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ABSTRACT This study reports the complete genome sequence of bisphenol A-degrad-
ing bacterium Sphingobium sp. strain A3, which was isolated from a contaminated soil
sample from the site of a factory fire in South Korea. The genome consists of a 6.53-
Mbp chromosome and eight plasmid contigs (532,947bp), with 6,406 protein-coding
sequences and a GC content of 63.82%.

Bisphenol A (BPA) is used in plastic bottles and food packaging (1, 2). BPA mimics
the structure and function of the hormone estrogen, and it can interfere with nor-

mal bodily processes (3). Many studies have suggested that bacteria could provide a
promising strategy for xenobiotic cleanup and bioremediation (4, 5). BPA-degrading
bacteria, such as Achromobacter (6), Pseudomonas (7), Bacillus (8), and Sphingomonas
(9), have been isolated. Although the isolation of novel bacteria led to proposed meta-
bolic pathways of BPA degradation using intermediates detected during the degradation
process, the genetic mechanisms of BPA degradation are not yet understood (10, 11).

The BPA-degrading bacterium Sphingobium sp. strain A3 was isolated from conta-
minated soil, and the whole genome was sequenced to understand its metabolic
capacity and functional potential. Contaminated soil samples were collected at the site
of a factory fire (35°18955.10N, 128°45941.00E) in the Gyeongsangnam-do province
(South Korea). Enrichment cultures were conducted aerobically at 30°C for 2 weeks,
with shaking, using contaminated soil in mineral salt medium (MSM) with 500 ppm
BPA as the sole carbon source. The enrichment-cultured samples were diluted in phos-
phate-buffered saline (PBS) (pH 7.4). The dilutions were then spread on R2A agar plates
(BD Difco, USA) and incubated at 30°C for 2 days to obtain a single colony. To deter-
mine the BPA-degrading activity using gas chromatography, following the protocols
used in previous studies (12), each bacterial colony was seeded in 5ml R2A medium,
and the cells were inoculated into MSM with 300 ppm BPA at 30°C. After 24, 48, 72,
and 92 h, the supernatants were obtained and analyzed to determine how much BPA
had been removed. We screened the A3 bacterium, which had higher BPA-degrading
activity among the single colonies obtained. This strain showed degradation rates of
51.6%6 11.9%, 57.3%6 8.1%, 86.9%6 2.8%, and 96.9%6 5.4% at 24, 48, 72, and 92 h,
respectively.

Genomic DNA was isolated from the A3 strain using Maxwell 16 DNA purification
kits (Promega, Madison, WI, USA). The genomic DNA was sequenced at Macrogen, Inc.
(South Korea), using a combination of the PacBio RS II single-molecule real-time (SMRT)
(13) sequencing platform, with a 20-kb SMRTbell template library, and the Illumina HiSeq
X Ten sequencing platform (2 � 151 bp). For PacBio sequencing, genomic DNA (8mg) was
sheared to approximately 20 kb with a g-TUBE (Covaris) and purified using AMPurePB
beads (Beckman Coulter), and the sequencing library was prepared using the SMRTbell
template preparation kit v1.0 (PacBio). For Illumina sequencing, genomic DNA (100ng)
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was sheared using an LE220 focused ultrasonicator (Covaris) and the sequencing library
(350-bp insert size) was generated using a TruSeq Nano DNA library preparation kit. A total
of 94,869 PacBio subreads (mean subread length, 6,496 bp; N50, 10,298 bp) were generated
and used for preassembly and de novo assembly using FALCON-integrate software v2.1.4.
A total of 12,165,610 raw Illumina paired-end reads (1.83 Gbp) were generated, and
5,664,022 clean reads (0.85 Gbp), in which $90% of the bases in each read had a Phred
score of $30, were used for error correction with Pilon v1.21 for the final genome assem-
bly. UGENE v1.32.0 was used to construct a self-dotplot to check the circularity of contigs.
Overlapping ends were trimmed out. The genome was then annotated using NCBI
Prokaryotic Genome Annotation Pipeline (PGAP) v4.12 (14). Default parameters were used
for all software unless otherwise specified.

The final genome, assembly, and annotation statistics are shown in Table 1. The A3
genome was closely related to two strains, Sphingobium yanoikuyae ATCC 51230
(GenBank accession number NZ_CP023741.1) and Sphingobium scionense DSM 19371
(GenBank accession number JACIEU000000000.1), based on 16S rRNA sequence
identity (100% and 99.1%, respectively), average nucleotide identity (95.79% and
92.66%, respectively), and digital DNA-DNA hybridization (68.0% and 50.6%, respec-
tively) (15, 16).

Although there is little information available on the enzymes and genes that are
involved in the BPA degradation pathway, a few studies suggest that cytochrome
P450 monooxygenase (17), laccase (18), lignin peroxidase (19), and manganese per-
oxidase (20) can degrade BPA. In the A3 genome, 10 P450 cytochromes were found
in the chromosome and plasmid, and they showed high levels of similarity to previ-
ously reported P450 cytochromes of Sphingobium sp. strain YL23 (10, 21). Further in-
depth biochemical and genomic analyses are needed to better understand BPA deg-
radation pathways.

Data availability. The genome sequences and raw sequencing reads for the A3 strain
were deposited under GenBank accession numbers CP060122, CP060123, CP060124,
CP060125, CP060126, CP060127, CP060128, CP060129, and CP060130, BioProject acces-
sion number PRJNA649365, BioSample accession number SAMN15665156, and SRA acces-
sion numbers SRR12349700 and SRR12349701.
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TABLE 1 Summary of assembly and annotation statistics for Sphingobium sp. strain A3

Genetic element Size (bp)
GC content
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No. of coding
sequences

No. of
rRNAs

No. of
tRNAs

GenBank
accession no.
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