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Hypothermia therapy is an old and important method of neuroprotection. Until now,
many neurological diseases such as stroke, traumatic brain injury, intracranial pressure
elevation, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and
neonatal peripartum encephalopathy have proven to be suppressed by therapeutic
hypothermia. Beneficial effects of therapeutic hypothermia have also been discovered,
and progress has been made toward improving the benefits of therapeutic hypothermia
further through combination with other neuroprotective treatments and by probing
the mechanism of hypothermia neuroprotection. In this review, we compare different
hypothermia induction methods and provide a summarized account of the synergistic
effect of hypothermia therapy with other neuroprotective treatments, along with
an overview of hypothermia neuroprotection mechanisms and cold/hypothermia-
induced proteins.
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INTRODUCTION

A number of experimental and clinical studies have provided evidence in support of the
neuroprotective effects of induction of hypothermia. The earliest recording of hypothermia as a
therapeutic agent is dated more than 5000 years old, coming from an ancient Egyptian Edwin
Smith Papyrus (Wang et al., 2006). In ancient times, hypothermia therapy consisting of ice
packs was used to treat hemorrhage, and said therapy was also widely used in cardiac arrest
(Dzieciol et al., 2014), comatose patients (Dell’Anna et al., 2014) and other diseases. There was an
apparent interest in the exploration of the mechanism(s) of hypothermia neuroprotection. A role of
hypothermia has now been reported in many neurological diseases, for instance, stroke, traumatic
brain injury, intracranial pressure elevation, subarachnoid hemorrhage, spinal cord injury, hepatic
encephalopathy, and neonatal peripartum encephalopathy (Karnatovskaia et al., 2014). However,
it has also been reported that hypothermia may not be neuroprotective (Clifton et al., 2001;
Hutchison et al., 2008; Maekawa et al., 2015). Such discrepancies in literature might perhaps be
related to the duration of cooling time and the methods used to induce hypothermia (Clifton et al.,
2001; Hutchison et al., 2008; Wowk et al., 2014; Maekawa et al., 2015). The methods employed
to induce hypothermia have profound effect on the resulting neuroprotection. Combination with
other treatment methods has been explored as a means to enhance the benefits of hypothermia
protection. Even after several reports on the topic, the mechanisms, by which hypothermia affords
neuroprotection, remain unclear. It is believed that hypothermia-induced neuroprotection might
be due to decreased metabolism, reduced generation of radicals, ameliorated inflammation and
inhibition of excitotoxicity and apoptosis. Further, the importance of cold-induced proteins as
important components of hypothermia neuroprotection has also been realized. In this review,
we have summarized methods of hypothermia induction, and the effectiveness of combination of
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other neuroprotective methods with hypothermia and the
cold-induced proteins. We hope that this article will provide
guidance for future pre-clinical studies and the clinical trials on
hypothermia neuroprotection.

HYPOTHERMIA INDUCTION METHODS

Experimental as well as clinical data points to a proven
neuroprotective effect of therapeutic hypothermia. Also,
hypothermia induction methods have an influence on the
hypothermia effect. The two most commonly used methods
for induction of hypothermia are local hypothermia and
general hypothermia.

Local hypothermia provides precise hypothermic regions in
the damaged area and the rectal temperature is kept 34–35◦C
to minimize the potential side effects of hypothermia. Many
physical methods are used to achieve local hypothermia, for
example, a cooling helmet is a good way to achieve rapid and
selective brain hypothermia for a stroke or head injury patient
(Wang et al., 2004; Ikeda et al., 2012). In a research study
comprising of 15 patients following resuscitation, selective head
cooling by a cooling helmet decreased urinary 8-OHdG levels
on days 6 and 7 (Ikeda et al., 2012). Bennet et al. (2007) used
a cooling coil made from silicone tubing in a severe hypoxia
model of preterm fetal sheep for local hypothermia and observed
reduced loss of neurons and immature oligodendroglia. In a study
on spinal cord injury research (Bazley et al., 2014), the system
included a heat exchanger constructed from copper tubing,
bent into four layers that were all equal in length, measuring
4.4 × 0.8 inches each, and the tubing was inserted under the
skin over the paravertebral muscle extending from the T6 to T10
spinal segments. By circulating cold water, local hypothermia was
achieved and was found to be beneficial for spinal cord injury.

In general therapy, a 33–34◦C rectal temperature is
maintained, creating a moderate systemic hypothermia
(Shankaran et al., 2005; Azzopardi et al., 2008; Jacobs et al.,
2011). Further, for general hypothermia, two approaches
commonly used are physical hypothermia and pharmacological
hypothermia. Reducing ambient temperature, using a cooling
blanket or ice pad and infusing rapidly cooled saline
are considered physical hypothermia (Ikeda et al., 2012).
Pharmacological hypothermia is related to drugs such as the
neurotensin (NT) (Zhang et al., 2013). Gu et al. (2015) revealed
the potential therapeutic effects on stroke and traumatic brain
injury of adult rodents of Neurotensin receptor-1 (NTR1) agonist
HPI201 (formerly known as ABS201)-induced hypothermia.
HPI201-induced hypothermia resulted in markedly reduced
MMP-9 levels and caspase-3 activation. NTR1 agonist induced
hypothermia via the NTR receptor in the brain (Dubuc et al.,
1999). Hwan et al. (2014) demonstrated that HPI-363 is
approximately 10 times more potent than HPI-201 in inducing
therapeutic hypothermia. HPI-363 is the analog of NT (8–13).
This is because of the C-terminal hexapeptide that has structural
elements critical for complete biological activity (Carraway and
Leeman, 1975). The biologically stable NT (8–13) analogs can
penetrate the blood–brain barrier (Kokko et al., 2005), while

original NTR1 agonists cannot. Anesthetic is another method
used to induce hypothermia (Whittington et al., 2013). It has
been reported that isoflurane-induced hypothermia attenuates
the early phase blood-brain barrier disruption in cerebral
ischemia (Liu et al., 2017). N-cyclohexyladenosine (CHA), an A1
adenosine receptor (A1AR) agonist, also induced hypothermia,
and animals subjected to cardiac arrest and cooled by CHA
survived better and exhibited less neuronal cell death (Jinka
et al., 2015). Further, the agonist of transient receptor potential
vanilloid channel 1 (TRPV1), dihydrocapsaicin (DHC), is used
in pharmacological hypothermia as well (Zhang J. et al., 2018).
Compared with pharmacological cooling processes, physical
cooling processes are costly and time-consuming (Alexander
et al., 2012). It may be because of shivering, a defensive metabolic
response to cold, that works against temperature reduction.
Therefore, anesthesia has to be used in patients to combat the
cold defense response, which has the potential to lead to infection
and possibly other side effects due to prolonged hypothermia
(Schwab et al., 1998), while NTR compounds lead to a lack of
shivering (Gu et al., 2015). Also, physical cooling has associated
complications such as hypotension, arrhythmia and change of
fluid pH (Gröger et al., 2013; Mohr et al., 2013; Stuart et al.,
2013). It seems that pharmacological reagent-induced controlled
hypothermia, which targets the brain thermoregulatory
center, has emerged as an efficient and considerably safer
treatment for patients, with a further benefit being that a lot of
choices of drug are provided. Zhang et al. (2013) reviewed the
neuroprotective effects of eight classes of hypothermia-inducing
drugs: the cannabinoids, opioid receptor activators, transient
receptor potential vanilloid, neurotensins, thyroxine derivatives,
dopamine receptor activators, hypothermia-inducing gasses,
adenosine and adenine nucleotides. However, pharmacological
intervention still has its limitations. Just like NT (8–13) analogs,
the drugs caused severe hypothermia (<30 degrees) leading
to the requirement for more significant re-warming measures
(Tyler-McMahon et al., 2000a,b; Katz et al., 2004; Smith
et al., 2011). Drugs also have the associated problem of drug
resistance and hypothermic tolerance. Every drug application
may disturb the balance of whole body such as the metabolic
and cardiovascular systems (Piehl et al., 2011), in addition to
the face that each person has individual differences in the drug
dose they require. Moreover, it has been demonstrated that the
combination of low DHC and ice pads significantly improves
every measured outcome, compared to low DHC or the ice
pad alone. Combination therapy achieved hypothermia faster;
reduced more neurological deficits and decreased apoptotic cell
death (Zhang J. et al., 2018). Barks et al. (2010) found that the
combination therapy sustained more benefits in late outcome
assessment of cerebral hypoxia-ischemia. These observations
clearly indicate that combining physical and pharmacological
hypothermia could be a promising therapy (Figure 1).

In addition, some comparisons were made between general
hypothermia and local hypothermia. In a global ischemia
research study, a water-cooling blanket (the rapid infusion
of cooled saline, gastric lavage with cooled saline) and
sedation were used to cool the whole body. Head cooling
was achieved by a cooling helmet. These two neuroprotections
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FIGURE 1 | The comparison of hypothermia induction methods.

are similar, and whole-body cooling had a greater effect
on the suppression of radical production than head cooling
(Ikeda et al., 2012). A research study comparing selective head
cooling therapy with whole body cooling therapy in newborns
with hypoxic ischemic encephalopathy uncovered no difference
between the two methods in terms of adverse effects and
short-term results (Atici et al., 2015). Other research studies
have also reached similar conclusion about hypoxic ischemic
encephalopathy (Sarkar et al., 2009a,b; Celik et al., 2016).
However, it was reported that local hypothermia is better
than general hypothermia with a significantly lower rate of
severe cortex lesions (Rutherford et al., 2005). It has been
reported that local hypothermia may be more suitable for
longer durations of hypothermia treatment for spinal cord
injury because it does not require as much temperature change
in healthy tissues (Bazley et al., 2014). In conclusion, local
hypothermia may be the best option for providing similar
protection to general hypothermia and reducing temperature
effects throughout the body, along with minimizing side effects.
Further studies are still necessary to compare the adverse

effects between local and general hypothermia and reach a
definitive conclusion.

HYPOTHERMIA COMBINED WITH
OTHER NEUROPROTECTIVE METHODS

In addition to hypothermia neuroprotection, there are other
treatments that are applied to nerve injury. However, the
combination of hypothermia and other treatments was found
to produce a greater neuroprotective effect. These therapies are
divided into three categories: cell therapy (Table 1), drug therapy
(Table 2), and other therapies (Table 3).

For cell therapy, stem cells are differentiated into a variety
of cells within the nervous system in order to be used for the
treatment of nerve diseases. Wang and coworkers found that
combination treatment with therapeutic hypothermia produced
synergistic effects in transplantation to promote the recovery of
spinal cord injury (Wang D. et al., 2014; Zhu et al., 2015), while in
hypoxic-ischemic encephalopathy, it was found to exert simple

TABLE 1 | The combination of hypothermia and cell therapy.

Combination strategy Model Diseases References

Neural stem cells transplantation Spinal cord injury rat model Spinal cord injury Zhu et al., 2015

Cell-scaffold complex seeded with Nogo receptor
(NgR)-silenced neural stem cells and Schwann cells
transplantation

Spinal cord injury rat model Spinal cord injury Wang D. et al., 2014

Neural stem cells transplantation Carotid artery ligation rat model Hypoxic-ischemic
encephalopathy

Wang L. et al., 2014

Mesenchymal stem cells transplantation Carotid artery ligation rat model Hypoxic-ischemic
encephalopathy

Park et al., 2015

Mesenchymal stem cells transplantation Lateral fluid percussion brain injury rat model Traumatic brain injury Tu et al., 2012

Adipose-derived stem cells transplantation Middle cerebral artery occlusion (MCAO) rat model Stroke Zhao et al., 2018
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TABLE 2 | The combination of hypothermia and drug therapy.

Combination strategy Model Diseases References

i.v. 1 mg/kg (0.2 m L/kg) of Cannabidiol Carotid artery ligation rat model Hypoxic-ischemic encephalopathy Lafuente et al., 2016

i.p. 2.5 mg/kg of bumetanide Carotid artery ligation rat model Hypoxic-ischemic encephalopathy Liu et al., 2012

i.p. 0.05 ml/10 gm of Docosahexaenoic
Acid (DHA)

Carotid artery ligation rat model Hypoxic-ischemic encephalopathy Berman et al., 2013

i.v. 0.0016 PNAU/100 g human urinary
kallidinogenase

Carotid artery ligation rat model Hypoxic-ischemic encephalopathy Gao et al., 2018

i.p. 40 mg/kg of phenobarbital Carotid artery ligation rat model Hypoxic-ischemic encephalopathy Barks et al., 2010

p.o. 0.5 mg/g exendin-4 Carotid artery ligation mouse model Hypoxic-ischemic encephalopathy Rocha-Ferreira et al., 2018

i.p. 20 mg/kg of topiramate or
memantine/ 0.01–1 µM topiramate and
1–30 µM memantine

Carotid artery ligation rat
model/OGD organotypic
hippocampal slice model

Hypoxic-ischemic encephalopathy Rocha-Ferreira et al., 2018

i.v. 200 IU/kg of erythropoietin Clinical patients Hypoxic-ischemic encephalopathy Lv et al., 2017

s.c. 15 mg/kg of G-CSF MCAO rat model Stroke Ghahari et al., 2014

p.o. 1 mg/kg of atorvastatin MCAO rat model Stroke Lee et al., 2008

i.p. 10 mg/kg of HPI 201 MCAO rat model Stroke Lee et al., 2016

i.v. 1 mg/kg of chlorpromazine and
1 mg/kg of promethazine

MCAO rat model Stroke Liu S. et al., 2015

i.v. 300 mg/kg of valproic acid Cardiac arrest rat model Cardiac arrest Oh et al., 2017

i.v. 4 ml/kg of Emulsified isoflurane
(EIso)

Cardiac arrest rat model Cardiac arrest Wu et al., 2017

i.v. 3 mg/kg of tacrolimus Lateral fluid percussion brain injury
rat model

Traumatic brain injury Oda et al., 2011

1 mmol/L VPA Cobalt chloride (Co Cl2) induced
-hypoxia cell model

Cerebral ischemic and traumatic
brain injury.

Jin et al., 2014

i.p. 400 mg/kg of citicoline MCAO rat model Cerebral ischemic Sahin et al., 2010

Infusion, 5 mg/kg of melatonin Perinatal asphyxia piglet model Hypoxic-ischemic encephalopathy Powell et al., 2011;
Robertson et al., 2013

Infusion,1 mg/kg HET0016 Asphyxia piglet model Hypoxic-ischemic encephalopathy Zhu et al., 2015

40 µM dantrolene OGD/R cell model Stroke Xu et al., 2015

100 nM C5a RA OGD/R cell model Stroke Thundyil et al., 2012

neuroprotective effects (Wang L. et al., 2014). On neonatal
hypoxia-ischemic encephalopathy, mesenchymal stem cells
transplantation combined treatment with hypothermia proved to
be a better therapy than either therapy alone (Park et al., 2015).
Furthermore, the temperature-sensitive mesenchymal stem cells
from an umbilical cord, infected with a retrovirus carrying the
temperature-sensitive A58 SV40 LT antigen gene, were applied
to the traumatic brain injury. In this study, the greatest protective
effect on the recovery of neurological function was the therapy
which combined temperature-sensitive mesenchymal stem cells
and hypothermia (Tu et al., 2012). Additionally, for treating
stroke, adipose-derived stem cells combined with hypothermia
produced a superior approach (Zhao et al., 2018). Moreover,
many drugs enhanced therapeutic hypothermia neuroprotection
in nerve injury. They included chemical drugs, hormones,
neuroprotectants and others. For example, valproic acid is
a histone deacetylase inhibitor. Jin et al. (2014) showed that
the combined treatment with valproic acid and hypothermia
improves survival and decreases cell death after chemically
induced hypoxia in HT22 hippocampal cells. Valproic acid
also enhanced neuroprotective effect of hypothermia against
ethanol-mediated neuronal injury, and improved survival in a rat
cardiac arrest model (Oh et al., 2017; Vishwakarma et al., 2017).

Bumetanide, a clinically available loop diuretic, inhibited NKCC1
and improved the neuroprotective efficacy of treatment with
phenobarbital and hypothermia in a neonatal cerebral hypoxia-
ischemia model (Liu et al., 2012). Cannabidiol (CBD), the main
non-psychoactive component of Cannabis sativa, has recently
been shown to produce additive effect with hypothermia,
resulting in a greater overall benefit in the early HI brain damage
(Lafuente et al., 2016). Combined emulsified isoflurane and
hypothermia treatment results in significant improvements in
survival and neurological outcomes in a rat model of cardiac
arrest (Wu et al., 2017). Dantrolene enhances the protective
effect of hypothermia on OGH/R cerebral cortex neurons (Xu
et al., 2015). Early post-hypoxia-ischemia administration of
phenobarbital may augment the neuroprotective efficacy of
therapeutic hypothermia (Barks et al., 2010) and some hormones
have a neuroprotective effect in augmenting hypothermia
protection. Melatonin augmented hypothermic neuroprotection
in a piglet model of perinatal asphyxia (Powell et al., 2011).
Exendin-4 is an analog of the human glucagon-like peptide-1
(GLP-1) gut hormone peptide. In a study by Rocha-Ferreira et al.
(2018), exendin-4 was found to enhance the neuroprotection of
therapeutic hypothermia. The combined therapy with human
urinary kallidinogenase (HUK) and hypothermia enhanced
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the efficiency by promoting angiogenesis and regeneration and
rescuing tight-junction loss in HIE rat model (Gao et al., 2018).
And for erythropoietin, no significant benefit was observed from
treatment with combination therapy in HIE rat experiments
(Fang et al., 2013). However, erythropoietin combined with
hypothermia reduced serum Tau protein levels and improved
neonatal behavioral neurology outcomes but did not affect
long-term neurodevelopmental outcomes in neonatal patients
(Lv et al., 2017). Neuroprotectants, such as G-CSF, were
used in brain injury. Hypothermic treatment plus G-CSF
significantly reduced mortality rate and edema and improved
neurological function in the rat transient middle cerebral artery
occlusion (MCAO) model (Ghahari et al., 2014). Atorvastatin
enhances hypothermia-induced neuroprotection after stroke
(Lee et al., 2008). And in a study by Gao et al. (2014), a series
of neuroprotectants including albumin, atorvastatin, baclofen,
brain-derived neurotrophic factor, bumetanide, citicoline
sodium salt hydrate, cyclosporine A etc., were applied to a
oxygen-glucose deprivation and re-oxygenation-mediated
neuronal injury. This research showed that combination of
therapeutic hypothermia with brain derived neurotrophic factor,
glibenclamide, dizocilpine, HUK or neuroglobin provided a
better protection compared with a single treatment method.
There are some other drugs like chlorpromazine, promethazine,
citicoline and HET0016, which also augment therapeutic
hypothermia protection (Sahin et al., 2010; Liu S. et al., 2015; Zhu
et al., 2015). Furthermore, xenon, MgSO4 and Chinese traditional
bloodletting treatment also offered better neuroprotection when
combined with hypothermia (Ma et al., 2005; Zhu et al., 2005;
Tu et al., 2016).

Most of these combined treatments are confirmed to be more
effective than any other treatment being used alone. They can
play their therapeutic role via many ways, such as scavenging free
radicals, reducing energy consumption, reducing excitotoxicity
and so on (Zhang Z. et al., 2018). However, there is no denying
that some combined treatments did not exhibit a synergistic
effect, such as that argon augmented therapeutic hypothermia
which does not improve functional recovery in cardiac arrest,
but may even worsen neurologic function. These findings suggest
that future studies are warranted to investigate more specific
mechanisms and modulating factors in neuroprotection.

MECHANISMS OF
HYPOTHERMIA-MEDIATED
PROTECTION

Therapeutic hypothermia is a promising neuroprotective
intervention which has been shown to improve outcomes from
nerve injury in humans. The neuroprotective role of hypothermia
has been well established in experimental animals and in patients
with cardiac arrest (Hakim et al., 2018), hypoxic-ischemic
encephalopathy (Yum et al., 2018), traumatic brain injury
(Leng, 2017) and other diseases (Zhu et al., 2015). Although the
neuroprotective mechanisms of hypothermia in different diseases
vary and have yet to be fully determined, the neuroprotection
has been commonly ascribe to its effect on decreasing the

metabolic rate, reducing the generation of radicals, ameliorating
inflammation, inhibiting excitotoxicity and apoptosis.

Hypothermia decreases the metabolic rate of neurons
after spinal cord injury, traumatic brain injury and other
diseases. Metabolic changes associated with hypothermia include
preserving glucose (Schaller and Graf, 2003), inhibited lactate
generation (Drenger et al., 1997), increased plasma levels of
glycerol (Wang et al., 2007), free fatty acids and ketoacids (Aoki
et al., 1993). These metabolic changes induced by hypothermia
are beneficial to preservation of pH and ATP of tissue and cell
which promotes homeostasis (Kuffler, 2010).

The generation of free radicals and nitric oxide is considered
to be associated with neuron damage (Lewen et al., 2000).
Hypothermia, however, significantly inhibits superoxide and
lipid peroxidation to decrease the generation of free radicals.
Hypothermia was found to decrease the levels of ROS induced
by ischemic stroke (Gao et al., 2014) and suppress the elevation
in internal jugular NO after cerebral ischemia-reperfusion
(Kumura et al., 1996).

Inflammation is involved in the occurrence and development
of diseases, such as, cerebral ischemic injury. Further,
hypothermia modulates inflammatory factors to reduce the
inflammatory response. In acute brain injury, complement
activation stimulates neutrophil pathways. Pro-inflammatory
cytokines, including IL-1β, IL-6, IL-18, and TNF, are increased,
which exacerbate neuronal injury (Huang et al., 2006; Nilupul
Perera et al., 2006). Hypothermia has been shown to decrease
the pro-inflammatory cytokines and increase anti-inflammatory
cytokines production to inhibit inflammatory response (Vitkovic
et al., 2001; Yatsiv et al., 2002; Hofstetter et al., 2007). However,
anti-inflammatory cytokines such as IL-10 can also be reduced
by hypothermia (Huet et al., 2007). It, therefore, appears
that hypothermia may have a complex role in inflammatory
modulation to protect neurons, that still needs to be elucidated.

Hypothermia also provides a neuroprotective benefit
by decreasing excitotoxicity. The accumulation of
excitotoxic amino acids, such as glutamate, is proven
important in the pathogenesis of neuron damage
(Dumont et al., 2001; Colbourne et al., 2003; Park et al., 2004;
Sahuquillo and Vilalta, 2007; Mazzone and Nistri, 2011). It
has been reported that hypothermia inhibits the release of
glutamate in a rat spinal cord ischemia model (Ishikawa
and Marsala, 1999). Globus et al. (1995) demonstrated that
hypothermia reduces the extent of neuronal damage in traumatic
brain injury by decreasing excessive extracellular release of
glutamate and generation of hydroxyl radicals. Hypothermia
reduced the release of glutamate by down-regulating the AMPA
(α-amino-3-hydroxy-5-methy1-4-isoxazole-propinoic acid) to
limit calcium influx and up-regulating the human glial glutamate
transporter (hGLT-1).

In addition to the above mechanisms, hypothermia also
works by inhibiting neuron cell apoptosis. Mild hypothermia
can interfere with the intrinsic and extrinsic cell apoptosis.
Intrinsic cell apoptosis is associated with caspase family of
apoptosis mediators. Neuron cell injury signals promote
translocation of pro-apoptotic protein Bax and Bid from
cytosol to the mitochondrial membrane changing the
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TABLE 3 | The combination of hypothermia and other therapies.

Combination strategy Model Diseases References

Xenon Carotid artery ligation rat model/OGD cell model Hypoxic-ischemic encephalopathy Ma et al., 2005

Intravenous loading dose of
360 µmol/kg MgSO4 before
ischemia followed by intravenous
infusion (IVI) at 120 µmol/kg

2 vessel occlusion with hypotension rat model Stroke Zhu et al., 2005

Bloodletting at Jing points Cortical contusion injury rat model Traumatic brain injury Tu et al., 2016

FIGURE 2 | Hypothermia and apoptosis.

mitochondrial membrane potential and releasing cytochrome-c
and apoptosis inducing factor (AIF) (Plesnila et al., 2001; Yenari
et al., 2002; Shamas-Din et al., 2011). Then, cytochrome-c
activates caspase-9 and caspase-3, leading to cell apoptosis
(Zhu et al., 2004; Ohmura et al., 2005; Ok et al., 2012).
Extrinsic cell apoptosis is mediated by Fas/FasL. Increased
Fas activates caspase-8, resulting in cell apoptosis (Liu
et al., 2008; Ehrenschwender and Wajant, 2009). Mild
hypothermia increases Bcl-2, reduces cytochrome c release,
inhibits the expression of BAX and decreases caspase family
members such as caspase-9, caspase-8, and caspase-3 (Zhu
et al., 2004; Ohmura et al., 2005; Ok et al., 2012; Sun
et al., 2019). Mild hypothermia also inhibits the expression
of matrix metalloproteinases (MMPs) to affect FasL (Lee
et al., 2005), eventually leading to reduced Fas and caspase-8
(Liu et al., 2008; Figure 2).

COLD INDUCED PROTEIN

Although the key mechanisms have not been established
clearly, cold induced proteins may play a key role in
hypothermia neuroprotection, which suggests their targeting as
novel therapeutic drug targets. Plenty of studies have uncovered a
neuroprotective effect, focusing on these proteins. Cold-inducible
RNA-binding protein (Cirbp) and cold-inducible RNA-binding
protein motif 3 (RBM3) are the most widely studied proteins
in this respect.

Cirbp, discovered in 1997, is a RNA-binding factor composed
of a N-terminal RNA Recognition Motif (RRM) and a
C-terminal region containing several repeats of the RGG
motif (Zhu et al., 2016a). This protein is detected in low-
level expression in human pancreas, heart, thyroid and other
cells (Nishiyama et al., 1997). Xue et al. (1999) detected the
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expression of this protein in brains, lungs, stomachs and
spinal cords of rats. When the temperature drops, expression
levels of Cirbp are increased in PC12, K562, NC65 and other
cell lines, and the expression of Cirbp in cells is decreased
when the temperature is increased. Besides, in TNF-α-induced
mouse fibroblast cells, hypothermia inhibited the apoptosis,
and Cirbp levels were increased (Sakurai et al., 2006). Further,
overexpression of Cirbp or application of recombinant Cirbp
have shown protection against cell apoptosis (Liu J. L. et al., 2015;
Wang and Zhang, 2015). In addition, knocking down Cirbp,
with shRNA-Cirbp, blocked neuroprotection under hypothermic
conditions in H2O2-induced apoptosis and caspase-dependent
neuron apoptosis (Liu et al., 2012; Wang and Zhang, 2015).
All these observations reveal that Cirbp is involved in the
protection of tissues and organs by hypothermia. The RRM
and repeats of RGG motif enhance binding of Cirbp to the
3′ UTR of TRX mRNA, resulting in enhanced expression of
TRX in cells (Yokomizo et al., 1995). TRX is a well-known
ROS scavenger (Park et al., 1999; Sahara et al., 2002), and
Since ROS plays a crucial role in initiating caspase-dependent
pathways through induction of TRX, Cirbp may suppress
intrinsic cell death mainly through TRX. Furthermore, it has
been demonstrated that caspase-dependent apoptosis protein
Bax, caspase-3 and caspase-9 are inhibited, and anti-apoptotic
protein Bcl-2 upregulated in the rat brain cortex neurons,
through upregulation of Cirbp (Wang and Zhang, 2015). Xia
et al. (2013) uncovered that Bcl-2 was upregulated and Cirbp
was overexpressed in BALB/c mouse testicles. Also, cirbp inhibits
DNA damage-induced apoptosis by downregulating caspase-3
(Lee et al., 2015). These studies indicate Cirbp to be a regulator of
caspase-dependent apoptosis pathway, in which overexpression
of Cirbp can downregulate caspase-3 and other apoptosis-
related proteins, while knockdown of Cirbp exacerbates these
proteins expression. In addition, the level of phosphorylated
extracellular signal-regulated kinase1/2 (ERK1/2) upregulation
was observed in H2O2 and TNF-α-induced cell death (Sakurai
et al., 2006; Liu J. L. et al., 2015) and the protection of
hypothermia was weakened when an ERK inhibitor was used
(Sakurai et al., 2006). Moreover, increased NF-κB activity was
observed with upregulating Cirbp, when mice were exposed
to lower temperatures (Sakurai et al., 2006; Kaneko and
Kibayashi, 2012). These data suggest that Cirbp protects
cells from apoptosis partly through activating the NF-κB
signaling. However, the mechanism of Cirbp in hypothermia
protection is still unclear and needs more studies for a
better understanding.

RBM3 is also a cold-induced protein which is induced by
hypothermia (Derry et al., 1995; Danno et al., 1997) and has
an impact on neuroprotection against various toxic insults such
as hypoxia, UV and nitric oxide (Rosenthal et al., 2017; Yang
et al., 2017; Zhuang et al., 2017). One study has further discussed
whether mild hypothermia and RBM3 prevents neural cells from
UV irradiation-elicited apoptosis using human neuroblastoma
cell line SH-SY5Y as a cell model for neural cell death
(Zhuang et al., 2017). It was indicated that mild hypothermia
protected SH-SY5Y cells from UV irradiation-induced apoptosis.
However, the protective effect of mild hypothermia was

abrogated when RBM3 was silenced. On the contrast, SH-
SY5Y cells could be rescued from UV-induced apoptosis
when RBM3 was overexpressed. Obviously, RBM3 is the key
mediator of mild hypothermia-related protection against UV in
neuroblastoma cells. There is also a study evaluating whether
RBM3 can inhibit staurosporine-induced apoptosis in neuron-
like PC12 cells (Chip et al., 2011). Mild hypothermia profoundly
promoted RBM3 expression and rescued neuronal cells from
apoptosis. After blocking RBM3 expression in neuronal cells by
specific siRNAs, the neuroprotective effect of hypothermia was
significantly diminished, and RBM3 over-expression provided
neuroprotection in the absence of hypothermia. Taken together,
it is apparent that RBM3 is involved in hypothermia-induced
neuroprotection. Furthermore, several studies have indicated that
pro-apoptotic proteins Bax, Bad, apoptotic protein PARP and
caspase-3 are downregulated when the expression of RBM3 is
increased under hypothermia, while the anti-apoptotic protein
Bcl-2 is induced (Chip et al., 2011; Ferry et al., 2011; Zhu
et al., 2016b; Zhuang et al., 2017). Yang et al. (2017) found
that RBM3 protects neuroblastoma cells from NO-induced
apoptosis by suppressing p38 signaling, which mediates apoptosis
through miR-143 induction. It has been reported that RBM3
is the key mediator of mild hypothermia-related protection
against UV in neuroblastoma cells, and the neuroprotective
effect might be exerted through interfering with p38 and JNK
pathways. Moreover, RBM3 exerts its cell-protective effects by
modulating PERK-eIF2α-CHOP signaling (Zhou et al., 2017).
The PERK-eIF2α-CHOP signaling pathway is one of three
main branches involved in unfolded protein response (UPR)
activation, and it is involved in UPR-induced apoptosis
(Hetz, 2012). The effects of RBM3 on UPR-induced apoptosis
have been studied. The research uncovered a hypothermia
induced RBM3 expression, and that RBM3 represses the
phosphorylation of PERK and eIF2α. CHOP expression was
downregulated by phosphorylation of PERK and eIF2α, and
EIF2α phosphorylation and CHOP protein expression were
elevated in human embryonic kidney HEK293 cells by specific
small interfering RNAs and in hippocampal organotypic slice
cultured from RBM3 knockout mice (Zhu et al., 2016b). In
summary, Cirbp and RBM3 have neuroprotective effects in nerve
injury and may provide a potential therapeutic target for the
neuroprotection.

CONCLUSION

Hypothermia therapy has been proven neuroprotective in the
patients suffering from neural injuries such as cardiac arrest
and stroke, as established by many studies on the subject.
However, the mechanistic aspects are not clearly understood.
Clearly, more work is needed, including determination of best
strategies to induce hypothermia, improving the protection
and clarifying the mechanism. As discussed in this article,
local hypothermia may be the best option for providing
protection similar to general hypothermia and for reducing
temperature effects throughout the body with minimal side
effects. Several neuroprotective strategies are being tested to
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enhance hypothermia protection. Further, cold induced proteins
are important in hypothermia protection. The discussion here
should provide guidance for future animal studies and clinical
trials on hypothermia neuroprotection.
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