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Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of

related seronegative inflammatory disorders sharing common symptoms. Although it

mainly affects children and adolescents, it often remains active during adulthood.

Genetic and environmental factors are involved in its occurrence, although the exact

underlying immunopathophysiology remains incompletely elucidated. Accumulated

evidence suggests that, in affected patients, subclinical gut inflammation caused by

intestinal dysbiosis, is pivotal to the future development of synovial–entheseal complex

inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the

pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine

macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose

of this review is to discuss and emphasize the role of epigenetics, neuroendocrine

pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis

of the role of decreased NLRP3 gene expression and possibly MIF in the early phases

of jSpA development. The decreased NLRP3 gene expression in the latter, due to

hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction

leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the

role of MIF in the complex innate, adaptive cellular and main effector cytokine network,

Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical

need, I suggest possible new drug targets with the aim to ultimately improve treatment

efficacy and long-term outcome of jSpA patients.
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LITERATURE SEARCH

A systematic literature search was conducted in Ovid Medline
(PubMed), Scopus, Science Citation Index expanded, and
Google Scholar to find related articles. The key words
were “juvenile spondyloarthirtis”, “enthesitis-related arthritis
(ERA)”, “pathophysiology”, “signal transduction”, “epigenetics”,
“neuroendocrine pathways”, “stress response”, “HPA axis”, “sex
hormones”, “gene expression”, “proteomics”, “Gut–joint axis”,
“dysbiosis” “NLRP3”, “tissue hypoxia”, “new bone formation
(NBF)” in combination with “macrophage migration inhibitory
factor (MIF)”. I also manually screened the reference lists in
relevant reviews and other non-primary data sources captured by
the search strategy. Only publications in English were included.

INTRODUCTION

Spondyloarthritis (SpA) is an umbrella term for a group of
chronic inflammatory disorders that share common clinical
and pathophysiological features. In children, enthesitis-related
arthritis (ErA) is a subgroup of juvenile idiopathic arthritis
(JIA) clinically characterized by enthesitis, chronic inflammatory
arthritis, acute anterior uveitis, back pain, and low-grade gut
inflammation. ErA also falls under the collective term of juvenile
spondyloarthritis (jSpA) (1). Depending on the geographic
region, ErA accounts for 15–30% JIA cases and is one of
the commonest subtype of JIA seen in Asia (2). The jSpA
commonly starts as “undifferentiated” disease (e.g., ERA) which
differs between children and adults. For example, in juvenile-
onset disease (jSpA), when compared to adults, hip arthritis is
more frequently observed, there is a lower prevalence of human
leukocyte antigen B27 positivity, axial involvement and acute
anterior uveitis, but less peripheral arthritis and enthesitis (1).
Although several classification criteria are used in children for
uniformity of diagnoses, several other conditions share similar
clinical features, thus resulting in either overlap or indistinct
classifications. The juvenile spondyloarthritis (JSpA) is a perfect
example of that, as the currently available criteria do not reflect
their complexity and peculiarities (3).

The SpA family of diseases comprises undifferentiated jSpA
(ERA), ankylosing spondylitis (AS), reactive arthritis (ReA),
psoriatic arthritis (PsA), and inflammatory bowel disease
(IBD) associated arthritis. In general, SpAs are depicted by
inflammation, bone erosions and new bone formation (NBF).
Enthesis, representing the connective tissue junction where
ligaments and tendons attach to the bone, is a primary target
tissue for inflammation in SpA, with inflammation affecting both
the enthesis soft tissue and the nearby anchoring peri-entheseal
bone (PEB) (4). In fact, the anchoring PEB, or synovial–entheseal
complex, is the main site of inflammation and osteitis in SpA (5).

As expected, the majority of the published genetic studies
in SpA have been restricted to ankylosing spondylitis (AS),
the classical form of SpA in adults. The genetic heritability of
juvenile spondyloarthropathy remains incompletely understood,
with HLA-B27 accounting for almost 25% of its identified
heritability, with newly discovered gene mutations responsible
for 2.1% of inherited cases (6). However, studies have shown that

HLA-B27 positivity on its own is not sufficient to trigger disease
as the concordance rate for HLA-B27 positivity in dizygotic
twins was shown to be significantly lower than for monozygotic
twins (24 vs. 63%, respectively), suggesting the important role
of other relevant genes with an oligogenic model of familial
transmission (7).

GENE EXPRESSION AND PROTEOMIC
STUDIES

Recent genome-wide association studies (GWAS) and single
nucleotide polymorphisms (SNPs) analysis have further
delineated the role of non-MHC genes in the development of
adult AS, involving the interaction of endoplasmic reticulum
aminopeptidase 1 (ERAP1) with HLA-B27 (8). The role of
ERAP1 was also later confirmed for ErA and IL-23R for juvenile
psoriatic arthritis (9). ERAP1 polymorphisms only affect the
risk of development of SpA in HLA-B27-positive individuals,
suggesting that they influence SpA pathogenesis by altering
HLA-B27 function (10). Nevertheless, for better understanding
of differences between genotype and phenotype as well as
mechanisms of disease development, research methods such as
quantification of gene expression are often necessary. So far,
although a number of different gene expression studies in adult
patients have been conducted, they included only a small number
of patients with jSpA (11–13). In another cohort of patients
diagnosed with ErA, using ILAR criteria, and with a known
HLA genotype, none of the transcriptome studies was performed
with RNA isolated from whole blood, nor was the calculation
of the odds ratio (OR) for disease development performed,
with absence of independent verification of data specificity and
universality. Our group conducted a meticulous gene expression
analysis in a very homogenous group of Croatian patients with
enthesitis-related arthritis (ErA) diagnosed according to ILAR
classification criteria. We documented increased expression
of TLR4 and CXCR4 and decreased expression of NLRP3 and
PTPN12 genes (13). In another ErA cohort from the USA,
Barnes et al., found different genes or gene clusters, resulting
in the under-expression of hemoglobin genes, with unknown
significance so far (11). In a different study by Myles et al.
involving Indian patients with ErA, gene expression in synovial
fluid mononuclear cells (SFMCs) was compared to that in
peripheral blood mononuclear cell (PMBCs). SFMCs were found
to have a different gene expression profile from PBMCs, with
overexpression of genes associated with various cell processes
such as antigen presentation, scavenger function, chemotaxis
and proteases, while genes involved in NK cell function, cell
adhesion and inhibitors of apoptosis were under-expressed,
suggesting a dysregulation of the innate immune system genes
in that condition (12). The mechanism(s) responsible for those
alterations, which differ among populations, remain largely
unknown (see below).

Gene expression studies provide important information about
the involvement of various signal pathways. They rely, however,
on plasma which is frequently used as surrogate, instead of the
synovial membrane proteome, actual site of pathology, from
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early disease-stage, which would be most informative for precise
determination of immunopathology of jSpA. However, synovial
membrane is extremely difficult to acquire. Although control
tissue from healthy children would have been useful, ethical
considerations prevent it. On the other hand, as synovial fluid
(SF) is in close proximity to tissues primarily altered during jSpA,
analyzing it has significant potential to better understand the
underlying immunopathogeneses. In the study of Rozenkranz
et al. distinctively 24 proteins were identified as differentially
abundant in SF between JIA subtypes, but jSpA patients were
not included (drugi link). However, in the Taiwanese pilot
study of two children with diagnosed enthesitis-related arthritis
(ERA), the patients’ plasma was studied before and after the
administration of etanercept alone, using conventional two-
dimensional gel electrophoresis (2-DE) in combination with
mass spectrometry (MALDI-MS). They showed that etanercept
therapy improved clinical ERA symptoms through the regulation
of several cytokines (IL-2/IFN-γ), chemokines (MCP-1), and
growth factors (GRO) that affect the expression of specific acute
phase proteins such as haptoglobins, immunoglobulin A, and
fibrinogen-γ chain (14). However, there are many challenges
within the SF proteomics field including the requirement for
standardized and stringent methods of sample collection and
storage, the differences in sensitivity and specificity of various
proteomic assays, the impossibility of including healthy controls,
compounded by the lack of comprehensive biostatistical analysis
of the data to exclude falsely detected biomarkers (15).

EPIGENETIC STUDIES

The role of epigenetic mechanisms is essential in the regulation
of gene expression, and consequently in the pathogenesis
of various diseases, including rheumatic conditions (16, 17).
The notion that these mechanisms could be influenced by
external stimuli raises the possibility of a link between the
environment and gene function, providing a potential clue for the
potential contribution of these external stimuli to many diseases.
Epigenetic mechanisms are traditionally defined as mitotically
and/or meiotically heritable changes in gene expression that
do not involve changes in DNA sequence. To contribute to
the control of gene expression and repression, they are closely
connected with other regulatory elements, such are transcription
factors, and in some cases, with extracellular factors such as
cytokines and growth factors (17). Although various studies have
already confirmed the prevalence of epigenetic changes in both
genetically complex and monogenic inflammatory rheumatic
diseases, such are rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), systemic sclerosis (SSc), Sjorgen syndrome
(SS), Cryopyrin-associated periodic syndrome (CAPS) and
Familial Mediterranean Fever (FMF), to best of our knowledge,
none has looked at patients with juvenile spodyloarthritis (16–
19). In oligo-JIA, Chavez-Valencia et al. have found no substantial
alterations in DNAmethylation of CD4+ T cells, but only modest
alterations in genes of known or potential relevance to JIA (20).
On the other hand, DNA methylation of the pro-inflammatory
interleukin-32 (IL-32) gene was found to be reduced in JIA

CD4+ T cells, suggesting an association between the reduction
of IL-32 methylation and JIA (21). At present, there are at
least three accepted mechanisms that can initiate and maintain
epigenetic alterations: DNA methylation as pretranscriptional,
histone modifications and non-coding RNA (ncRNA)-associated
gene silencing like microRNAs (miRs) at the posttranscriptional
level (22, 23). In our recent study in patients with ErA, we
assessed the methylation levels of the TLR4, CXCR4, NLRP3, and
PTPN12 gene promoter, as well as the expression of several non-
coding microRNAs (miR-150, miR-146a, miR-181a and miR-
223) with reported interactions with the specific genes we were
interested in. We collected PBMCs from 19 newly diagnosed
patients with jSpA, according to ILAR classification criteria for
enthesitis-related arthritis (ErA), and seven gender- and age-
matched asymptomatic children. Out of four genes studied, we
only found hypermethylated NLRP3 gene, while the expression
analysis of selected microRNAs showed no significant difference
(24, 25). DNAmethylation studies in adults with AS have already
identified over 1600 hypermethylated loci in the peripheral
blood, most of which are located in HLA genes (26). In other
studies, genes such as DNMT1 and BCL11B were found to be
hypermethylated, but their expression did not correlate with the
clinical manifestations of ankylosing spondylitis (27, 28). In a
similar study of patients with AS, Coit et al. demonstrated an
overexpression of hypermethylated genes like GTPase-related
genes, as well as hypomethylated genes that included HCP5 gene
encoding a lncRNA within the MHC region linked with a genetic
risk for psoriasis and toxic epidermal necrolysis. Furthermore,
the presence of an HLA-B∗27 allele was associated with strong
hypomethylation of HCP5, tubulin folding cofactor A (TBCA)
and phospholipase D Family Member 6 (PLD6), of unknown
relevance at this point (29). On the other hand, the miRNA
expression profiles in the blood of patients with AS showed
19 differentially expressed miRNAs, with increased levels of
miR-146a and miR-155 compared to controls, and with the
disease index correlating only with miR-155 expression (30).
Furthermore, IL-10 inhibits the pro-inflammatory microRNA
miR-155 through STAT3 (31). This is relevant in the context of
SpA where generally low IL-10 values are found in patients across
the different phenotypes (see below).

STRESSORS EXPOSURE AND
NEUROENDOCRINE
IMMUNO-MODULATION

When environmental strains exceed the human adaptive capacity
or ability to cope, stress will occur. These environmental strains
are collectively termed stressors, and appropriate responsiveness
of the stress system to stressors translates into a sense of
general wellbeing, adequate task performance and positive social
interactions (e.g., homeostasis) (32, 33). By contrast, the effect of
various stressors may hamper a child’s growth and development,
and may be responsible for various rheumatology, endocrine,
metabolic, immune-mediated and psychiatric disorders (33).
For example, in the extensive Swedish cohort of 2,453 adults
with AS, increased risk for disease development was linked to
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respiratory tract infections in childhood (34). As shown in both
adult and pediatric patients with rheumatological conditions,
the occurrence of stressful or traumatic life events frequently
precede the onset of their illness or disease flares. It is well known
that trauma or mechanical stress are frequent triggers or flare-
inducers of JIA, and particularly for the induction of enthesitis
(35). Moreover, stress can cause the brain to trigger the immune
response, which can, in turn, induce changes in the central
nervous system (CNS) suggesting bidirectional communication.
However, in the course of chronic inflammation, an interruption
of this communication might be possible.

Based on the observation of sex differences in AS, in
studies performed over 50 years ago an etiological association
with endocrine factors was suggested. A study of testicular
function in 22 patients with AS demonstrated diminished
testicular testosterone (T) reserve, elevated luteinizing hormone
(LH) serum level, estradiol/testosterone ratio (E2: T) inversion
and slightly increased estradiol (E2) serum level (36, 37).
Interestingly, in the animal SKG mouse model (SpA model),
estrogen was found to suppress TNF-α and arthritis development
(38). Similarly, other animal model studies have shown that
estrogen can suppress the differentiation of T helper (Th)17 cells
from naive T cells (39).

Low serum levels of sex hormones, especially
dehydroepiandrosterone sulfate (DHEAS) (i.e., androgen

drain), may also contribute to bone loss in patients with AS,
while patients with early or adult reactive arthritis have a
high cortisol and DHEA serum levels that might change the
course of disease (40, 41). After administration of a low-dose
of adrenocorticotropic hormone (ACTH), the serum cortisol
rise became significantly lower in patients with AS than in
controls, suggesting an impaired hypothalamic-pituitary-adrenal
(HPA) axis and reinforcing the possibility of involvement
of the neuroendocrine system in the etiology of AS (“the
disproportion principle”) (42). More importantly, low cortisol
and testosterone serum levels were found in subjects with
active JIA, while the lowest androgen levels were found in those
patients in whom disease extended into their adult life (43). In
addition, Bravo et al. found elevated levels of serum prolactin
(PRL), another pro-inflammatory hormone, in male patients
with juvenile ankylosing spondylitis, with levels correlating
with disease activity (44). The detailed description of the
neuroendocrine pathways including HPA, arousal/sympathetic
nervous system (SNS) and parasympathetic nervous system
(PNS), are beyond the scope of this paper but have been detailed
in other reviews (45–51).

The role of the HPA axis extends to the glucocorticoid
(GC) metabolism. Cortisol is converted to cortisone mainly by
the kidney, via 11β-hydroxysteroid dehydrogenase (11β-HSD)
type 2, while the major organ for converting cortisone back to
cortisol is the liver, via 11β-HSD1. Interestingly, in arthritis,
conversion from cortisone to cortisol by 11β-HSD1 is increased
(48). In addition, the circadian rhythm of the HPA axis may
be defective in overcoming the signs and symptoms of the
disease associated with inadequate cortisol secretion. This may
augment negative feedback and explain the HPA dysfunction in
inflammatory conditions (49). On the other hand, macrophage

migration inhibitory factor (MIF) is secreted from identical
corticotrophic pituitary cell type know to secrete ACTH, the
hormone that stimulates the adrenal secretion of glucocorticoids.
MIF was shown in vivo to neutralize the glucocorticoid-
induced suppression of inflammatory cytokine secretion in
activated macrophages (i.e. TNF-α, IL-1-β , IL-6, IL-8) (Figure 1)
(52). The circadian variation in plasma MIF closely parallels
glucocorticoid levels. During stressful events or life-threatening
infections coupled with high levels of glucocorticoids, the
antagonistic effects of MIF on glucocorticoids probably represent
the mechanism by which the host preserves a functioning
immune response (52). Ralph et al. provided evidence that
described the nuclear orphan receptor 1 (NURR1) as a target
of MIF and GCs in RA, and a repressor of MAPK phosphatase
1(MKP1) expression. MKP1, the negative regulator of MAPK
activation has been identified as a key gene that regulates MIF.
Thus, NURR1, target of both GCs and MIF in mediating their
opposing effects on MKP1, appears to be involved in the vital
regulatory network that influences both innate and adaptive
immune responses, as well as disease phenotypes (53). There is
therefore a clear transition from a well-functioning HPA axis in
the early phases of undifferentiated spondyloarthritis or reactive
arthritis, to an inhibited HPA axis in late stages of chronic
spondyloarthritis. This phenomenon is thought to be due to pro-
inflammatory cytokine production such as MIF, IL-6, TNF-α and
IFN-γ , which are likely to negatively influence steroidogenesis.
Thus, in chronic spondyloarthritis, MIF might counter-regulate
the suppressive effect of glucocorticoids on cytokine mRNA
translation (Figure 1).

The combination of reduced parasympathetic with increased
sympathetic tone, has been a consistent finding in chronic adult
arthritis patients, suggesting an imbalanced autonomic nervous
system (53–56). The sympathetic nervous system (SNS) has
a bimodal effect in the chronic arthritis, by either increasing
or decreasing serum levels of proinflammatory and anti-
inflammatory cytokines. This depends on several factors, such as
the time point of immune system activation, the cellular context,
and the distinct adrenoceptors involved (α vs. β) (54). Although
there is no published evidence in juvenile spondyloarthritis, the
peripheral blood mononuclear cells (PBMC) of adult patients
with JIA express mRNA-encoding α-adrenergic 1 receptors
(α1-AR subtype), which are not found in healthy children.
It seems, therefore, that the expression of α1-AR mRNA in
PBMC during chronic inflammation might be associated with
attenuated immune responses to stress (57). Functional α1-AR
receptors seem to be upregulated on the leukocytes of patients
with poliJIA, resulting in higher IL-6 levels upon stimulation of
these receptors by a cold pressor test (58). Consequently, the
α-ARs might become more relevant in a later stage of chronic
inflammation, concurring with decreased numbers of β-ARs (“β-
to-α-adrenergic shift”) (59). The endogenous synergy of HPA
axis (cortisol) and SNS is clearly demonstrated in patients with
chronic synovitis, by the stiffness and/or the decrease of high
cytokine levels in the morning (47).

On the other hand, the immunosuppressive effect
of the parasympathetic nervous system is much more
obvious. The cholinergic anti-inflammatory pathway (e.g.,
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FIGURE 1 | (A) Normal, healthy neuroendocrine pathways seen also in reactive and early undifferentiated arthritis. (B) Chronic arthritis including jSpA. Along with the

autonomic nervous system (SNS and PNS), the HPA axis is the main stress response mechanism, forming a carefully regulated signaling network. HPA axis

dysregulation results in various downstream physiological consequences, like increasing risk for immune-mediated disease, mood disorders, metabolic disease, and

cardiovascular disease. On the other hand, gonadal hormones play a master role in the formation, activation, and regulation of HPA axis. By affecting the response

and sensitivity to cytokines, neurotransmitters, and hormones, gonadal steroids help to HPA axis to fine-tune the levels of stress hormones in the circulation.

Furthermore, the behavioral responses to stress and obvious sex differences are particularly important considering their role in maintaining homeostasis.

Pro-inflammatory cytokines namely MIF, TNF-α and IL-6 have a major role in shaping up final anti-stressor response during the chronic inflammation. Furthermore,

centrally produced MIF by pituitary gland, was the first cytokine that can counter-regulate the inhibitory effects of glucocorticoids and, as a result, plays a critical role in

the host control of inflammation and immunity in general. Imbalance in the autonomic nervous system (ANS) or dysautonomia has been detected in many established

chronic autoimmune diseases, and in general, patients with chronic synovitis have increased activation of sympathetic fibers (ß to α adrenergic shift) and reduced PNS

activity (low a7nAChR). For the details see text (32–65). HPA, hypothalamic-pituitary-adrenal axis; CRH, corticotropin-releasing hormone; ACTH, adrenocorticotropic

hormone; GC, Glucocorticoids; ACh, acetylcholine; NE, norepinephrine; E, epinephrine; DHEA, dehydroepiandrosterone.

“anti-inflammatory reflex”) can suppress inflammation through
release of acetylcholine (ACh) by the vagus nerve, involving
the alpha7 nicotinic acetylcholine receptor (alpha7nAChR)
expressed on CD68+ macrophages and other immune cells
(60–62). As a result, a series of well-known proinflammatory
molecules such as TNF-α, IL-6, MIF, IFN-γ , high-mobility
group box-1 (HMGB-1), free radicals, inducible nitric oxide
(iNO), and others are inhibited (61). Interestingly, both the
α7nAChR, ubiquitously expressed by CD4+T lymphocytes, and
the nAChR agonist nicotine, can inhibit the production of IL-17
in CD4+ T cells in human peripheral blood (63). In various
animal models, such as those for arthritis and colitis, nicotine
has also been shown to have an anti-inflammatory effect by
inhibiting the polarization to Th1/Th17 (64). This mechanism
has been reinforced in a small pilot study of 37 adult patients
with psoriatic arthritis or AS, where a transcutaneous vagal

nerve stimulation (t-VNS) led to a significant reduction in ASAS
scores (65).

SUBCLINICAL GUT INFLAMMATION
(GUT–JOINT AXIS)

The gut epithelial barrier is a first line of defense against
harmful microorganisms. Disruption of the epithelial layer puts
gut microbes in direct contact with the host’s immune cells,
thereby activating an aberrant inflammatory response. It has
been shown that prenatal and early life bacterial gut colonization
is thought to play a paramount role in shaping the immune
system. This is translated into the gain of basic functions such
as immunotolerance of commensal microorganisms. Early life
exposures have been linked to the development of inflammatory
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bowel disease (IBD) later in life. Infants born to mothers
with IBD demonstrated enrichment in Gammaproteobacteria
in their gut, often associated with intestinal inflammation, and
also depletion in protective Bifidobacteria. Likewise, germ-free
mice (GFM) inoculated with stools of third trimester IBD
mother and of 90-day infants, showed a significant reduction
in microbial diversity and fewer class-switched memory B cells
and regulatory T cells in the colon (66). A study by Yatsuneko
et al. suggests that gut microflora evolves toward a stable
configuration by the age of 3 years (67). On the other hand,
subclinical gut inflammation is a hallmark in all forms of juvenile
spondyloarthritis and is associated with a high prevalence of
inflammatory bowel disease (IBD) (66). The involvement of
the gut–joint axis of inflammation in jSpA is strengthened by
similarities in immunopathogenesis, and also by the clinical
success of anti- TNF-α and IL-23 therapies in both IBD and
in some forms of SpA (67). It is believed that inflammation
in SpA originates in the gut and subsequently leads to joint
inflammation. Both conditions share many genetic risk factors
as well as changes in the composition of gut microbiota.
Although conceptually attractive, some therapies targeting IL-
17A are efficacious in the joint but not vice versa, and the
targeting of adhesion molecules such as α4β7 in IBD can lead
to onset or flares of SpA (67). Recent studies in ethnically
different patient populations, and especially in patients with
HLA-B27, have demonstrated dysbiosis in patients with SpA (68–
76). Such dysbiosis is highly dependent on the host’s genetic
background and/or environment, implicating an “ecological
model of dysbiosis”, with the effects of a multitude of microbes
contributing all to the aberrant immunopathogenesis (77). At
the functional level, different inflammation-associated microbes
exhibit common metabolic pathways, including the synthesis
of short-chain fatty acids (SCFA) such as butyrate, steroid
biosynthesis as well as bacterial motility (78). The synthesis
of butyrate, which has anti-inflammatory effects, promotes the
development of regulatory T cells and is generally decreased
in patients with SpA (78). The metabolomics data, in addition
to less convincing 16S data, suggest differences in tryptophan
metabolism in children with ErA, linked to the fecal microbiota,
with a pro-inflammatory effect (79). Furthermore, as shown in
early AS and HLA-B27 positive adults, dysbiosis and a leaky gut
lead to adaptive immune activation associated with characteristic
MRI phenotype of osteitis (80). Whether these changes are
intrinsically inherent to the disease, or are a mere consequence
of a more systemic inflammatory process that also involves the
intestine it is not clear at this point. However, data from animal
models and studies on relatives of patients with SpA, strongly
suggest that these changes indeed precede the onset of the disease
(76). In a some rheumatic disease it is possible that the use of
specific probiotics, as an adjuvant therapy, correct the dysbiosis,
resulting in the overall clinical efficacy. Our preliminary data
has shown that VSL-3 medical probiotic, with a proven role in
IBD, can improve clinical symptoms and decrease disease activity
in jSpA patients (81). On contrary, different proof-of-concept
studies from India, showed no clinical or immunological benefit
in patients with JIA-ERA, with VSL-3 probiotic use compared to
the regular use of NSAIDs (82).

THE ROLE OF MACROPHAGE MIGRATION
INHIBITORY FACTOR (MIF)

While the dominant role of IL17/23 axis, TNF-α, and IL-7
in pathophysiology of SpA, including jSpA, is well established,
the role of cytokine MIF has generally been overlooked (83–
89). The MIF is a critical upstream alarming-like mediator
of innate immunity and inflammation. Under physiological
conditions MIF circulates with serum concentrations between 2
and 6 ng/ml, with a circadian rhythm correlating with plasma
cortisol (90). As mentioned earlier, it plays a pivotal role
in the neuroendocrine axis mediated tissue-specific damage
mechanisms, by counteracting the immunoregulatory effects of
glucocorticoids (GCs) (52, 90). Unlike other cytokines, MIF is
intrinsically expressed and stored in intracellular granules of
various immune cells such as T- and B- lymphocytes, monocytes,
macrophages, dendritic cells (DCs), mast cells, neutrophils,
basophils, endothelial cells, tissue macrophages, and certain
parenchymal cells (91). In response to liposaccharides (LPS)
and stress, MIF is released from preformed cytoplasmic pools
of mainly macrophages and dendritic cells. It up-regulates the
expression of pattern recognition receptors, induces synthesis
of downstream inflammatory cytokines, including IL-1β, IL-6,
TNF-α, IFN-γ, IL-17 and sustains the inflammatory responses by
inducing recruitment of neutrophils, monocytes, macrophages
and DCs and inhibiting their activation-induced apoptosis
(92, 93). In order to regulate autophagy/mitophagy as well as
glucose catabolism, MIF induces, in an autocrine or paracrine
manner, enhancement of phagocytosis and an increase of
the production of reactive oxygen species (ROS) and nitric
oxide (NO) (94–96). In humans, MIF, a 114-amino-acid non-
glycosylated peptide of 12.5 kDa, is encoded by a single
gene located on chromosome 22q11.2m (92). Two distinct
polymorphisms of MIF exist: rs755622 (– 173G > C) and
rs5844572 (– 794 CATT tandem repeat). They exist in linkage
disequilibrium, and are associated, in different proportions,
with various autoimmune diseases, such as SLE, systemic
onset JIA, psoriasis and ulcerative colitis (97–100). Depending
on the cellular context and disease state, MIF signaling is
mediated by its receptors CXCR2, CXCR4 and/or CD74. The
latter receptor alone mediates extracellular MIF binding, but
MIF-induced MAPK signaling requires the co-expression of
hyaluronan receptor CD44 leading to subsequent activation of
proinflammatory transcription factor nuclear factor- κβ (NF-
κβ) (101). The noncognate binding of MIF to CXCR2 and
CXCR4 is the molecular basis for MIF-triggered recruitment
of monocytes and T cells (102). In T cells and fibroblasts
activation of JNK signaling byMIF involves the upstream kinases
PI3K and SRC and is dependent on CXCR4 and CD74 (101).
Besides, MIF inhibits p53-mediated apoptosis in macrophage
with the induction of increased cytoplasmic phospholipase A2
(PLA2), arachidonic acid, COX2 and PGE2, which maintains
the macrophage pro-inflammatory function (102). Increased
gene expression of CD74 occurs in inflamed and noninflamed
colonic mucosa of IBD patients, and it is also a possible T
cell antigen in SpA, eliciting Th1 and Th17 responses (103,
104).
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Intracellular MIF is involved in Toll-like receptor and
inflammasome-mediated inflammatory responses. It upregulates
Toll-like receptor 4 (TLR-4) expression, and consequently
induces the release of proinflammatory cytokines such as TNF-
α and interleukin IL-12, known to play an important role in
pathogenesis of SpA (105). Loss of MIF has been shown to
suppress the LPS-induced release of TNF-α by downregulating
TLR4 expression (105). In response to the stimulation by LPS
and Gram-negative bacteria (canonical TLR4 activators), the
MIF-deficient macrophages have reduced production of TNF-
α and IL-6, underlining a role for MIF in modulation of TLR4
downstream signaling pathways (106).We have already proposed
that the Thr399Ile polymorphism of TLR4, found in variant
carriers of Croatian patients with jSpA but undetectable in Indian
patients, may be accountable for modified immune response
to microbial infection (107, 108). MIF, via an interaction with
JAB1/ CSN5, directly affects transcriptional activity of activator
protein-1 (AP-1), a central regulator of several proinflammatory
genes (109). This hints to a possibly interesting overlap between
MIF and glucocorticoid mediated (GC) responses. An important
mechanism of GC action is the ability to suppress AP-1- and
NF-κβ-regulated genes, with steroid-resistant disease being often
associated with increased AP-1 activity (110). Moreover, MIF
is either directly involved in the assembly and activation of
the NLRP3 inflammasome, or via intermediate filament protein
vimentin, which is essential for NLRP3 activation (111). More
importantly, this role is independent of its function as a
cytokine, because recombinant and native MIF are unable to
salvage NLRP3-dependent IL-1 release in Mif−/– macrophages
(111). Depletion or inhibition of MIF in macrophages and
DCs result in the inhibition of IL-1α, IL-1β and IL-18 in
response to NLRP3-activating stimuli. It appears, therefore, that
by regulating NLRP3 inflammasome activation and downstream
IL-1β production, MIF has an upstream role in outlining the
inflammatory characteristics of activated macrophages and DCs
(111). Activation of caspase-1 is the main characteristic of
inflammasome activation, with higher caspase-1 serum level in
SpA, gout, inflammatory arthritis, and osteoarthritis than in
other conditions (112).

Moreover, hypoxia initiated by microbiotome, plays a
physiologic role in the normal intestine, and has also a disease-
perpetuating role in the intestines of IBD patients (113). The
oxygen used for butyrate metabolism is an important factor
of intestinal homeostasis. Butyrate has a dual role: it is the
primary fuel source for the colon, and also shapes the gut
microbiotome (114). Hypoxia stabilizes hypoxia-inducible factor
(HIF), a transcription factor that regulates many genes important
for intestinal barrier function (115, 116). In addition, following
a hypoxic stimulus, innate immune cells, including neutrophils,
macrophages and dendritic cells, resist apoptosis, and in addition,
intra-epithelial cells (IECs) are stimulated to produce TNF-α
and other pro-inflammatory cytokines, causing increased barrier
permeability (e.g., leaky gut) (117). This effect is furthermore
perpetuated by oxygen consumption by the luminal bacteria, and
also by inflammatorymediators and LPS, which also regulate HIF
activity (117). The chronic HIF stimulation in the colon epithelial
cells initiates a hyperinflammatory reaction and, at least in mice,

HIF-1α enhances experimental colitis through a MIF-dependent
inflammatory signaling cascade, reversed by MIF inhibition
(118). This autoamplifying feedback loop could be interrupted
by high doses of GCs via the GCR, or by the inhibition of HIF-
1 an expression/stabilization under normoxia (119). MIF-JAB1
interaction also stabilizes HIF1α by preventing its hydroxylation,
resulting in increased expression of pro-angiogenic factor such
as VEGF (120, 121). These observations support the view that
hypoxia is a key driving factor in chronic inflammation, and
in case of jSpA on both gut and joint levels. Hypoxia, and
in particular HIF-1α, are very potent inducers of MIF in the
joints, as shown in cultured RA synovial fibroblasts stimulated
by rhMIF (121). In macrophage cultures, hypoxia induces TLR-4
which is also important in the context of jSpA (122). Therefore,
accumulating evidence supports hypoxia and HIFs in regulating
a number of important pathophysiological characteristics of
chronic arthritis, including synovial inflammation, angiogenesis,
and cartilage destruction (123).

SUGGESTED NOVEL HYPOTHESIS

Following the above discussion, I suggest a novel hypothesis
in which decreased NLRP3 gene expression, due to epigenetic
modifications of promotor site, is (one of) the cause for
inflammasome malfunction leading to gut microbiota
composition alterations observed in patients with early
jSpA. This dysbiosis (caused by NLRP3 dysfunction) could
potentially cause increased influx of TLR4 ligands and increased
expression of the TLR4 gene (possibly due to Thr399Ileu
polymorphism of TLR4), reduction of commensal bacteria
with anti-inflammatory properties, namely Faecalibacterium
prausnitzii, known to inhibit NF-κβ signaling, and finally leading
to TNF-α abundancy, characteristic of jSpA (124).

The reduced expression of NLRP3 gene is a new and
intriguing observation in jSpA/ErA. Studies on the role of NLRP3
inflammasome in IBD yielded controversial results. Earlier
studies have reported that activated NLRP3 inflammasome
stimulated production of IL-1β and IL-18 and contributed to
intestinal inflammation (125). However, the concept of damaging
inflammasome signaling in IBD is currently being reconsidered.
This follows recent reports showing that IL-1β and IL-18
production can provide protection against colitis, and supported
by recent GWAS studies showing that the polymorphisms which
confer hypofunctional NLRP3 phenotypes are associated with the
development of IBD (125). Note added in proof comes from
the recent finding by Yao et al. who were using the gain of
function NLRP3 R258W mice. They found that the hyperactive
NLRP3 inflammasome, associated with local over-production
of IL-1β, could maintain gut homeostasis resulting in strong
resistance to experimental colitis. It appears that remodeled gut
microbiota and increased induction of regulatory T cells were
main mechanisms responsible for observed resistance (126).
Therefore, it seems that a defective NLRP3 inflammasome
signaling in the gut contributes to IBD, causing leaky gut and
the induction of harmful immune responses against invading
commensals (127).
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I further speculate that hypermethylation of NLRP3 can
be promoted by certain MIF genotypes, based on similar
association of MIF rs755622C allele with hypermethylation of
tumor suppressors p14ARF and p16INK4a, both encoded by Cyclin
Dependent Kinase Inhibitor 2A (CDKN2A). Hypermethylation
of both p14ARF and p16INK4a was found in normal colonic
mucosal tissues of patients with UC, as well in the precancerous
lesions, suggesting that UC patients with this particular
inflammatory genotype of MIF may be at a higher risk for
developing colonic cancer (128). This rs755622C genotype
association was also observed in patients with IBD and in Chinese
patients with psoriasis, but not in Turkish patients with AS
(97, 98, 129). Despite that, the authors have suggested that the
time of onset and the duration of AS still might be affected by
rs755622C allele (129). However, this hypothesis still needs to be
proven in the laboratory, along with testing for MIF-rs755622C
allele in more patients with early-onset jSpA. In summary, the
downregulated NLRP3 gene in patients with early jSpA/ErA
might reflect the occurrence of a subclinical inflammation of the
gut mucosa (“low-grade IBD”), leading to a leaky gut (Figure 2).

While the role of MIF in the early phases of SpA development
is still speculative, its role in the late phases of disease is
well established. Earlier reports have shown that inflammatory

markers and serumMIF levels were significantly higher, and anti-
inflammatory IL-10 levels were significantly lower, in patients
with AS when compared to control patients. There is also a
significant correlation between disease activity indices (BASFI)
and MIF levels in these patients (130). It was therefore suggested
that MIF may be involved in the pathogenesis of the chronic
inflammation in AS. This was confirmed in a recent study where
MIF was shown, not only to trigger inflammation, but also
promote osteoblastic activity, suggesting its novel pathogenic
role in new bone formation (NBF) in patients with SpA. It
is important to mention that in SpA, NBF contributes to the
disease burden independently of the pain and stiffness induced
by chronic inflammation. In patients with AS increased levels
of MIF have been demonstrated in the synovial fluid and ileum
with a high number of MIF-producing macrophages and Paneth
cells. Furthermore, increased MIF-induced TNF-α production
was detected inmonocytes and activated β-catenin in osteoblasts,
both processes involved in promotion of the mineralization of
osteoblasts leading to NBF causing spinal progression (131).

The level of expression of microRNA-451 was recently found
to be lower in PMBCs of patients with AS, while MIF expression
in PMBCs was significantly increased compared with those
with pSpA and controls, indicating that MiR-451 suppresses

FIGURE 2 | The malfunction of NLRP3 inflammasome, a key tissue damage sensor, plays an important role in various autoinflammatory and autoimmune diseases.

Proposed hypothesis of decreased NLRP3 gene expression and possible role of MIF in the early phases of jSpA development (see text for description).
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inflammatory response in patients with AS by targeting MIF
(132). Similarly to AS, the anti-inflammatory and anti-migratory
effects of miR-451 that resulted in suppression of MIF, IL-6,
TNF-α or RANTES expression, have been described in vitro in
dendritic cells and synovial fibroblasts of RA patients and in vivo
in mice with collagen-induced arthritis (133, 134).

In the joints themselves, MIF is also involved in synovial
angiogenesis and neovascularization enhanced by loss of
autophagy/ mitophagy (135). A dysregulation of these
mechanisms is a critical mechanisms in the progression
of inflammatory arthritis, including SpA (136). Transgenic
mice overexpressing MIF exhibit high-turnover osteoporosis,
while in different animal models MIF is able to enhance
osteoclastogenesis through downmodulation of SDF-1
production in bone tissue and chemoattraction of circulating
CXCR4+ osteoclast precursor cells (OCPs) (137–139).
Furthermore, MIF (-/-) and CD74(-/-) mice also exhibit a
practical absence of osteoclasts at the synovium-bone junction,
as well as reduced osteoclast-related gene expression. This
indicates that MIF and CD74 accelerate RANKL-induced
osteoclastogenesis, suggesting that MIF contributes directly
to inflammation and bone erosion in those animals (139).
Nevertheless, the variety of bone pathology seen in SpA is unique
in medicine and includes increased bone turnover, bone loss,
osteitis, osteolysis and erosion, osteoproliferation as well as NBF,
either at peripheral (enthesophytes) or axial (syndesmophytes)
skeletal ligament, or tendon entheses and osteosclerosis (140).
Notably, these effects can be present concurrently in the
same patient.

The immunopathogenesis of SpA, with the complex
interactions of cellular and main effector cytokine network
mediated by MIF, are displayed in Figure 3.

PUTTING IT ALL TOGETHER

Similar to adults, juvenile spondyloarthritis consists of chronic
inflammation, articular bone erosions and pathologic new
bone formation. Based on these differences with prototypical
autoimmune diseases, such as rheumatoid arthritis or other
connective tissue diseases, SpA may be better classified among
autoinflammatory diseases (176). Children with clavicular
cortical hyperostosis (CCH), a rare manifestation of jSpA,
show complex patterns of gene expression related to several
inflammatory pathways. These include STAT3 downregulation,
B-cell activation, apoptosis, and MAP kinase with upregulated
TRPM3/7 Ca++ channels, and the most interestingly, genes
closely linked to autoinflammatory diseases PTPN12 and MEFV.
Interestingly, stimulation of TRPM3/7 Ca++ channels can
provide a second signal for NLRP3 inflammasome activation
suggesting that CCHmight be indeed an early autoinflammatory
presentation of jSpA [manuscript in preparation, (177)].

A crucial event in the early stages of SpA appears to be the
strong association of osteitis with low-grade IBD, confirmed in
children with ErA by elevated concentration of fecal calprotectin
(fCAL), a surrogate marker of gut inflammation (178, 179).
Additionally, early studies with colonoscopy have shown that

patients with SpA who had sub-clinical inflammation were more
likely to have active arthritis on follow up, in particular in the hip,
emphasizing therefore the prognostic value of this finding (180,
181). Nonetheless, the cell types that are principally involved
in local inflammation in human SpA remain largely unclear
(Figure 3). Circulation of immunological cells from the intestines
(e.g., entero-synovial circulation) to the entheses, synovium and
spine permits the enthesitis and synovitis to become chronic. The
separation between the innate and adaptive immune system is
largely artificial as neither works in isolation and cross-talks are
well reported. The SpA also requires specific innate and adaptive
immunological events targeting the synovium with several
processes that run in parallel, such as dysregulated epigenetic
control, tissue hypoxia (gut and joint) and neoangiogenesis,
all leading to the final stage of tissue damage and remodeling
characterized by chronic synovitis and enthesitis, syndesmophyte
formation and ankylosis (Figure 4).

However, considering that the frequencies of HLA-B∗27
alleles and ERAP1 polymorphisms (“first hit”) are ethnic-
specific, it is important to understand that jSpA pathogenesis
could well be the result of various combinations of these
mechanisms in different populations (182, 183). It is also
important to underline sex differences. Examples include SLE
and adult AS where different clinical phenotypes exist in
males and females. Therefore, different sexes may require
different biomarkers for proper diagnosis of the same disease
(184). Nevertheless, two scenarios of disease development are
possible: some patients who had reactive arthritis or early
undifferentiated form like ErA, can reach remission (“second
hit”), but the majority of the patients progresses to active
chronic disease (“multiple hits”). The neuroendocrine immune
response of the HPA axis and sympathetic nervous system,
intended to overcome a transient inflammatory episode, are
uncoupled and can therefore lead to immune cell metabolic
disease in the context of erroneous energy regulation (45, 66,
175). Furthermore, failed autophagy and apoptosis of immune
cells, in addition to failure of negative immune regulation (e.g.,
immune suppression) due to decreased GC production (high
MIF production), blocked AMP-activated protein kinase (AMPK)
pathway, and decreased IL-10 production by TREGs, BREGs,
regulatory DCs most likely due to IL-7/HIF-1 production,
collectively result in the progression to chronic inflammation and
subtype/endotype differentiation (185, 186) (Figure 4). Of note
is that the activated AMPK, and mammalian target of rapamycin
(mTOR), a downstream molecule of activated AMPK, represent
key control points of a series of inter-connected inflammatory
signaling pathways. These include NF-κβ and JAK/STAT, crucial
drivers of maintaining energy balance, cytokine signaling, cell
growth, and apoptosis (187). Interestingly, in the HLA-B27/hβ2
transgenic rat model where in vivo, prophylactic treatment of rats
with rapamycin (m-TOR inhibitor) significantly inhibited the
development and severity of inflammation in peripheral joints
and spine (arthritis and spondylitis), with histological evidence
of reduced bone erosions and new bone formation, all hallmarks
of SpA (188). This is relevant in view of the fact that mTOR
pathway has been indeed activated in SpA synovitis, and because
mTOR blockade by rapamycin or metformin in mouse model
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FIGURE 3 | In general, MIF is an proximal mediator of host defense that up-regulates the expression of pattern recognition receptors (eg TLR-4) and perpetuates

inflammatory responses by inhibiting activation-induced apoptosis in monocytes and macrophages. As mentioned above in chronic spondyloarthritis the inhibitory

effect of glucocorticoids on cytokine mRNA translation may be counter-regulated by MIF. Furthermore, dysbiosis could trigger TLR-4 ligands to induce ileal production

of MIF, especially in CD163+ macrophages, DCs and Paneth cells, which consequently activates CD14+ monocytes to produce TNF-α/IL-23 and primes adaptive

and innate (Type 3) immune cells to produce IL-17A (Red box 1). Chemokine CXCL4 (MIF co-receptor) promotes IL-17 production in human CD4+ T cells by acting

both directly on CD3/CD28-activated human (naive) CD4+ T cells or indirectly via myeloid antigen presenting cells (mDCs). On the other hand, IL-7 is a cytokine that,

better than IL-23, stimulates IL-17 production in both innate and adaptive immunity, and suppress the function of regulatory T cells (Treg). High levels of IL-7 have

been confirmed both in the intestinal tissue and in the inflamed synovium of patients with AS. The tissue-resident γδ T cells, ILC3s, circulating and/or gut-derived α4β7

γδ T cells, TH17 cells, or mucosal associated invariant T (MAIT) cells all are known to promote IL-17-driven joint/entheseal inflammation. MIF, along with TNF-α and

other pro-inflammatory cytokines, also induces synovitis and enthesitis with bone erosions. Joint hypoxia induces hypoxia inducible factor (HIF) expression that

augments inflammation-promoting Th17 cell development through recruitment to the IL-17 promoter. In parallel, HIF-1, by binding to Foxp3, restricts regulatory T cell

(Treg) development. Through positive feedback loop HIF-1 induces MIF, which in turn causes HIF-1 expression via the MIF receptor (CD74). In contrast to early phases

of SpA, axial inflammation is not dependent on IL-23, but rather on IL-17A and most likely MIF. MIF is inducing mineralization of primary osteoblasts in a

dose-dependent manner, upregulates genes involved in osteogenesis and triggers stabilization of a known mediators of osteoblastic activity, namely β-catenin and

wingless protein ligand (Wnt). (Red box 2). Beside MIF, upregulated PGE2, IL-1β, TNF-α, IL-17A, IL-22, IL-26 and IL-23, BMP-2, calcium-sensing receptor

CaSR-PLCγ-signaling and downregulated sclerostin, ankylosis progressive homolog (ANKH) and Dikkopf-1 (DKK-1) protein are important pathways involved in bone

remodeling and tissue repair. Finally, activation of both the canonical Wnt/β-catenin and noncanonical Wnt/PKCδ pathways is required for inflammation-induced new

bone formation (NBF) in SpA. Taken all together, it still unknow what is/are the most important factors in NBF, even TREGS were recently proposed to paradoxically,

via IL-10, promote NBF through suppressing TH17 production [adapted modified from (80, 84, 87, 119, 130–175)]. Red line/box- MIF pathway; green line -IL-17A

production; orange line- iTREG suppression and signaling; dotted blue line-IL-7 signaling; blue line-cellular stimulation by other cytokines.

stops osteoclastogenesis. In humans with AS, that blockade
also attenuates inflammation, inhibits production of IL-17A and
TNF-α, bone remodeling and new periosteal bone formation
(189–192). Also, rapamycin in vitro, may reduce inflammation
in SpA by promoting autophagy of misfolded HLA-B27 (193).

In undetermined disease stage of jSpA, without well-defined
and serological testing, genomic and/or imaging biomarkers

become crucial because, despite biologic therapy, fewer than half
of children achieve reach long-term and sustainable remission off
medication 5 years after diagnosis (2, 194). Similarly, treatment
of the various bone pathology in SpA remains an unmet clinical
need. Although the beneficial effect of anti-TNF-α therapy might
not only neutralize the effects of TNF-α, but also down-regulate
Th17 and Th17-related cytokines associated with up-regulating
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FIGURE 4 | Proposed pathophysiology of spondyloarthritis development (for details please see text). [Adopted modified from (154)].

the TREG/TGF-β axis in responders, this can also passively cause
new bone formation since TNF-α stimulates the expression of
DKK-1. DKK-1 in turn suppresses signaling by Wnt, promoting
consequently osteoblast and osteoclast formation as well as
differentiation induced by BMP-2 (195).

The definition of disease subtypes on the basis of underlying
pathophysiology and the concept of endotypes has emerged
more recently. Phenotypes/endotypes are dynamic, clearly
overlapping and may evolve into one another, thus making clear-
cut definitions somehow difficult. Nevertheless, a phenotype-
/endotype-based classification approach could direct toward the
application of personalized/precision medicine in the SpA field.
Discoveries from basic science research might, as mentioned
above, define multiple complex molecular pathways involved in
the pathogenesis of jSpA, which may provide biomarkers for the
molecular endotyping of this complex disease. In addition, these
molecular pathways might reveal potential therapeutic targets.
An endotype might consist of several complex mechanisms
that cannot be clearly separated into “pure single molecular
mechanism” thus being a “complex” endotype (196). Therefore,
new powerful biomarker like fCAL that is able to differentiate
various JIA subtypes, would allow us to precisely define various
potential endotypes of jSpA. Down that line it was recently
demonstrated that in patients with AS, a small RNA molecule,
miR-199a-5p was downregulated in T cells and associated with

radiographic severity of disease when compared to controls
(197). MiRNA-199a-5p expression levels also showed significant
negative correlations with the Ankylosing Spondylitis Disease
Activity Score (ASDAS) and modified Stoke Ankylosing Spon
dylitis Spinal Score (mSASSS) of AS patients. It turns out
that, in T cells of AS patients, miR-199a-5p has a novel role
in regulating autophagy by modulating the mTOR signaling
though direct inhibition of Rheb. Rheb is known to inhibit
T cells autophagy and promotes pro-inflammatory cytokine
production by activating mTOR signaling (197). These data
suggest that miR-199a-5p participates in the regulation of AS
pathogenesis by affecting T cell autophagy and mTOR inhibition
(197). In addition, the level of expression of another miR-
451 was lower in AS PBMCs than in both pSpA and control
PBMCs, but MIF expression was significantly increased in AS
PBMCs compared to AS patients and with greater radiographic
damage. It turns out, that overexpression of miR-451 suppresses
the MIF (132). These findings suggest miR-451/MIF may be a
novel therapeutic target in the treatment of SpA. Besides that,
epigenetics could potentially be used as preventive, diagnostic,
and therapeutic biomarkers and should be included in any future
jSpA classification and determination of endotypes.

Well established treatment for jSpA still includes NSAIDs,
but only sulfasalazine, as one of the conventional DMARDs,
was found to be effective in a randomized double blind placebo
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controlled trial in 33 patients with jSpA after 26 weeks treatments
(198). While adult with SpAs respond well to treatments
that include TNF-α or IL-17-targeting biologics, they are
mostly unresponsive to abatacept or MTX treatment (80, 199).
Secukinumab clinical trial in children with jSpA has recently been
completed (ClinicalTrials.gov: NCT03031782) but among other
IL17 blocking agents, such as ixekizumab and brodalumab, that
were proven to effective for adult axSpA and psoriatic arthritis,
only clinical trial of ixekizumab is apparently planned in jSpA
(ClinicalTrials.gov: NCT04527380) (200). Also, clinical trials of
JAK inhibitors are underway in patients with JIA, including
patients with ERA and psoriatic arthritis (ClinicalTrials.gov:
NCT02592434, ClinicalTrials.gov: NCT03773978) (200). JAK
inhibitors, in particular Tofacitinib, has shown similar efficacy
to TNF inhibitors in adult SpA, including axSpA and psoriatic
arthritis (201, 202).

Finally, to ultimately improve treatment efficacy and long-
term outcome of patients with jSpA, consideration should be
given for the use of new drugs such as iguratimod (IGU) that
target simultaneously MIF, IL-17A and TNF-α, or for those
that only target IL-7, m-TOR, IL-26 and/or ERAP 1 (203,
204). Blockage of MIF by a monoclonal antibody provides
in vivo antirheumatic effects, suggesting MIF as a suitable
target for antirheumatic therapy (205). Furthermore, in recent
experiments, treatment of RA patients with histone deacetylase
inhibitors (HDACi) downregulate MIF, in particular with two
distinct orally active molecules MS-275 and SAHA. They
have shown in vivo anti-inflammatory activities in preclinical
models of rheumatoid arthritis, and both MS-275 and SAHA
strongly suppress MIF protein expression by interfering with
the MIF transcriptional machinery in RA synovial fibroblasts
(206). Givinostat, a pan-class I/II HDACi, is currently being
investigated in JIA but no data about its potential use in
jSpA is currently available (207). An additional benefit of anti-
MIF therapy is that it could in addition be steroid-sparing in
patients with chronic steroid dependence or refractory rheumatic
disease requiring daily steroid therapy. In children and adults,
combination of two biologic agents is not well documented.
Safety of rituximab in combination with other biologic agents

(adalimumab, etanercept, infliximab) in adults with RA was
reported as an open-label study (208). Rigby et al. showed
that no serious adverse events occurred within 24 h of any
rituximab infusion, and that efficacy improved at week 48
compared with that at week 24 (208). However, none of the
biologic combination therapy have ever been studied in children,
but favorable adverse reaction profiles, with not significant
increase in infection rates with mono biologic therapy, might
stimulate future researchers to consider combination therapy
in children as well. Finally, another interesting approach was
performed using bispecific antibody where combining a well-
established anti-TNF therapeutic domain [single-chain variable
fragment (scFv) of adalimumab with a synovial tissue specific
targeting domain (scFv-A7) (e.g., scFv-A7 antibody) was located
on the human arthritic synovium in vitro and in a synovium
xenograft in severe combined immune deficient (SCID) mouse
model (209). This study provided the first description of a
BsAb capable of direct drug delivery to synovium with potential
applications to other existing biologics. In practical terms, due
to the improved potency, the use of such BsAb molecules in
the clinical care of chronic arthritis like jSpA may offer reduced
duration of treatment and consequently reducing the associated
healthcare costs.

Finally, future network analysis using multiomics approach to
integrate emerging forms of data frommultiple platforms, has the
potential to further highlights overall imunopathogenesis of the
jSpA and offer true biological classification of childhood arthritis
as suggested recently (210, 211).
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