of motion of substance in
such a channel we obtain probability distributions connected to distribution of substance in any of
channel’s arms and in entire channel. Obtained distributions are not discussed by other authors and
can be connected to Waring distribution. Next, we discuss a model for flow of substance in a channel
which arms contain finite number of nodes each. We obtain probability distributions connected
to distribution of substance in the nodes of the channel for stationary regime of flow of substance.
These distributions are also new and we calculate corresponding information measure and Shannon
information measure for studied kind of flow of substance.

Keywords: network; flow; channel; probability distribution; Shannon information measure

1. Introduction

Complex systems have been studied intensively in the last decades as such systems are
encountered frequently in the area natural sciences, population dynamics, social sciences, etc. [1–11].
Large number of phenomena in above systems can be studied by network models [12–16]. One class
of phenomena is connected to certain kinds of motion of substance through channels of networks
(such as, e.g., migration flows, logistic flows, transport of substances, etc.) [17–25]. In the last years we
have studied several cases of flow of substance in channels of networks [23,26–31]. At the beginning,
our studies have been inspired by application of studied models to channels of human migration.
One direction of this research is related to probability distributions connected to motion of substance
in studied channel of a network. At the beginning we have used model for channel with single arm.
After that we have obtained results for channels containing two or three arms. Below we extend this
theory for flow of substance in a class of channels containing arbitrary number of arms. We consider
the situation where studied channel has a main arm which is the root for other arms. There are special
nodes in this channel: the nodes where split of an arm happens. We shall consider the case where
more than one arm can arise by this split.

The study presented below is carried out from point of view of possible application of discussed
model to various practical cases. Because of this we use the general terms substance, channel and
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nodes of a network. The model can be applied to different kinds of substances and for flows of these
substances in any channel which can be modeled by chains of nodes of a network. We note that the
probability distributions obtained below are not discussed by other authors and these distributions
can be connected to interesting long-tail distributions (e.g., to the Waring distribution) for particular
case where the channel contains single arm.

The organization of text is as follows. In Section 2 we discuss a model of channel containing arms
consisting of infinite number of nodes in each of them. We obtain probability distributions connected
to amounts of substance in nodes of the arms of this channel for case of stationary flow of substance.
Then we study the case of stationary flow of substance in channel which arms contain finite number of
nodes each. In Section 3 we discuss the information measure and the Shannon information measure
connected to the obtained probability distributions. Short discussion is presented in Section 4 and
several concluding remarks are summarized in Section 5.

2. Results

2.1. Flow of Substance in a Channel Consisting of Arms Containing Infinite Number of Nodes Each

The model of motion of substance through the channel discussed below is an extension of model
discussed in [23,24]. The channel consists of chains of nodes of a network—Figure 1.

Figure 1. Network and studied channel. Nodes and edges which belong to the channel are marked by
solid lines. Other nodes and edges of the network are marked by dashed lines.

The convention for numbering of nodes of channel is as follows—Figure 2. Let us denote a node
of the channel by N . We associate 4 indexes to each node: N a,b

i,j . The lower indexes specify position of
node in current arm. i is the number associated with current arm. j is the the number of node of i-th
arm. Upper indexes specify the origin of arm i. The index a is number of arm from which arm i splits.
The index b is number of node of arm a where this split happens. Thus a = 3, b = 8 means: arm i of
the channel arises from node 8 of arm 3. ThenN 1,2

3,5 means: 5-th node of arm 3 which splits at node 2 of
channel’s arm 1.
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Figure 2. The channel and numbering of its nodes. Only the lower two indexes of numbering of nodes
are shown.

We assume that some substance can enter studied channel from external environment only
through the 0-th node of main arm of the channel (this arm is labeled by q = 0 below in the text).
In addition the substance can move only in one direction in any of arms (from nodes labeled by smaller
values of index j to nodes labeled by larger values of index j). Nodes of each arm are connected by
edges and each node is connected only to two neighboring nodes of the arm except for special nodes
where a split of an arm happens. These special nodes can be connected to 1 or more additional nodes.
In addition we assume that substance can quit the nodes of channel and can move to environment.
This process will be called “leakage”. As substance can enter the channel only through 0-th node of
main arm then leakage is possible only in direction from channel nodes to other network nodes (and
not in the opposite direction).

We stress the following. The node where arm i begins is labeled as 0-th node of i-th arm. This node
is the next one after splitting at node b of arm a. Thus any of nodes of the channel has unique notation.
This is illustrated in Figure 2. The 0-th node of arm 1 arises from 0-th node of the arm 0 (the 0-th node
of arm 0 is “environment” which supplies substance to 0-th node of arm 1).

We can consider each node as a cell (box), in other words, we consider the arm to be an array of
infinite number of cells indexed in succession by non-negative integers. We assume that an amount

x
aq ,bq
q of some substance is distributed among cells of the arm q which splits at node (aq, bq) of the

network. This substance can move from one cell to another cell.
Let x

aq ,bq
q,i be amount of substance in i-th cell of the q-th arm of the channel. We consider in this

section a channel containing infinite number of nodes in each of its arms. Then

x
aq ,bq
q =

∞

∑
i=0

x
aq ,bq
q,i . (1)

The fractions y
aq ,bq
q,i = x

aq ,bq
q,i /x

aq ,bq
q can be considered as probability values of distribution of a discrete

random variable ζq in corresponding arm of channel

y
aq ,bq
q,i = p

aq ,bq
q (ζq = i), i = 0, 1, . . . (2)
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We can define another distribution: the distribution of substance in entire channel. The total
amount of substance in this case is

x =
M

∑
q=0

x
aq ,bq
q =

M

∑
q=0

∞

∑
i=0

x
aq ,bq
q,i , (3)

where M + 1 is number of arms of channel (remember the main arm of channel which has number 0).
Corresponding distribution of substance in the channel is

z
aq ,bq
q,i =

x
aq ,bq
q,i

x
(4)

Next we assume that the amount x
aq ,bq
q,i of substance in i-th node of q-th arm of channel can change

because of following processes:

1. Some amount sa,b
q of substance enters arm q from external environment through 0-th cell of

corresponding arm. We consider two kinds of external environments for an arm of the channel

(a) For the root of the channel (arm with label q = 0): substance s0,0
0 enters the root through

environment of the channel
(b) For the arms of the channel which are not root (i.e., which number is q 6= 0): Substance sa,b

q
is part of substance presented in node (a, b) of parent arm. This substance “leaks” from
the parent arm to corresponding child arm.

The substance sa,b
q is presented only in node 0 of q-th arm of channel. For other nodes of channel

there is no substance which enters the node from environment of channel.
2. Amount f a,b

q,i from xa,b
q,i is transferred from the i-th cell to (i + 1)-th cell of q-th arm;

3. Amount ga,b
q,i of xa,b

q,i leaks out i-th cell of q-th arm to environment of the arm of channel. This
leakage can be of two kinds

(a) Leakage to the environment of channel: this kind of leakage leads to loss of substance for
the channel

(b) Leakage to other arms of the channel which begin from the node b of the arm a: This
leakage is connected to the substance sa,b

q which enters corresponding child arm of channel
which splits from node b of arm a.

We assume that the process of motion of substance is continuous in time. Then the motion
of substance among nodes of q-th arm can be modeled mathematically by a system of ordinary
differential equations:

dxa,b
q,0

dt
= sa,b

q − f a,b
q,0 − ga,b

q,0;

dxa,b
i,q

dt
= f a,b

q,i−1 − f a,b
q,i − ga,b

q,i , i = 1, 2, . . . , ; (5)

There are two regimes of work of the channel: stationary regime and non-stationary regime.
We shall discuss below the stationary regime of work. In this regime dxa,b

i,q /dt = 0, i = 0, 1, . . . . Let us
mark the quantities for the stationary regime with ∗. Then from (5) one obtains

f ∗a,b
q,0 = s∗a,b

q − g∗a,b
q,0 ; f ∗a,b

q,i = f ∗a,b
q,i−1 − g∗a,b

q,i (6)
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We assume the following relationships for amounts of moving substances in (5) (αi, βi, γi, σ0

are parameters):

s0,0
0 = σ0x0,0

0,0 > 0

sa,b
q = δqxc,d

a,b; 1 ≥ δq ≥ 0

f a,b
q,i = (αa,b

q,i + iβa,b
q,i )xa,b

q,i ; 1 > αa,b
q,i > 0, 1 ≥ βa,b

q,i ≥ 0

ga,b
q,i = γ̂a,b

q,i xa,b
q,i ; 1 ≥ γ̂a,b

q,i ≥ 0→ non-uniform

leakage in the nodes. (7)

Indexes c and d in the second of above relationships describe parent arm (numbered by c) and parent
node of the arm c (numbered by d) for the arm q. βa,b

q,i accounts for circumstances which lead substance

to leave faster the node i. γ̂a,b
q,i is a quantity specific for the present study. γ̂a,b

q,i = γa,b
q,i + ∑

p∈(q,i)
δa,b

p,q,i

describes the situation with leakages in cells. γa,b
q,i is the leakage to environment from i-th node of q-th

arm. δa,b
p,q,i describes the leakage to the nodes which split from i-th node of q-th arm. The notation

p ∈ (q, i) in the sum means all arms which arise from node i of arm q.
On the basis of all above the model system of differential equations for q-th arm of

channel becomes

dxa,b
q,0

dt
= sa,b

q − αa,b
q,0xa,b

q,0 − γ̂a,b
q,0xa,b

q,0;

dxa,b
q,i

dt
= [αa,b

q,i−1 + (i− 1)βa,b
q,i−1]x

a,b
q,i−1 − (αa,b

q,i + iβa,b
q,i + γ̂a,b

q,i )xa,b
q,i ; i = 1, 2, . . . (8)

Below we shall discuss the situation in which a stationary state exists in entire channel. Then we
have dxq

0/dt = 0 in first of the Equations (8). Hence

x∗a,b
q,0 =

sa,b
q

αa,b
0,q + γ̂a,b

0,q

. (9)

For the root of the channel (arm 0) we substitute s0,0
0 from (7) in (9) and obtain that x0,0

0,0 is a free
parameter and in addition

σ0 = α0,0
0,0 + γ̂0,0

0,0.

For the arm r which arises from node m of arm q, dxq,m
r,0 /dt = 0 and then from model equations above

we obtain

x∗q,m
r,0 =

δa,b
r,q,m

α
q,m
r,0 + γ̂

q,m
r,0

x∗c,d
q,m . (10)

In principle the solution of Equations (8) is

xa,b
q,i = x∗a,b

q,i +
i

∑
j=0

ba,b
q,i,j exp[−(αa,b

q,j + jβa,b
q,j + γ̂a,b

q,j )t],

i = 1, 2, . . . , (11)

where x∗a,b
q,i is stationary part of solution. We note that because of the non-negative values of the

parameters α, β, and γ̂, xa,b
q,i converges to x∗a,b

q,i with increasing time.
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For x∗a,b
q,i one obtains the relationship (just set dxa,b

q,i /dt = 0 in Equations (8))

x∗a,b
q,i =

αa,b
q,i−1 + (i− 1)βa,b

q,i−1

αa,b
q,i + iβa,b

q,i + γ̂a,b
q,i

x∗a,b
q,i−1, i = 1, 2, . . . . (12)

The corresponding relationships for coefficients bq
ij are (i = 1, . . . ):

ba,b
q,i,j =

αa,b
q,i−1 + (i− 1)βa,b

q,i−1

(αa,b
q,i − αa,b

q,i ) + (iβa,b
q,i − jβa,b

q,j ) + (γ̂a,b
q,i − γ̂a,b

q,j )
ba,b

q,i−1,j,

j = 0, 1, . . . , i− 1, (13)

From Equation (12) one obtains (i = 1, 2, . . . )

x∗a,b
q,i =

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

] x∗a,b
q,0 (14)

The total amount of substance in the nodes of arm q is

x∗a,b
q =

∞

∑
i=0

x∗a,b
q,i = x∗a,b

q,0 +
∞

∑
i=1

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

] x∗a,b
q,0 . (15)

The form of corresponding probability distribution y∗a,b
q,i = x∗a,b

q,i /x∗a,b
q is

y∗a,b
q,0 =

1

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ∗a,b

q,i−j

]

y∗a,b
q,i =

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ̂a,b

q,i−j

]

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ̂a,b

q,i−j

]
i = 1, 2, . . . (16)

We can write probability distribution connected to distribution of substance in a channel
containing M arms (M = 1, 2, . . . ). The total amount of substance in the arms of the channel is

x∗ =
M

∑
q=0

x∗a,b
q,0

1 +
∞

∑
i=1

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

]
 . (17)



Entropy 2020, 22, 553 7 of 17

The probability distribution connected to entire channel is as follows. For the 0-th node of p-th arm of
the channel

z
∗ap ,bp
p,0 =

x
∗,ap ,bp
p,0

M
∑

q=0
x∗a,b

q,0

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ̂a,b

q,i−j

]


, (18)

and for the i-th node of the p-th arm of the channel (i = 1, 2, , . . . )

z
∗ap ,bp
p,i =

i−1
∏
j=0

[
αa,b

p,i−j−1+(i−j−1)βa,b
p,i−j−1

]
i−1
∏
j=0

[
αa,b

p,i−j+(i−j)βa,b
p,i−j+γ̂a,b

p,i−j

] x∗a,b
p,0

M
∑

q=0
x∗a,b

q,0

1 +
∞
∑

i=1

i−1
∏
j=0

[
αa,b

q,i−j−1+(i−j−1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j+(i−j)βa,b
q,i−j+γ̂a,b

q,i−j

]


(19)

To the best of our knowledge the distributions presented by (16), (18) and (19) have been not
discussed up to now outside our research group, in other words, they are new probability distributions.
We note that for case of channel containing just one arm the obtained probability distributions reduce
to distribution discussed in the Appendix of [23]. This distribution is connected to the long-tail
distribution of Waring (Edward Waring was the 6-th Lucasian professor in mathematics at University
of Cambridge).

2.2. Theory for the Case of Channel Consisting of Arms Containing Finite Number of Nodes

We consider a channel containing main arm labeled by 0 and number M of other arms. The arm
q of this channel has finite number of Nq + 1 nodes (labeled from 0 to Nq). The mathematical model
for this case consists of a system of equations which contains an equation for 0-th node, equations for
nodes 1, . . . , Nq−1 and equation for node Nq. The model system of equations for node 0 and for nodes
1, . . . , Nq−1 of q-th arm of the channel is (notations are the same as in the previous section)

dxa,b
q,0

dt
= sa,b

q − αa,b
q,0xa,b

q,0 − γ̂a,b
q,0xa,b

q,0, (20)

dxa,b
q,i

dt
= [αa,b

q,i−1 + (i− 1)βa,b
q,i−1]x

a,b
q,i−1 − (αa,b

q,i + iβa,b
q,i + γ̂a,b

q,i )xa,b
q,i ;

i = 1, 2, . . . , Nq − 1. (21)

For node Nq of q-th arm there is no outflow to next mode of the arm (as node Nq is the last node of q-th
arm). Thus the equation for motion of substance for this node is

dxa,b
q,N

dt
= [αa,b

q,Nq−1 + (Nq − 1)βa,b
q,Nq−1]x

a,b
q,Nq−1 − γ̂a,b

q,Nq
xa,b

q,Nq
. (22)

We discuss the case of stationary motion of substance through arms of studied channel. Then dxq
0/dt =

0 in (20). Hence

x∗a,b
q,0 =

sa,b
q

αa,b
0,q + γ̂a,b

0,q

. (23)
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For root of the channel (arm 0) we substitute s0,0
0 from Equation (7) in Equation (23) and obtain that

x0,0
0,0 is a free parameter and in addition

σ0 = α0,0
0,0 + γ̂0,0

0,0.

For arm r which arises from node m of arm q, dxq,m
r,0 /dt = 0 and then from the model equations above

we obtain

x∗q,m
r,0 =

δa,b
r,q,m

α
q,m
r,0 + γ̂

q,m
r,0

x∗c,d
q,m . (24)

For x∗a,b
q,i we obtain the relationship (just set dxa,b

q,i /dt = 0 in (21))

x∗a,b
q,i =

αa,b
q,i−1 + (i− 1)βa,b

q,i−1

αa,b
q,i + iβa,b

q,i + γ̂a,b
q,i

x∗a,b
q,i−1, i = 1, 2, . . . , Nq − 1; (25)

In order to calculate x∗a,b
q,Nq

we use (22). The result is

x∗a,b
q,Nq

=
αa,b

q,Nq−1 + (Nq − 1)βa,b
q,Nq−1

γ̂a,b
q,Nq

x∗a,b
q,Nq−1. (26)

What follows from (25) is

x∗a,b
q,i =

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

] x∗a,b
q,0 , i = 1, . . . , Nq − 1. (27)

And from (26) we obtain

x∗a,b
q,Nq

= x∗a,b
q,0

αa,b
q,Nq−1 + (Nq − 1)βa,b

q,Nq−1

γ̂a,b
q,Nq

×

Nq−2

∏
j=0

[
αa,b

q,Nq−j−2 + (Nq − j− 2)βa,b
q,Nq−j−2

]
Nq−2

∏
j=0

[
αa,b

q,Nq−j−1 + (Nq − j− 1)βa,b
q,Nq−j−1 + γ̂a,b

q,Nq−j−1

] . (28)

The total amount of the substance in q-th arm of channel is

x∗,a,b
q = x∗a,b

q,0 +
Nq−1

∑
i=1

x∗,a,b
q,i + x∗,a,b

q,N = x∗a,b
q,0 Aq (29)

where A is given by relationship
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Aq = 1 +
Nq−1

∑
i=1

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

] +
αa,b

q,Nq−1 + (Nq − 1)βa,b
q,Nq−1

γ̂a,b
q,Nq

×

Nq−2

∏
j=0

[
αa,b

q,Nq−j−2 + (Nq − j− 2)βa,b
q,Nq−j−2

]
Nq−2

∏
j=0

[
αa,b

q,Nq−j−1 + (Nq − j− 1)βa,b
q,Nq−j−1 + γ̂a,b

q,Nq−j−1

] . (30)

The distribution of substance in nodes of q-th arm of channel is

y∗a,b
q,0 =

1
Aq

, (31)

y∗a,b
q,i =

Bq,i

Aq
, (32)

where

Bq,i =

i−1
∏
j=0

[
αa,b

q,i−j−1 + (i− j− 1)βa,b
q,i−j−1

]
i−1
∏
j=0

[
αa,b

q,i−j + (i− j)βa,b
q,i−j + γ̂a,b

q,i−j

] i = 1, . . . , Nq − 1, (33)

y∗a,b
q,Nq

=
Bq,Nq

Aq
, (34)

where Bq,Nq is given by the relationship

Bq,Nq =
αa,b

q,Nq−1 + (Nq − 1)βa,b
q,Nq−1

γ̂a,b
q,Nq

×

Nq−2

∏
j=0

[
αa,b

q,Nq−j−2 + (Nq − j− 2)βa,b
q,Nq−j−2

]
Nq−2

∏
j=0

[
αa,b

q,Nq−j−1 + (Nq − j− 1)βa,b
q,Nq−j−1 + γ̂a,b

q,Nq−j−1

] . (35)

We can write also the probability distribution of substance for entire channel, in other words, for M
branches of channel. The total amount of substance in this case is

x∗ =
M

∑
q=0

x
∗aq ,bq
q,0 Aq. (36)

Distribution of substance in entry nodes of arms (p = 0, . . . , M) of the channel is:

z
∗ap ,bp
p,0 =

x
∗ap ,bp
p,0

M
∑

q=0
x
∗aq ,bq
q,0 Aq

. (37)
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Distribution of substance in interior nodes of the arms is:

z
∗ap ,bp
p,i =

x
∗,ap ,bp
p,i

M
∑

q=0
x
∗aq ,bq
q,0 Aq

=
Bp,ix

∗ap ,bp
p,0

M
∑

q=0
x
∗aq ,bq
q,0 Aq

, i = 1, . . . , Nq−1. (38)

Distribution of substance in last nodes of arms of the channel is:

z
∗ap ,bp
p,Np

=
x
∗ap ,bp
p,Np

M
∑

q=0
x
∗aq ,bq
q,0 Aq

=
Bp,Np x

∗ap ,bp
p,0

M
∑

q=0
x
∗aq ,bq
q,0 Aq

. (39)

To the best of our knowledge the distributions presented by (31)–(34) and (37)–(39) are not discussed
up to now outside our research group. In other words, these are new probability distributions.
The obtained distributions are interesting for the practice as they are connected to class of channels
containing finite number of arms and in addition each arm contains finite number of nodes.

3. Information Measures Connected to Obtained Probability Distributions

We can calculate various quantities connected to the obtained distributions. Below we consider an
example related to an information problem. Let us consider flow of substance in the channel of network
studied above. Each node of the channel is numbered and we can consider these nodes as letters of
an alphabet. Let some kind of event happens in any of the nodes and let probability of occurrence
of this event be proportional of amount of substance in corresponding node. Thus probability of
occurrence of event in a node of channel will be equal to the probability from the corresponding
probability distribution obtained above in the text. The channel (the source) will generate events with
corresponding probability and we can calculate measure of information and Shannon measure of
information for these sequences.

The information measure connected to an event with probability p is

Ip = − log(p), (40)

and Shannon information measure (average information we get from a symbol in a stream) connected
to probability distribution P = (p0, . . . , pN) is

H(P) = −
N

∑
i=0

pi log(pi) (41)

Let us consider the distribution P∗ of substance in q-th arm of the channel given by (31)–(35).
The information connected to event with probability pi from i-th node of this arm is

Ip0 = log(Aq)

Ipi = log(Aq)− log(Bq,i), i = 1, . . . , Nq − 1

IpN = log(Aq)− log(Bq,Nq). (42)

The Shannon information measure connected to distribution P∗ is

H(P∗) =
log(Aq)

Aq
−

Nq−1

∑
i=1

Bq,i

Aq
log
(Bq,i

Aq

)
−

Bq,Nq

Aq
log
(Bq,Nq

Aq

)
. (43)

Let us consider now a very simple case: a channel containing single arm that has just three nodes.
Below we write information measures for the nodes as well as Shannon information measure for this
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channel. We shall omit the indices a, b and q. We note that for this case Nq = N = 2 as labels of nodes
of the arm are 0, 1 and 2. The probabilities connected to three nodes of studied channel are

p0 =
1

1 + α0
α1+β1+γ̂1

(
1 + α1+β1

γ̂2

) ,

p1 =

α0
α1+β1+γ̂1

1 + α0
α1+β1+γ̂1

(
1 + α1+β1

γ̂2

) ,

p2 =

α1+β1
γ̂2

α0
α1+β1+γ̂1

1 + α0
α1+β1+γ̂1

(
1 + α1+β1

γ̂2

) . (44)

The parameters in (44) account for following processes

• α0 (0 < α0 < 1): flow between first and second node,
• α1 (0 < α1 < 1): flow between second and third node,
• β1 (0 < β1 < 1− α1): preference for the third node,
• γ̂1 (0 ≤ γ̂1 < 1− α1 − β1): leakage from the second node,
• γ̂2 (0 < γ̂2 ≤ 1): leakage from the third node.

The information measures connected to nodes are

Ip0 = log
[

1 +
α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
Ip1 = log

[
1 +

α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
− log

(
α0

α1 + β1 + γ̂1

)
Ip2 = log

[
1 +

α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
−

log
(

α1 + β1

γ̂2

α0

α1 + β1 + γ̂1

)
. (45)

The corresponding Shannon information measure is

H =
1[

1 + α0
α1+β1+γ̂1

(
1 + α1+β1

γ̂2

)] log
[

1 +
α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
+

(
α0

α1+β1+γ̂1

)
[
1 + α0

α1+β1+γ̂1

(
1 + α1+β1

γ̂2

)] {log
[

1 +
α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
−

log
(

α0

α1 + β1 + γ̂1

)}
+

(
α1+β1

γ̂2

α0
α1+β1+γ̂1

)
[
1 + α0

α1+β1+γ̂1

(
1 + α1+β1

γ̂2

)] ×
{

log
[

1 +
α0

α1 + β1 + γ̂1

(
1 +

α1 + β1

γ̂2

)]
− log

(
α1 + β1

γ̂2

α0

α1 + β1 + γ̂1

)}
. (46)

Several illustrations for the dependence of p0,1,2, Ip0,p1,p2 and H on parameters of problem are
presented in Figures 3–7.

Figure 3 shows influence of the parameters of problem on probabilities p0,1,2 (connected to
stationary distribution of substance in the three nodes of studied channel). Figure 3a shows the
influence of α0 on p0,1,2 when other parameters are fixed. α0 is a parameter which regulates the outflow
of substance from node 0 to node 1 of channel. For this case the probabilities can be written as follows:

p0 =
1

1 + c0α0
; p1 =

c1α0

1 + c0α0
; p2 =

c2α0

1 + c0α0
,
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where c0, c1, c2 are appropriate constants which values depend on values of fixed parameters.
With increasing outflow from the node 0, p0 decreases and p1 and p2 increase. This is connected to

redistribution of percentage of total substance which is presented in any of the three nodes: percentage
of the substance in node 0 decreases because of the increased outflow and this leads to increase of
percentage of substance in other two nodes.

Figure 3b shows influence of increasing value of parameter α1 on the probabilities p0,1,2. Parameter
α1 accounts for the outflow of substance from node 1 to node 2 of studied channel. Increase of the value
of α1 leads to decrease of percentage of substance in node 2 and to increase of percentage of substance
in node 2. Interesting is what happens in node 0. For fixed values of parameters as in Figure 3b the
percentage of substance in node 0 increases but for other values of these parameters percentage of
substance in node 0 can decrease.

Figure 3c shows influence of increasing value of the parameter γ̂1 on percentages of substance
in the three nodes of channel. As there are no branches in studied channel then γ̂1 = γ1. Parameter
γ1 accounts for the leakage from node 1 of channel. The increase of this leakage leads to decrease of
percentage of substance in node 1 and in following node 2 at expense of percentage of substance in
node 0 (node 0 is not affected by the leakage of substance in node 1 which position is after node 0).

Figure 3d shows influence of increasing value of the parameter γ̂2 on percentage of substance
in nodes 0, 1, and 2. Parameter γ̂2 accounts for leakage of substance from node 2 of studied channel.
There are no branches in studied channel and because of this γ̂2 = γ2. Increased value of γ̂2 (increased
leakage from node 2) leads to decrease of percentage of substance in node 2 and to corresponding
increase of substance in nodes 0 and 1.

Figure 4 shows influence of increasing value of the parameter β1 on probabilities p0,1,2. Parameter
β1 accounts for additional outflow of substance from node 1 to node 2 because of some extra reason
(in the theory of migration this extra reason can be preference of migrants which prefer to migrate
to country 2 instead to stay in country 1). Increased value of β1 leads to decrease of percentage of
substance in the node 1 and to increase of percentage of substance which is located in node 2. For the
values of parameters as in Figure 4 there is an additional change: percentage of substance in node 0
increases too.

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

(a)
p0(α0)
p1(α0)
p2(α0)

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

(b)
p0
p1
p2

0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

(c)
p0
p1
p2

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

(d)
p0
p1
p2

Figure 3. Probabilities p0 (solid lines), p1 (dashed lines), and p2 (dot-dashed lines) as functions of
selected parameter of the problem when all other parameters are fixed. (a): p0(α0), p1(α0); p2(α0) for
fixed values of other parameters as follows: α1 = 0.04, β1 = 0.28, γ̂1 = 0.04, γ̂2 = 0.13. (b): p0(α1),
p1(α1); p2(α1) for fixed values of other parameters as follows: α0 = 0.4, β1 = 0.01, γ̂1 = 0.3, γ̂2 = 0.7.
(c): p0(γ̂1), p1(γ̂1); p2(γ̂1) for fixed values of other parameters as follows: α0 = 0.4, α1 = 0.3, β1 = 0.01,
γ̂2 = 0.7. (d): p0(γ̂2), p1(γ̂2); p2(γ̂2) for fixed values of other parameters as follows: α0 = 0.2, α1 = 0.3,
β1 = 0.01, γ̂1 = 0.4.
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0.0 0.2 0.4 0.6 0.8
β1

0.0

0.2

0.4

0.6

0.8

1.0

p 0
,1

,2

p0
p1
p2

Figure 4. Probabilities p0(β1) (solid lines), p1(β1) (dashed lines), and p2(β1) (dot-dashed lines) as
functions of β1 when all other parameters are fixed as follows: α0 = 0.28, α1 = 0.04, γ̂1 = 0.04,
γ̂2 = 0.13.

Figures 5 and 6 show influence of changing values of parameters of problem on the values of
information measures Ip0 , Ip1 , and Ip2 for nodes of studied channel. Figure 5a shows changes in the
information measures with increasing value of parameter α0 when values of all other parameters
of problem are fixed. We observe that the value of Ip0 increases with increasing value of α0 and
values of Ip1 and Ip2 decrease with increasing value of α1. This is because of the redistribution of
percentage of substance in nodes 0, 1 and 2 with increasing value of α0. Because of increasing outflow
from node 0 the percentage of total substance located in this node decreases. The event associated
with information measure I for node 0 becomes rare and occurrence of this event carries larger
information. The percentage of substance in nodes 1 and 2 increases with increasing value of α0. The
event associated with information measure I becomes more frequent and this leads to decreasing
information associated with occurrence of this event in nodes 1 and 2. Similar is the situation in
Figure 5b where increasing value of parameter α1 (accounting for outflow of substance from node 1
to node 2) leads to increasing percentage of substance in nodes 0 and 2 and decreasing percentage
of substance in node 2. The information associated with occurrence of event of interest in node 2
increases and information associated with occurrence of event of interest in nodes 0 and 2 decreases.

Figure 5c shows influence of increasing value of the leakage parameter γ̂1∗ (accounting for leakage
from node 1) on information associated with occurrence of the event of interest in nodes 0, 1, and 2.
Decreasing percentage of amount of substance in nodes 1 and 2 and increasing percentage of substance
in node 0 lead to increasing information associated with occurrence of the event in nodes 1 and 2 and
decreasing information associated with occurrence of event of interest in node 0. Situation connected
to increasing value of the leakage parameter γ̂2 is shown in Figure 5d. This situation is similar to the
situation from Figure 5c: increasing percentage of substance leads to decreasing value of information
measure associated with occurrence of event of interest and decreasing percentage of substance leads
to increasing value of information measure associated with occurrence of event of interest.
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Ip2(α1)
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Ip1( ̂γ1)
Ip2( ̂γ1)
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Ip1( ̂γ2)
Ip2( ̂γ2)

Figure 5. Information measures Ip0 (solid lines), Ip1 (dashed lines), and Ip2 (dot-dashed lines) as
functions of selected parameter of the problem when all other parameters are fixed. (a): Dependence
of Ip0 , Ip1 ; Ip2 on α0 for fixed values of other parameters as follows: α1 = 0.04, β1 = 0.28, γ̂1 = 0.04,
γ̂2 = 0.13. (b): Dependence of Ip0 , Ip1 ; Ip2 on α1 for fixed values of other parameters as follows:
α0 = 0.4, β1 = 0.01, γ̂1 = 0.3, γ̂2 = 0.7. (c): Dependence of Ip0 , Ip1 ; Ip2 on γ̂1 for fixed values of other
parameters as follows: α0 = 0.4, α1 = 0.3, β1 = 0.01, γ̂2 = 0.7. (d): Dependence of Ip0 , Ip1 ; Ip2 on γ̂2 for
fixed values of other parameters as follows: α0 = 0.2, α1 = 0.3, β1 = 0.01, γ̂1 = 0.4.

Figure 6 shows influence of increasing value of preference parameter β1 on information measures
Ip0 , Ip1 , and Ip2 . For corresponding fixed values of other parameters the increase of value of β1 leads
to increase of percentage of substance in nodes 0 and 2 and decrease of percentage of total substance
located in node 2. The information associated with event of interest increases for events occurrence in
node 2 and decreases for events occurrence in other two nodes.

0.0 0.2 0.4 0.6 0.8
β1

0

1

2

3

4

5

I p
0,

1,
2

Ip0

Ip1

Ip2

Figure 6. Ip0 (solid lines), Ip1 (dashed lines), and Ip2 (dot-dashed lines) as functions of β1 when all
other parameters are fixed as follows: α0 = 0.28, α1 = 0.04, γ̂1 = 0.04, γ̂2 = 0.13.
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Finally Figure 7 shows influence of increasing value of selected parameters on the Shannon
information measure for entire channel. Shannon information measure H is the average information
we get from a occurrence of event of interest in nodes of studied channel. Two kinds of behavior of
Shannon information measure are shown in Figure 7. First of all increase of value of selected parameter
(with fixed values of other parameters) can lead to a maximum of the value of Shannon information
measure for some value of changing parameter as shown in Figure 7a,b,d. Second kind of behavior is
shown in Figure 7c where increasing value of leakage parameter γ1 leads to monotonous decrease of
value of the Shannon information measure.

0.00 0.25 0.50 0.75 1.00

0.5

1.0

1.5

(a)

H(α0)

0.00 0.25 0.50 0.75 1.00

1.1

1.2

1.3

1.4

(b)

H(α1)

0.0 0.2 0.4 0.6

1.30

1.35

1.40

1.45

1.50

(c)

H(γ1)

0.00 0.25 0.50 0.75 1.00

0.25
0.50
0.75
1.00
1.25
1.50

(d)

H(γ2)

Figure 7. Shannon information measure as function of selected parameters when the other parameters
of probability distribution are fixed. (a): H(α0) for fixed values of other parameters as follows:
α1 = 0.04, β1 = 0.28, γ̂1 = 0.04, γ̂2 = 0.13. (b): H(α1) for fixed values of other parameters as follows:
α0 = 0.4, β1 = 0.01, γ̂1 = 0.3, γ̂2 = 0.7. (c): H(γ̂1) for fixed values of other parameters as follows:
α0 = 0.4, α1 = 0.3, β1 = 0.01, γ̂2 = 0.7. (d): H(γ̂2) for fixed values of other parameters as follows:
α0 = 0.2, α1 = 0.3, β1 = 0.01, γ̂1 = 0.4.

4. Discussion

The results obtained above allow us to discuss various kinds of probability distributions.
The conventional probability distributions correspond to a channel which has a single arm.
Such distributions have been discussed in our previous work [23,26–28]. These distributions can
be connected to Waring distribution, Zipf distribution, Yule-Simon distribution, Binomial distribution,
etc. We can study also other kinds of distributions. One example is the probability distribution
connected to distribution of substance in a channel which has more than one arm. More complicated
case is the probability distribution connected to distribution of substance in a part of the studied
network that contains several channels for motion of substance. The most complicated kind of
probability distribution is the probability distribution connected to distribution of substance in all
nodes of studied network.

5. Concluding Remarks

We discuss above a model of directed motion of substance through a channel of a network.
The study is devoted to the stationary regime of motion of substance through channel arms and main
outcomes are obtained new distributions connected to distribution of substance in nodes of channel.
The model is formulated in such a way that it can have broad range of applicability. For an example
the model can be used for study of motion of substance in technological systems or for study of
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motion of resources in various networks (e.g., motion of goods in logistic networks). The model can
be applied also for study of other systems such as channels of human migration. Let us finish the
text by an interpretation of obtained results from point of view of migration flows. For the case of
migration flow migrants move through countries which form a migration channel and some migrants
obtain permission to stay in corresponding country (which corresponds to leakage phenomenon in our
model). Figure 3 shows the influence of model parameters on distribution of migrants in corresponding
channel. Especially interesting is the influence of increasing leakage parameter shown in Figure 3d.
Increasing leakage γ2 means an increase of number of migrants who obtain permission to stay in the
third country of studied channel. This can lead to drop of percentage of migrants without permission
to stay in this country at the expense of the percentage of migrants without permission to stay in
the other two countries of channel. Figure 3c shows that increasing leakage in second country of
studied channel affect the percentage of migrants in the third country of the channel. If migrants
have preferences for the third country of studied channel then percentage of migrants in this country
increases with increased preference mostly at expense of percentage of migrants in previous country
of channel—Figure 4. Changes of parameters of the model affect information about events connected
to flows of migrants (e.g., information about criminal events). With increasing permeability of borders
between countries (for an example with increasing value of parameter α0) the amount of information
connected to studied class of events increases in first country of studied channel and decreases in next
two countries—Figure 5a. Opposite effect connected to increasing of leakage is shown in Figure 5c.
Increasing value of preference parameter β1 leads to increasing value of information connected with
studied class of events in second country of the channel—Figure 6. Interesting is that the Shannon
information measure connected to studied class of events can have maxima for selected values of
model parameters—Figure 7.
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