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Hepatoprotective potential of peroxisome proliferator activator receptor (PPAR)-𝛼 and -𝛾 agonists, fenofibrate (FEN), and
pioglitazone (PIO), respectively, against cyclophosphamide (CP)-induced toxicity has been investigated in rat. FEN and PIO (150
and 10mg/kg/day, resp.) were given orally for 4 weeks. In separate groups, CP (150mg/kg, i.p.) was injected as a single dose 5
days before the end of experiment, with or without either PPAR agonist. CP induced hepatotoxicity, as it caused histopathological
alterations, with increased serum alanine and aspartate transaminases, total bilirubin, albumin, alkaline phosphatase and
lactate dehydrogenase. CP caused hepatic oxidative stress, indicated by decrease in tissue reduced glutathione, with increase
in malondialdehyde and nitric oxide levels. CP also caused decrease in hepatic antioxidant enzyme levels, including catalase,
superoxide dismutase, glutathione peroxidase, and glutathione S-transferase. Furthermore, CP increased serum and hepatic levels
of the inflammatory marker tumor necrosis factor (TNF)-𝛼, evaluated using ELISA. Preadministration of PIO, but not FEN,
prior to CP challenge improved hepatic function and histology, and significantly reversed oxidative and inflammatory parameters.
In conclusion, activation of PPAR-𝛾, but not PPAR-𝛼, conferred protection against CP-induced hepatotoxicity, via activation of
antioxidant and anti-inflammatory mechanisms, and may serve as supplement during CP chemotherapy.

1. Introduction

Cyclophosphamide (CP) is a synthetic alkylating agent that
has for long been successfully used in treatment of cancer and
autoimmune diseases, as well as in the prevention of organ
transplantation rejection [1]. Despite of its tumor selectivity
and wide range of clinical applications, CP is known to
cause multiorgan damage that result in severe morbidity and
might end fatally [2]. Most reports focused on studying CP-
induced cardio- and gonadotoxicity [3–5], with much lesser
attention to hepatotoxicity [6]. CP-induced hepatotoxicity
may occur at high chemotherapeutic dosage [7] or even
at lower concentrations attained during treating patients
with autoimmune diseases [8, 9]. To date, the mechanisms

involved in CP-induced hepatotoxicity are not completely
clarified. It has been proposed that administration of CP
might cause impairment of cellular respiration due to damage
of mitochondrial energy converting mechanisms [10], which
may interfere with hepatic intracellular oxidant/antioxidant
balance and lead to accumulation of reactive oxygen species
[11]. The resultant oxidative stress may then trigger nuclear
factor-𝜅B (NF-𝜅B) inflammatory pathway, which increases
hepatic intracellular proinflammatory cytokines as tumor
necrosis factor (TNF)-𝛼 [12].

Fenofibrate (FEN) andpioglitazone (PIO) are peroxisome
proliferator activator receptor (PPAR)-𝛼 and -𝛾 agonists
that are used as antihyperlipidemic [13] and antidiabetic
agents [14], respectively. We have recently shown that FEN
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and PIO possessed comparable antioxidant, but not anti-
inflammatory, properties, and that they confer nephropro-
tection against toxicity of another anticancer drug, namely,
methotrexate [15]. Still, the hepatic safety of these PPAR
ligands has been controversial. FEN was reported to have
hepatic favorable effects in some studies [16], whereas in
others, FEN was reported to cause fatty liver in mice [17]
and acute cholestatic hepatitis in humans [18]. Hepatic safety
of PIO is also still controversial. While long term follow-
up in a 3-year human study declared that PIO have no
substantial hazard on the liver [19]; another study reported
that PIO might be the cause of sporadic cases of liver
failure [20]. Interestingly, both FEN [21, 22] and PIO [23,
24] were suggested to modulate hepatic oxidant/antioxidant
parameters and inflammatory cytokines, which may suggest
that they confer hepatoprotective effects. The objective of
this study is to establish the potential use of PPAR-𝛼 and
-𝛾 agonists, FEN, and PIO, respectively, as supplementary
adjuvant to protect against CP-induced hepatotoxicity and to
investigate the pharmacological mechanisms involved.

2. Materials and Methods

2.1. Chemicals. FEN and PIO were kind gifts from Sigma
Pharmaceutical Industries and Medical Union Pharmaceu-
ticals (Egypt), respectively. CP was purchased from Baxter
Oncology (Germany). Kits for examining total bilirubin,
albumin, alanine transaminase (ALT), aspartate transami-
nase (AST), alkaline phosphatase (ALP), and lactate dehy-
drogenase (LDH) in serum, as well as reduced glutathione
(GSH), superoxide dismutase (SOD), catalase (CAT), glu-
tathione peroxidase (GPX), and glutathione S-transferase
(GST) in liver homogenate were purchased from Biodiag-
nostic (Egypt). TNF-𝛼 enzyme-linked immunosorbent assay
(ELISA) kit was purchased fromWKEA-Med supplies Corp.
(China).

2.2. Experimental Design. Forty-eight adult male albino rats
(180–220 g) were purchased from the National Research
Centre (Giza, Egypt). Rats were placed in the standard animal
facility throughout the experiments, housed 4 animals per
cage. Tap water and laboratory chow were freely accessed.
The study protocol was consistent with the guidelines and
approved by the Research Ethical Committee of Faculty of
Medicine, Minia University. For 2 weeks before the start of
experiments, animals were left to acclimatize. After acclima-
tization period, animals were divided into 6 groups (𝑛 = 8
each): control untreated group, FEN- and PIO-treated groups
receiving single daily oral dose of 150 and 10mg/kg/day of
FEN and PIO, respectively [24, 25], by gastric gavage for 4
weeks, and CP-treated group receiving a single i.p. dose of
150mg/kg 5 days before the end of the experiment [26]. Two
other groups of combined CP/FEN and CP/PIO received CP,
FEN, and PIO treatments as previously indicated. Total rat
body weights were recorded before the start and at the end of
the 4-week experiment. Percent of change in body weight was
evaluated by calculating the percent of the difference between
final and initial weights of each animal group compared to
control.

2.3. Sample Preparation and Histopathological Examination
of Liver. At the end of the 4-week experiment, rats were
sacrificed. Venous blood samples were collected from the
jugular vein and centrifuged at 5000 rpm for 15min and
serum was collected and stored at −80∘C till used. Liver was
rapidly excised and weighed. Liver sections were taken for
histopathological examination and the rest of the liver tissue
was snap-frozen in liquid nitrogen and kept at −80∘C. For
histopathology, liver specimens were fixed in 10% buffered
neutral formalin solution, dehydrated in gradual ethanol
(70–100%), cleared in xylene, and embedded in paraffin.
Five 𝜇m thick paraffin sections were prepared and then
stained with hematoxylin and eosin (H&E) dyes [27]. Stained
slides were microscopically analyzed using light microscopy
(Olympus CX41). For scoring different histopathological
parameters, 5 sections from each rat liver were examined
for necrotic degeneration, fatty changes, and inflammatory
cellular infiltration. Histopathological damage was graded
according to a semiquantitative scoring as no change, mild,
moderate, or severe [28]. To prepare tissue homogenate,
livers were homogenized (Glas-Col homogenizer) and a
20% w/v homogenate was prepared in ice-cold phosphate
buffer (0.01M, pH 7.4). The homogenate was centrifuged at
3000 rpm for 20min and the supernatant was then divided
over several containers to avoid sample thawing and refreez-
ing and was kept at −80∘C till used.

2.4. Evaluation of Serum Markers of Liver Function and
Oxidant/Antioxidant Markers in Liver Homogenate. Using
commercially available colorimetric diagnostic kits, assess-
ment of liver function and hepatotoxicity were done by
determination of total bilirubin, albumin,ALT,AST,ALP, and
LDH in serum, according to the manufacturer’s instructions.
Biochemical oxidative stress markers were determined in
liver homogenate, including GSH, nitric oxide (NO), and
lipid peroxide content assessed by malondialdehyde (MDA)
level. A spectrophotometric kit was used for assessment of
GSH. In Brief, the method is based on that the sulfhydryl
component of GSH reacts with 5,5-dithio-bis-2-nitrobenzoic
acid (Ellman’s reagent) producing 5-thio-2-nitrobenzoic acid
having a yellow color that was measured colorimetrically
at 405 nm (Beckman DU-64 UV/VIS spectrophotometer).
Results were expressed as 𝜇mol/g tissue. For NO, the stable
oxidation end products of NO, nitrite and nitrate, were used
as an index of NO production, as NO has an extremely
short half-life of few seconds, as it is readily oxidized
to nitrite then to nitrate. The method used was based
on Griess reaction that depends on measurement of total
nitrites at 540 nm after the conversion of nitrate to nitrite
by copperized cadmium granules [29], using nitric acid
as a standard. Results were expressed as nmol/0.1 g tissue.
Tissue content of lipid peroxideswas assessed via biochemical
evaluation of thiobarbituric acid reacting substance through
spectrophotometric measurement of color at 535 nm, using
1,1,3,3-tetramethoxypropane as standard. The results were
expressed as equivalents ofmalondialdehyde (MDA) in tissue
homogenate in nmol/g tissue [30].
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Figure 1: Effect of fenofibrate (FEN) and pioglitazone (PIO) on liver histopathological profile in cyclophosphamide (CP)-treated rats.
Representative photomicrographs of liver from: ((a), (b), and (c)) control and FEN and PIO groups, respectively, showing no pathological
changes in hepatocytes, (d) CP-treated group presentingwith loss of normal hepatic architecture, congested dilated central vein, inflammatory
cellular infiltration, and perivenular hepatocytic necrosis, (e) CP/FEN group showing congested dilated central veins with focal inflammatory
cellular infiltration and degenerative necrotic cells, and (f) CP/PIO group demonstrating normal liver histology. Arrowhead: dilated central
vein, black arrow: inflammatory cellular infiltration (×100). The histological changes were scored, and results are expressed in Table 1.

2.5. Determination of Hepatic Antioxidant Enzymatic Activity.
Antioxidant enzymatic activity of CAT, SOD, GPX, and
GST were determined in hepatic tissue homogenate using
commercial kits according to the manufacturer instructions.
Briefly, hepatic CAT activity was calculated from the rate
of decomposition of H

2
O
2
at 510 nm after the addition

of liver homogenate and results were expressed as U/g
tissue.The SOD determination assay depended on the ability
of SOD enzyme to inhibit the phenazine methosulphate-
mediated reduction of nitroblue tetrazolium dye. The change
in absorbance at 560 nm was measured over 5min. SOD
activity results were expressed in U/0.1 g tissue. Hepatic GPX
and GST activities were evaluated spectrophotometrically
using reduced glutathione as substrate by addition of liver
homogenate measured at 340 nm. GPX and GST results were
expressed in U/g tissue and U/mg tissue, respectively.

2.6. Assessment of Proinflammatory Cytokine, TNF-𝛼, in
Serum and Liver Homogenate. According to manufacturer’s
instructions, 10 𝜇L of serum or liver homogenate were dis-
pensed in 40 𝜇L of sample diluent solution, mixed, and
incubated for 30min at 37∘C. After the first incubation, the
plate was washed five times with 30-fold diluted wash buffer
and then dried. 50𝜇L enzyme conjugate was added to each
well, incubated, then washed as previously described. After
drying the plate, 50 𝜇L of substrate A and 50𝜇L of substrate
B were added to each well and the plate was incubated for
15min at 37∘C.The reactionwas stopped by adding 50𝜇L stop
solution. The plate was then read using ELISA plate reader at
450 nm.

2.7. Statistical Analysis. The data was analyzed by one way
ANOVA followed by Dunnett Multiple Comparison Test.
The values are represented as means ± S.E.M. All statistical
analysis was done using GraphPad Prism (GraphPad Prism
software, 2011). The differences were considered significant
when the calculated 𝑃 value is less than 0.05.

3. Results

3.1. Effect of FEN and PIO on Hepatic Histopathological
Findings inCP-TreatedRat. Liver sections fromcontrol, FEN,
and PIO groups (Figures 1(a), 1(b), and 1(c), resp.) showed
normal hepatic structure. Single administration of CP was
followed by loss of normal hepatic architecture (Figure 1(d)).
The central vein was dilated and congested. Sections demon-
strated migration of inflammatory cells from the central
vein to infiltrate the perivenular area that showed necrotic
hepatocytes. FEN/CP group did not show improvement com-
pared to CP alone, withmultiple foci of degenerative necrotic
cells, fatty changes, and inflammatory cellular infiltration.
On the other hand, pretreatment with PIO prior to CP
challenge (Figure 1(f)) caused marked improvement in liver
histological picture. Scoring of histological hepatic changes
is summarized in Table 1.

3.2. Effect of FEN and PIO onWeight Changes and Liver Func-
tional Parameters in CP-Treated Rat. In CP-treated group,
percent of change of body weight was significantly decreased,
while liver/total body weight ratio was significantly increased
compared to control (Table 2). Pretreatment with FEN before
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Table 1: Effect of fenofibrate (FEN) and pioglitazone (PIO) on
histological findings in cyclophosphamide (CP)-treated rats liver.

Degeneration
and necrosis Fatty changes Inflammatory cell

infiltration
Control − − −

FEN + − −

PIO − − −

CP +++ ++ +++
CP/FEN +++ +++ +++
CP/PIO + − −

From each animal, 5 sections were examined and scored according to the
following criteria: (−) = absent, (+) = mild, (++) = moderate, and (+++) =
severe changes.

administration of CP did not improve either parameters,
whereas pretreatment with PIO improved both parameters
to level not statistically significant from control. Neither FEN
nor PIO alone affected either parameter. After CP challenge,
blood biochemical parameters indicative of liver function
deteriorated, as evident by significant increase in serum
levels of total bilirubin, ALT, AST, ALP, and LDH, with
significant decrease in serum albumin (Table 2). CP/FEN
group did not show any improvement in these liver functional
parameters, whereas CP/PIO group demonstrated significant
improvement compared to group treated with CP alone.

3.3. Effect of FEN and PIO on Oxidation Markers and An-
tioxidant Enzymes in CP-Treated Rat Liver. Table 3 depicts
the effect of FEN and PIO, with or without CP challenge,
on levels of hepatic GSH, NO, and MDA. CP treatment
significantly decreased hepatic GSH compared to control
group. FEN administration before CP failed to restore hepatic
GSH level, while PIO pretreatment significantly increased
GSH level compared to CP sole treatment. In addition, liver
homogenate of CP group exhibited higher levels of lipid
peroxidation as indicated by significantly higher levels of
MDA compared to control. Liver homogenate of CP-treated
group also showed significantly higher levels ofNOcompared
to control. Pretreatment with PIO, but not FEN, succeeded
in reversing MDA and NO to levels statistically significant
from CP-treated group. As shown in Figure 2, the activity
of hepatic antioxidant enzymes CAT, SOD, GPX, and GST
were significantly less in CP group compared to control. Only
pretreatment with PIO, but not FEN, significantly increase
these enzymatic activities, compared to CP alone.

3.4. Effect of FEN and PIO on Serum and Hepatic TNF-𝛼
Level in CP-Treated Rat. Serum and hepatic TNF-𝛼 levels
were significantly higher in CP-treated group than in control
group (Figure 3). FEN pretreatment before CP injection did
not show any statistical difference from CP alone, either for
serum or hepatic TNF-𝛼 levels. PIO pretreatment, on the
other hand, significantly decreased TNF-𝛼 values in serum
and liver, compared to CP sole therapy.

4. Discussion

Hepatotoxicity due to the use of CP has been a limitation
facing its use as a successful anticancer chemotherapeutic
drug that possess other medical applications as treating
autoimmune diseases and graft-versus-host rejection. The
present in vivo study was designed to investigate the potential
protective role of PPAR agonists against CP-induced hepato-
toxicity. Our results show that the PPAR-𝛾 agonist, PIO, but
not the PPAR-𝛼 agonist, FEN, has hepatoprotective effects,
through ameliorating CP-induced hepatic oxidative stress
and inflammation. In the present study, CP administration
caused hepatotoxicity evident by distortion of histological
features and significant alteration in biochemical blood
parameters indicative of liver function, whichwas in linewith
previous studies [26, 31–33].

Despite that ALT and AST are not liver-specific and their
level may not by reliable reflection of the severity of hepatic
damage [34], these transaminases are located cytoplasmically
and are the first to be released after liver damage [35].
Similarly, increased ALP is not restrictedly a marker of liver
disease, still is a very useful serum biochemical indicator
of liver damage, especially cholestatic disease [36]. Likewise,
LDH is another enzyme released in liver injury with low
hepatic specificity, yet LDH is considered a predictor of acute
liver failure [37]. Serum albumin level, on the other hand,
is considered an indicator of the degree of hepatic damage,
while total bilirubin level reflects cholestatic injury in rats
[38].

The exact mechanisms involved in CP-induced hepato-
toxicity are not yet completely clarified. Still, several recent
studies suggested that oxidant/antioxidant imbalance and
release of proinflammatory cytokines are, at least in part,
participating mechanisms in CP-induced hepatic damage
[11, 26]. In the present study, administration of CP caused
decrease in antioxidant enzymatic activity of SOD, CAT,
GPX, and GST, as well as alteration of markers of oxidative
stress as increase inMDA and NO, with decrease in GSH and
increase in level of proinflammatory cytokine, TNF-𝛼.

CP is metabolically activated via hepatic microsomes
forming two active metabolites, namely, phosphoramide
mustard and acrolein [39]. The latter is responsible for the
toxic effects of CP, as it induces free radical formation
[40]. One type of these free radicals is the short-lived and
highly reactive NO free radical [41]. GSH, the most powerful
nonenzymatic antioxidant in the human body, is initially
increased within the first 24 hours after CP assault as a part of
the natural body defense mechanism against overproduction
of free radical [42]. This is followed latter by depletion of
GSH body stores [11, 26, 31], which fails to balance cellular
oxidative status. Activity of hepatic antioxidant enzymes as
SOD, CAT, GPX, and GST is also decreased during trying
to overcome reactive oxygen species overproduction [11, 39].
Interestingly, GST is one of the enzymes essential for the
metabolism of CP [42]. This detoxification pathway depends
on conjugation of CPwith glutathione, providing thiol group,
catalyzed by GST. Inhibition of this pathway would increase
CP serum concentration, and hence, its hepatotoxicity. The
depletion of GSH and decreased activity of antioxidant
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Figure 2: Effect of fenofibrate (FEN) and pioglitazone (PIO) on hepatic antioxidant enzyme levels in cyclophosphamide (CP)-treated rats.
CAT: catalase, SOD: superoxide dismutase, GPX: glutathione peroxidase, GST: glutathione S-transferase. Values are representation of 8
observations as means ± SEM. Results are considered significantly different when 𝑃 < 0.05. aSignificant difference compared to control,
bsignificant difference compared to CP group, cno significant difference compared to control.
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Figure 3: Effect of fenofibrate (FEN) and pioglitazone (PIO) on tumor necrosis factor (TNF)-𝛼 levels in serum and liver of cyclophosphamide
(CP)-treated rats. Values are representation of 8 observations as means ± SEM. Results are considered significantly different when 𝑃 < 0.05.
aSignificant difference compared to control, bsignificant difference compared to CP group.
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Table 3: Effect of fenofibrate (FEN) and pioglitazone (PIO) on hepatic tissue reduced glutathione (GSH), malondialdehyde (MDA), and
nitric oxide (NO) levels in cyclophosphamide (CP)-treated rats.

GSH (𝜇mol/g tissue) MDA (nmol/g tissue) NO (nmol/0.1 g tissue)
Control 28.9 ± 3.8 2.3 ± 0.6 18.3 ± 5.4
FEN 31.1 ± 4.3 1.9 ± 0.6 16.8 ± 2.3
PIO 26.5 ± 4.3 2.4 ± 0.7 21.5 ± 2.5
CP 16.3 ± 3.4a 7.9 ± 1.8a 64.2 ± 11.1a

CP/FEN 18.2 ± 3.2a 6.8 ± 0.4a 55.4 ± 12.3a

CP/PIO 22.8 ± 2.8b 5.1 ± 0.8b 27.9 ± 7.4b,c

Values are representation of 8 observations as means ± SEM. Results are considered significantly different when 𝑃 < 0.05. aSignificant difference compared to
control, bsignificant difference compared to CP group, cno significant difference compared to control.

enzymes are associated with increase in lipid peroxidation
[39], resulting in an increase in MDA formation, a highly
reactive three carbon dialdehyde which is a polyunsaturated
fatty acid peroxidation and arachidonic acid metabolism
byproduct. This sequence of events then triggers inflamma-
tory process by stimulating NF-𝜅B/TNF-𝛼 pathway, with the
increase of the proinflammatory cytokine TNF-𝛼. We have
recently reviewed the crosstalk between oxidative stress and
NF-𝜅B/TNF-𝛼 pathway [43], showing that their causal/effect
relationship might not be that simple.

In the present study, activation of PPAR-𝛼 via pre-
treatment with FEN did not succeed in restoring normal
liver histology, improving hepatic functional parameters,
reverting oxidative stress, nor inflammatory process seen
after CP challenge. Still, it is noteworthy that, in the current
study, administration of FEN alone, without CP, did not
significantly deteriorate any of the previously mentioned
parameters. In reported literature, effect of FEN on the liver
varies from incriminating it of liver damage to announcing
it as a hepatoprotector. For example, at one hand, some
studies reported that FEN may cause variable levels of liver
damage in animal models [17, 44] and humans [18, 45].
On the other hand, FEN was reported to confer hepato-
protection against acetaminophen-induced liver toxicity [21],
carbon tetrachloride-induced liver cirrhosis [46], and hepatic
ischemia-reperfusion [47], and had no hazardous effect on
liver in chronic hemodialysis patients [48].Themild increase
inALT andAST seen in patients receiving FENwas attributed
to increased production of these enzymes, due to induction
of their respective gene expression, without any underlying
hepatic toxicity [49]. Similarly, studies investigating the effect
of FEN on antioxidant enzymes varied from declaring its
antioxidant properties [50], announcing its lack of effect on
these enzymes [51], or claiming FEN as a prooxidant [52, 53].
Likewise, the effect of PPAR-𝛼 activation by FEN on serum
and hepatic levels of the proinflammatory cytokine,; TNF-
𝛼, varied in different reported studies [54]. It is possible
that the reported variation in antioxidant/anti-inflammatory
properties of FEN is due to different dosage and/or duration
regimens used in these various studies.

In the current study, the PPAR-𝛾 agonist, PIO, achieved
protective effects against CP-induced hepatotoxicity, as evi-
dent by repairing hepatic pathological picture, recovering

liver functional enzymes, and reversing oxidative stress
and inflammatory process. Despite sporadic contradictory
studies [20, 55], PIO has been reported to attenuate liver
injury via recovering hepatic oxidant/antioxidant balance in
several animal models, as it succeeded in repairing hepatic
DNA damaged due to high fat diet in mice [56], abolishing
hepatic oxidative stress in alloxan-induced diabetic rabbit
[57], preventing lipopolysaccharide-induced liver injury [58],
and recovering liver after ischemia/reperfusion in rats [23].
In humans, PIO was demonstrated to improve hepatic func-
tional parameters in nonalcoholic fatty liver patients [59] and
in nondiabetic patients suffering from metabolic syndrome
[60]. PIO has also been reported to possess hepatic anti-
inflammatory properties [23, 24, 58], whose mechanism is
probably via activation of PPAR-𝛾 that acts as a feedback
mechanism by inhibiting NF-𝜅B activation [61] and, con-
sequently, decreasing the formation of the proinflammatory
cytokine, TNF-𝛼. Favorable effects of PIO have also been
reported to affect organs other than the liver, as the heart [62],
kidney [15, 63], and testis [64]. Future studies are necessary
to prove whether these favorable beneficial effects of PIO
may offer protection against CP-induced toxicity in these
vital organs. Studies should also be performed to exclude
interaction of PIO with CP metabolism and clearance, and
hence CP’s therapeutic efficacy and cytotoxicity.

5. Conclusion

CP has prooxidant and proinflammatory properties, which
are, at least in part, the causative mechanisms of CP-induced
hepatotoxicity. Unlike the PPAR-𝛼 agonist;, FEN, the PPAR-𝛾
agonist, PIO, has hepatoprotective effect against CP-induced
liver damage and might provide successful adjuvant during
CP chemotherapy. The mechanisms involved include the
ability of PIO to promote hepatic antioxidant capacity and
ameliorate inflammation, which act in synergy to restore liver
function.
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