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Mar Roca-Rodrı́guez4, Araceli Muñoz-Garach2,3, Mercedes Clemente-Postigo1,2,

Fernando Cardona1,2, Isabel Moreno-Indias1,2*, Francisco J. Tinahones1,2*

1 Unidad de Gestión Clı́nica de Endocrinologı́a y Nutrición, Instituto de Investigación Biomédica de Málaga

(IBIMA), Hospital Clı́nico Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain, 2 Centro

de Investigación Biomédica en Red de Fisiopatologı́a de la Obesidad y la Nutrición (CIBEROBN), Instituto de

Salud Carlos III, Madrid, Spain, 3 Departamento de Endocrinologı́a y Nutrición, Hospital Virgen de la Victoria,

Málaga, Spain, 4 UGC de Endocrinologı́a y Nutrición, Hospital Universitario Puerta del Mar, Cádiz, Spain

☯ These authors contributed equally to this work.

* isabel_moreno_indias@hotmail.com (IMI); fjtinahones@uma.es (FJT).

Abstract

Background

H. pylori infection and eradication cause perturbations of the gut microbiome. The gut micro-

biota has been identified as a potential contributor to metabolic diseases. We evaluate

whether these alterations in intestinal microbiota composition produced by H. pylori infection

and its posterior eradication with antibiotic treatment could be associated with glucose

homeostasis in metabolically healthy subjects.

Methods

Forty adult patients infected with H. pylori and 20 control subjects were recruited. The

infected subjects were evaluated before and two months after eradication treatment (omep-

razole, clarithromycin, amoxicillin). The microbiota composition in fecal samples was deter-

mined by 16S rRNA gene (V3-V4) sequencing using Illumina Miseq.

Results

Patients (pre- and post-H. pylori eradication) showed a decreased bacterial richness and

diversity with respect to controls. There was an improvement in glucose homeostasis in sub-

jects two months after H. pylori eradication treatment. Changes in the amount of Rikenella-

ceae, Butyricimonas, E. biforme, B. fragilis, and Megamonas were inversely associated with

changes in the glucose level or related parameters (Hb1ac) in H. pylori eradication subjects.

Conclusions

H. pylori infection and eradication with antibiotic treatment causes alteration of the human

gut microbiome. The increase in SCFA-producing bacteria and glucose-removing bacteria,

specifically members of Megamonas, Rikenellaceae and Butyricimonas, has been related
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with an improvement in glucose homeostasis after H. pylori eradication with antibiotic

treatment.

Introduction

Helicobacter pylori is a Gram-negative bacterium that colonizes the gastric mucosa of humans

and non-human primates [1]. H. pylori is typically acquired early in life and the infection often

persists during patients’ entire lives. The prevalence of H. pylori infection in the adult popula-

tion ranges from 25–60% in Europe and up to 90% in Asia and South America, depending on

geographical and infrastructural factors [2].The majority of people with H. pylori are asymp-

tomatic and only fewer than 20% of H. pylori colonized people develop serious diseases (e.g.

multifocal atrophic gastritis, gastric adenocarcinoma, mucosa-associated-lymph-tissue

[MALT] lymphoma) [3–4].

H. pylori infection is associated with modifications in the gastric microenvironment and in

the composition of the indigenous gastric microbiota [5], but might also trigger large intestinal

microbiota changes leading to a new physiological gastrointestinal balance [6]. While there are

no studies in humans, some animal studies have reported changes in the gut microbiota after

H. pylori infection [7–9].Proton pump inhibitor-based therapy with two antibiotics is the treat-

ment of choice for H. pylori eradication, which causes perturbation of the gut microbiome in

humans [1, 10–11].Some studies have confirmed the induction of long-term disturbances in

the intestinal microbiota from the eradication therapy [10–11].In contrast, changes in the

microbiota during H. pylori eradication reverted to normal soon after treatment was com-

pleted [11].Alterations to the microbiome caused by infection, diet, antibiotics and/or lifestyle

can disturb this symbiotic relationship and promote diseases including type 2 diabetes and

obesity, among others [8, 12]. Previous studies have associated H. pylori infection and eradica-

tion with lipid and glucose metabolism [13–14]. In this context, changes in the intestinal

microbiota induced by H. pylori infection and antibiotic eradication treatment could be a sig-

nificant contributor to the development of metabolic disorders. While several animal studies

have associated alterations of the gut microbiota by H. pylori infection with glucose homeosta-

sis [8–9], to the best of our knowledge, there are no studies in humans that relate changes in

the gut microbiota profile of patients with H. pylori infection and after the eradication treat-

ment to glucose metabolism. Thus, we hypothesize that both infection and the eradication

treatment of H. pylori may cause perturbations in the gut microbiome, which can indirectly

affect carbohydrate homeostasis.

Materials and methods

Study population and design

Forty consecutive adults infected by H. pylori, were screened and recruited from the Microbi-

ology Department through positive H. pylori stool antigen immunochromatography assay.

Sample size was assessed considering a reduction in richness of 16% because of the antibiotic

therapy based on previous microbiota studies [15–17] and a pilot study (non-published). Sam-

ple size resulted in 35 subjects for the intervention study. Thus, 40 consecutive patients were

selected who met the following inclusion criteria:1) age range 18–65 years, and 2) with their

first H. pylori infection. Moreover, a control group of healthy participants (20 participants)

matched by age, gender and dyspeptic symptoms, but negative for H. pylori stool antigen was

also studied. Exclusion criteria were established for 1) diagnosis of type 1 or type 2 diabetes; 2)
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prior documented treatment of H. pylori; 3) antibiotic use within the three months previous to

enrollment; 4) informed consent could not be obtained. Diabetic subjects were excluded from the

study, because both diabetes and its treatment have been associated with specific changes in gut

microbiota [18–19], which could negatively interfere with the objectives of the present study.

The study included two visits, one prior to and one two months after antibiotic eradication

treatment (omeprazole 20mg, clarithromycin 500mg, amoxicillin 1000mg twice daily for 10

days), for patients and only one visit for the control group. Patients with negative H. pylori
stool antigen immunochromatography assay two months after the antibiotic treatment were

selected for this study. All visits included a physical examination, a dietary survey, a fasting

blood sample, and a 75g oral glucose tolerance test (OGTT) at 30, 60, and 120 minutes. Also,

fecal samples were collected during each visit and stored at -80˚C until DNA extraction.

The study protocol was approved by the Medical Ethics Committee at Virgen de la Victoria

University Hospital and conducted in accordance with the Declaration of Helsinki. Written

informed consent was provided by all participants, who were also verbally informed of the

characteristics of the study.

Anthropometric, biochemical and dietetics measurements

Body weight, height, and waist circumferences were measured according to standardized proce-

dures [20]. Serum glucose after fasting and OGTT at time points 30, 60 and 120 minutes after

75 g of glucose, total cholesterol, high-density lipoprotein (HDL)cholesterol, triglycerides (Ran-

dox Laboratories Ltd) and C-reactive protein (Dimension autoanalyzer; Dade Behring Inc.)

were measured using a standard enzymatic method. Low-density lipoprotein (LDL) cholesterol

was calculated using the Friedewald formula. Insulin was analyzed by immunoradiometric

assay (BioSource International). Glycosylated hemoglobin (HbA1c) (%) was measured using a

high performance liquid chromatography method in a Variant Turbo autoanalyzer (Bio-Rad).

The variable area under the glucose curve (AUC) was calculated from serum glucose con-

centrations at different time points obtained in the oral glucose tolerance test by the trapezoi-

dal rule and presented as total AUCs. The insulin resistance index was calculated according to

the homeostasis model assessment (HOMA-IR) [21] and pancreatic beta-cell function was

estimated by the HOMA (HOMA-B) using the following equation: [fasting plasma insulin

(microunits per milliliter) X 20] / FBG (millimolars) - 3.5.

Both total energy (kcal / day) and macronutrients (proteins, fats, total carbohydrates, die-

tary fiber and sugars (g / day)) and micronutrients (total polyphenols (mg / day)) for each par-

ticipant were obtained from 24-hour dietary recalls for 7 days, using DIAL nutrition program

and the professional Diet Balancer software (Cardinal Health Systems Inc.).

Microbial diversity analysis

DNA extraction. Fresh fecal samples were immediately frozen at −80˚C after collection

and kept until use. Stool DNA was extracted from stool samples using the QIAamp DNA Stool

Mini Kit, according to the manufacturer’s protocols (Qiagen, Germany). Stool DNA concen-

trations were measured using a Qubit Fluorometric (Thermo Fisher Scientific).

16S rRNA gene amplification by PCR. The fecal bacterial microbiota composition was

determined using tag-encoded16S rRNA gene Miseq-based (Illumina, CA, USA) high-

throughput sequencing. The 16S rRNA V3-V4 amplicon (amplicon size ~460bp) was ampli-

fied by polymerase chain reaction (PCR) (95˚C for 3 min, followed by 25 cycles at 95˚C for 30

s, 55˚C for 30 s, and 72˚C for 30 s and a final extension at 72˚C for 5 min) using the universal

primers reported by Klindworth et al. [22] fused with Illumina adapter overhang nucleotide

sequences. Primer sequences were 5'TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC
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[CTACGGGNGGCWGCAG] -3’ and 5'GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
[GACTACHVGGGTATCTAATCC]-3’. Each 25 μL of polymerase chain reaction (PCR) reac-

tion holds 12.5ng of fecal genomic DNA as template, 12.5 μL of Master Mix (2x KAPA HiFi-

HotStartReady Mix) and 5 μL of 1μM of each primer.The PCR products were checked using

electrophoresis in 2% (w/v) agarose gels. A bioanalyzer (Agilent 2100, USA) was used to verify

the size of the PCR product.

16S gene library construction, quantification, and sequencing. AMPure XP beads

(Beckman Coulter Genomic, CA, USA) were used to purify the free primers and primer dimer

species in the amplicon product. Dual indices and Illumina sequencing adapters were attached

to sequence the amplicons, using the Nextera XT Index Kit (Illumina, CA, USA) and purified

the amplicon again using AMPure XP beads (Beckman Coulter Genomic, CA, USA). Before

sequencing, DNA concentration of each PCR product was determined using a Qubit Fluoro-

metric double-stranded DNA assay (Thermo Fisher Scientific) and Bioanalyzer DNA 1000

chip to verify the size (Agilent 2100, USA). The amplicons from each reaction mixture were

pooled in equimolar ratios based on their concentration. The sample pool (4nM) was dena-

tured and diluted following Illumina guidelines. Paired-end sequencing of amplicons was con-

ducted on the Illumina MiSeq platform using the v3 kit generating 2 × 301 nucleotide reads

(Illumina, San Diego, USA).

Bioinformatic analysis. The merged paired-end reads were analyzed using the Quantita-

tive Insights into Microbial Ecology (QIIME) tool (version 1.9.1; open source software) [23].

Operational taxonomic units (OTUs) were picked by the conservative script pick_closed_re-

ference_otus.py against the Greengenes 16S rRNA gene database (gg13_8) at a similarity of

97% by submitting each cluster to UCLUST in order to obtain the taxonomy assignment and

the relative abundance of each OTU. Alpha diversity (microbial diversity within samples) and

beta diversity (community diversity between samples) analyses were performed using QIIME.

Alpha diversity analyses were computed for rarefied OTU tables (set to 85% of the sequence

number within the most indigent sample, corresponding to 34,385 sequences) using the alpha

rarefaction workflow. The alpha diversity was estimated using Chao1 and Shannon indexes.

Beta diversity was calculated through beta_diversity_through_plots.py on even subsampled

OTU table, with the default beta diversity metrics of weighted and unweighted UniFrac dis-

tance matrices [24] which (were used to perform Principal Coordinate Analysis (PCoA) to

determine the similarity between groups of samples.

Statistical analysis

The statistical analysis was performed with SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and

QIIME (version 1.9.1; open source software).The data were expressed as mean ± standard

deviation. In order to check changes in the relative abundance (%) of operational taxonomic

units (OTUs) and in clinical, biochemical and anthropometric variables between groups, the

Wilcoxon’s signed-rank test (for paired samples) and the Mann-Whitney U test (for indepen-

dent samples) were used, whereas to check qualitative changes in OTUs (presence/absence)

between groups, the G-test of independence (g_test) was used. Alpha diversity between differ-

ent groups of the samples was assessed by non-parametric two-sample t-test (compare_alpha_-

diversity.py). The analysis of similarity (ANOSIM) statistical test was performed via QIIME

(compare_categories.py—method anosim) to test the statistical significance between groups.

Spearman’s correlation coefficient was also used to examine the relationship between the

OTUs and biochemical variables. A multivariate regression analysis was performed to identify

individual changes in OTUs as independent predictors for changes in the AUC and HbA1c lev-

els. For regression and correlation analysis, the variables AUC and HbA1c were expressed as %
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of change, as well as the OTU differential. Statistical significance was set at P<0.05, reported

by the conservative false discovery rate (FDR)-corrected p-value for multiple comparisons or

p-value, as appropriate.

Results

Anthropometric and biochemical characteristics

The anthropometric and biochemical variables of the patients before and after H. pylori eradi-

cation treatment, as well as those of the control subjects, are depicted in Table 1.

H. pylori patients and control subjects were balanced according to age and sex. No differ-

ences were found in anthropometric parameters such as BMI and waist circumference or bio-

chemical parameters such as glucose, insulin, HOMA.IR, HOMA-β, triglycerides, and

cholesterol levels. However, the HDL-cholesterol level significantly increased after H. pylori
eradication therapy, while the LDL-cholesterol level was lower in controls than in patients

before H. pylori eradication treatment.

Regarding the dietary assessment, no statistically significant differences were observed in

the comparisons of micronutrients and macronutrients between patients and controls (p>

0.05) (data not shown).

Patients after H. pylori eradication treatment improves glucose homeostasis

Fasting plasma glucose concentrations and HbA1c are shown in Table 1, while the postprandial

plasma glucose profiles for pre and post H.pylori eradication patients are depicted in Fig 1.

Whereas plasma glucose concentrations at baseline and 30 minutes post-ingestion of a glucose

Table 1. Anthropometric and biochemical variables.

Variables Pre-H. pylori eradication (n = 40)

(1)

Post-H.pylori eradication (n = 40)

(2)

Controls

(n = 20)

(3)

p value

(1–3)�
p value

(1–2)�
p value

(3–2)�

Age(years) 46.95±12.78 46.95±12.78 43.86±12.63 NS NS NS

Men /women (n) 16/24 16/24 9/13 — — —

BMI (kg/m2) 26.92±4.30 26.91±4.40 25.89±4.54 NS NS NS

Waist (cm) 92.10±12.06 91.27±11.73 89.8±13.23 NS NS NS

Fasting plasma glucose (mg/dL) 93.72±7.56 93.47±7.60 90.60±11.07 NS NS NS

Fasting plasma insulin (μUI/ml) 8.28 ± 6.11 8.63±6.11 8.08±4.97 NS NS NS

HOMA-IR 1.96±1.6 2.03±1.5 1.89±1.3 NS NS NS

HOMA-β 95.38±59.2 100±56.87 102±47.08 NS NS NS

HbA1c (%) 5.44±0.50 5.28±0.36 5.29±0.30 NS 0.005 NS

HDL cholesterol (mg/dL) 52.97±12.9 55.36±16.36 57±15.8 NS 0.044 NS

LDL cholesterol (mg/dL) 121.45±35.8 117.96±33.4 102.05±34 0.036 NS 0.07

Triglycerides (mg/dL) 97.2±39.6 93.5±36.4 89.70±41.78 NS NS NS

Cholesterol (mg/dL) 194.22±40.84 191.34±37.15 177.05±39.5 NS NS 0.08

DBP (mmHg) 77.75±9.58 80.50±11.37 75.95±10 NS 0.08 NS

SBP (mmHg) 123.84±16.62 125.42±21.36 120.3±13.35 NS NS NS

CRP (mg/L) 4.07±2.44 3.56±2.11 4.14±2.92 NS NS NS

All values are means ±standard deviations. Wilcoxon’s signed-rank test was used in comparing before and after H. pylori eradication. The Mann-Whitney U test was

used to compare the unpaired-samples.

�P-value for the comparison of the variables between different groups (1, 2, 3).

NS: p>0.05. BMI: Body mass index, HbA1c: Glycosylated Hemoglobin, LDL: Low-density lipoprotein, HDL: High-density lipoprotein, DBP: Diastolic blood pressure,

SBP: Systolic blood pressure, CRP: C-reactive protein.

https://doi.org/10.1371/journal.pone.0213548.t001
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bolus were similar from 60 minutes an improvement in glucose metabolism was observed,

meaning a decrease in glucose levels, in post-H. pylori eradication patients (p = 0.01) (Fig 1).

There were no significant differences between patients and controls. Glucose levels at 120 min-

utes differed significantly from baseline for patients and controls (p�0.01). Thus, patients after

H. pylori eradication treatment showed a decrease in the AUC and in HbA1 levels with respect

to patients before H. pylori eradication treatment (874.15±249.06 vs. 917.61±249.6; p = 0.006;

and 5.28±0.36 vs. 5.44±0.50, p = 0.005, respectively).There were no statistically significant dif-

ferences in AUC and HbA1c between patients with infection and controls (917.61±249.6 vs.

899.79±190.8 and 5.44±0.50 vs. 5.29±0.30, respectively).

H. pylori eradication treatment affects gut microbiota diversity

A total of 13,747,554 high-quality sequences and 59,614 OTUs were obtained from the total

samples, although samples were rarefied to 34,208 sequences per sample, which corresponded

to 85% of the lowest number of quality reads obtained from any individual sample in the data-

set. Moreover, in order to increase the statistical power, OTUs that were not found in at least

five different samples, were excluded from the analysis. These reads/OTUs were assigned to 12

phyla, 49 families, 75 genera and 42 different species.

In order to visualize complex relationships, Dimensional Principal Coordinates Analysis

plots of unweighted and weighted Unifrac distances were used to assess the similarity of

microbial communities between the studied groups (Fig 2).The ANOSIM statistical test con-

firmed that fecal communities from control subjects and pre- and post-treatment H. pylori
patients differed significantly (unweighted Unifrac, ANOSIM test, p = 0.01). Taking into

account the abundance of the bacteria, a better explanation was observed as the percentage of

variance explained was higher (weighted Unifrac,ANOSIM test, p = 0.01), indicating a clear

effect of this factor on the ecological diversity of the groups. Delving further into the results,

no differences were observed between the control and pre-treatment groups and pre- and

Fig 1. Glucose tolerance curve in patients before and after H. pylori eradication. The asterisks indicate p< 0.05.

Glucose values (mmol/L) are shown for p<0.05.

https://doi.org/10.1371/journal.pone.0213548.g001
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post-treatment patients (weighted ANOSIM, ANOSIM test, p>0.05), while a significant differ-

ence was found between the control and post-treatment fecal communities (weighted Unifrac,

ANOSIM test, p = 0.01), indicating a clear influence of the antibiotic treatment for H. pylori
on the fecal ecology of the patients (S1 Fig).

Alpha diversity assessment using rarefaction curves revealed clear differences among the

studied groups, estimated by the indexes of Chao1 (Richness) and Shannon (Diversity).As

expected, control subjects showed the greatest diversity and richness, showing statistical differ-

ences with respect to the H. pylori patients (pre- and post-eradication treatment). Within the

H. pylori patients, the eradication treatment affected richness (p = 0.041), indicating a decrease

in the number of registered OTUs, and evenness was almost statistically significant (p = 0.051)

(Table 2).

Gut microbiota profile is clearly different after H. pylori eradication

treatment

According to the qualitative assessment of the OTU discovered, a different occurrence (pres-

ence/absence) is depicted (Fig 3). Due to the high number of changes found between the

groups, only those OTUs found to be statistically different (p<0.05) between patients before

and after H. pylori eradication treatment and associated significantly with the variables of our

Fig 2. Clustering of fecal bacterial communities according to the different study groups by principal coordinate

analysis (PCoA) using unweighted (A) and weighted (B) UniFrac distances. Each point corresponds to a

community coded according to the patient group and control group. The percentage of variation explained by the

plotted principal coordinates is indicated on the axes. Orange square: control group; blue triangle: pre-eradication

group; red dot: post-eradication group.

https://doi.org/10.1371/journal.pone.0213548.g002

Table 2. Estimates of alpha diversity in control subjects and patients before and two months after H. pylori eradication.

Pre-H. pylori eradication (n = 40) (1) Post-H. pylori eradication (n = 40) (2) Controls (n = 20) (3) �p-value

(3–1)

�p-value

(1–2)

�p-value

(3–2)

Chao1 3280.47±707.04 2941.22±710.71 3979.51±808.089 0.002 0.041 0.001

Shannon 6.11±0.58 5.83±0.66 6.49±0.52 0.017 0.051 0.001

All values are means ± standard deviations.

� P-value obtained for comparison of the richness and diversity index between different groups (1, 2, 3).

https://doi.org/10.1371/journal.pone.0213548.t002
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study (AUC and HbA1c) are highlighted. In this manner, we observed a lower presence of the

Rikenellaceae family, the Butyricimonas genus and E. biforme and a greater presence of B. Fra-
gilis and Megamonas genus in patients after H. pylori eradication treatment.

Regarding the relative abundance of each OTU in the fecal samples collected, the dominant

bacterial phyla were, as expected, Firmicutes and Bacteroidetes. Actinobacteria, Proteobacteria
and Verrucomicrobia contributed smaller proportions, between 1–5% (Fig 4). Bacteroidaceae
was the predominant family followed by Ruminococcaceae, Lachnospiraceae, Prevotellaceae
and Veillonellaceae (>5%) (S2 Fig), while the dominant genera were Bacteroides, Prevotella
and Parabacteroides (>5%). Paraprevotella, Lachospira, Oscillospira, Dialister, Phascolartobac-
terium, Ruminonococcus, Sutterella, and Akkermansia contributed lower proportions, between

1–5% (S3 Fig).With respect to the species level, F.prausnitzii, P.copri, P.distasonis, and B.uni-
formis were the most abundant (>1%).

Significant changes in relative abundance comparing controls and patients before and after

H. pylori eradication treatment were found in our study (S4 Fig). Bacteroidetes was the most

representative phylum among the H. pylori patients at pre- and post-eradication time points

(58.72±13.62% and 63.50±10.30%, respectively), while the Bacteroidetes and Firmicutes phyla

remained at similar levels in the control subjects (45.89±13.57% vs. 45.68±15.61%, p = 0.82)

(Fig 4). In this manner, the Bacteroidetes/Firmicutes ratio did not significantly differ between

patients before and after H. pylori eradication treatment (p<0.05), with greater values than

Fig 3. Presence/Absence microbiota heatmap of the study groups. Significant bacterial taxa among groups

according to the likelihood-ratio test (G-test) are depicted (P<0.05, raw and -FDR-corrected).

https://doi.org/10.1371/journal.pone.0213548.g003
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control subjects in both cases (2.03±1.28 vs. 1.26±0.91 and 2.29±1.16 vs. 1.26±0.91, respec-

tively, p�0.005). Moreover, we found a decrease in the relative abundance of Actinobacteria
post-H. pylori eradication compared with pre-H. pylori eradication (0.27±0.41% vs. 0.77

±0.96%, p = 0.001) and controls (0.27±0.41% vs. 0.97±1.2%, p = 0.004).

On the other hand, within the Actinobacteria phylum, we found that the H. pylori eradica-

tion treatment led to a significant decrease in the relative abundance of the family Bifidobacter-
iaceae, and especially in the genus Bifidobacterium and B. longum and B. adolescentis species.

Firmicutes and Proteobacteria phyla also experimented a decrease after the H. pylori eradica-

tion treatment, specifically a decrease in the relative abundance of the family Streptococcaceae
and the genus Streptococcus. Moreover, after the eradication treatment a decrease in the abun-

dance of Turicibacteraceae and the genera Turicibacter, Ruminococcaceae and Oscillospira, as

well as the family Oxalobacteriaceae and the genus Oxalobacter and O. Formigenes species, and

the family Enterobacteriaceae were reported with respect to the control group (Table 3).

Modifications in glucose metabolism are associated to bacterial changes

In order to establish a possible relationship between the glucose metabolism status of the stud-

ied groups and their gut microbiota profiles, correlation studies were performed. Significant

univariate correlations were found between changes in the amount of specific bacteria and the

proportion of changes in the glucose AUC (Rikenellaceae: r = -0.45, p = 0.005; Butyricimonas:
r = -0.39, p = 0.017 and E.biforme: r = -0.33, p = 0.044), as well as with the proportion of HbA1c

changes (B. Fragilis: r = -0.36, p = 0.03 and Megamonas: r = -0.38, p = 0.02) in patients after H.

pylori eradication treatment.

Multivariate regression analyses, for all the bacterial groups analyzed, were assessed. Only

the changes in Rikenellaceae (R2 = 0.086, β = -0.33, p = 0.04 and R2 = 0.130, β = -0.33, p = 0.04)

Fig 4. Mean relative abundance of bacterial phyla (%) in the controls and patients before and two months after H. pylori eradication.

https://doi.org/10.1371/journal.pone.0213548.g004
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and Butyricimonas (R2 = 0.133, β = -0.397, p = 0.016 and R2 = 0.273, β = -0.510, p = 0.002) pre-

dicted the proportion of changes in the glucose AUC in patients after the eradication treat-

ment. These results remained statistically significant even after correcting for age, sex and

BMI.

Discussion

In this study, we have shown that H. pylori eradication with antibiotic treatment produces spe-

cific bacterial changes associated with an improvement in glucose homeostasis and HbA1c lev-

els in patients with normal blood glucose concentrations. HbA1c is an index of long-term

glycemic control and a risk predictor used in the monitoring of diabetes. However, HbA1c

_levels are acquiring a big relevance also in apparently healthy subjects [25] because of its suc-

cessful standardization among subjects. Our study has shown moderate changes in HbA1c

between patients before and after the H. pylori eradication. However, these variations in

HbA1c are statistically significant and could be clinically relevant; by analogy with other stud-

ies, these small changes are similar to those observed after life-style modifications, for example,

after dietary interventions and physical exercise [26–27]. The favorable effect of H. pylori erad-

ication on glucose homeostasis have been reported in previous studies [28–29]. However, the

mechanisms underlying the association between H. pylori eradication and glucose homeostasis

are unclear. We propose that gut microbiota mediated, at least partially, this improvement in

the glucose homeostasis.

H. pylori has been reported to interact with gastric microbiota [5], whereas there is scarce

literature regarding its association with gut microbiota [7–9]. Our data have shown, for the

first time, changes in the gut microbial profile associated with H. pylori infection in humans,

while several studies have confirmed that the antibiotic treatment used in H. pylori eradication

affects the gut microbiota [1, 10–11]. In this line, we have shown that the common 10-day

Table 3. Comparison of relative abundance of families, genera and species between controls and patients before and two months after H. pylori eradication treat-

ment within the phyla Actinobacteria, Firmicutes, Proteobacteria.

Phyla Families/Genera/

Species

Pre-H. pylori eradication (n = 40)

(1)

Post-H. pylori eradication

(n = 40)

(2)

Controls (n = 20)

(3)

p�

(1–3)

p�

(1–2)

p�

3–2)

Actinobacteria Bifidobacteriaceae 0.44±0.63 0.12±0.38 0.72±1.2 NS 0.0003 0.0006

Bifidobacterium 0.45±0.63 0.12±0.38 0.72±1.12 NS 0.0005 0.001

B. Longum 0.096±0.19 0.022±0.04 0.17±0.31 NS 0.014 0.0017

B. Adolescentis 0.21±0.13 0.19±0.58 0.25±0.30 NS 0.0002 0.0009

Firmicutes Streptococcaceae 0.52±0.78 0.11±0.18 0.16±0.20 NS 0.017 NS

Streptococcus 0.52±0.78 0.11±0.18 0.16±0.19 NS 0.03 NS

Turicibacteraceae 0.01±0.02 0.008±0.02 0.02±0.07 NS NS 0.022

Turicibacter 0.01±0.02 0.008±0.02 0.03±0.07 NS NS 0.04

Ruminococcaceae 11.66±5.26 11.04±6.51 18.90±8.1 0.055 NS 0.020

Oscillospira 1.02±0.66 1.28±0.78 1.98±1.12 0.02 NS NS

Proteobacteria Oxalobacteriaceae 0.03±0.04 0.02±0.06 0.05±0.08 NS NS 0.028

Oxalobacter 0.03±0.04 0.02±0.06 0.06±0.08 NS NS 0.04

O. Formigenes 0.03±0.03 0.02±0.05 0.06±0.07 NS NS 0.053

Enterobacteriaceae 0.53±1.13 0.22±0.47 1,40±1,84 NS NS 0.028

Values are means ± standard deviations; Wilcoxon’s signed-rank test was used in comparing pre- and post-H. pylori eradication. The Mann-Whitney U test was used to

compare unpaired-samples.

�P value obtained for comparison of relative abundance (%) between the different groups (1, 2, 3).NS: p>0.05 (false discovery rate post hoc test).

https://doi.org/10.1371/journal.pone.0213548.t003
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antimicrobial treatment with clarithromycin, amoxicillin and omeprazole decreases the diver-

sity and richness of gut microbiota, and that these effects are persistent even two months after

H. pylori eradication treatment. This indicates that antibiotic-induced microbiota alterations

can remain after long periods of time [11, 30], without the total recovery of the initial state

[30].

In our study, these changes in the intestinal microbiota after antibiotic treatment were the

result of the significant increases in Bacteroidetes and decrease in Firmicutes, accompanied by

important decreases within other phyla, such as Actinobacteria and Proteobacteria. These data

indicate that the broad-spectrum antibiotics used in H. pylori eradication treatment are capa-

ble of inhibiting a huge range of bacteria [1, 10, 31]. However, some bacteria benefitted from

this change in the intestinal ecosystem. Indeed, Megamonas showed superior levels, even than

the control subjects, two months after antibiotic administration. Exposure of the colonic eco-

system to antimicrobial agents disturbs the initial ecological niche facilitating the colonization

of specific members in the gut microbiota [32].

Alterations in gut microbiota profile have been related to deterioration in metabolic health

[12, 33]. Low bacterial richness has been characterized by a more marked overall adiposity, insu-

lin resistance and dyslipidemia and a more pronounced inflammatory phenotype [34], as well as

alterations in the bile acid metabolism [35]. However, according to other studies [36–38], we

have observed an amelioration of glycemia after antibiotic treatment in spite of the reduction in

gut microbiota diversity. Indeed, we have been the first ones relating specific changes in gut bac-

teria with a metabolic amelioration after H. pylori eradication treatment. Particularly, we have

found an inverse association between Rikenellaceae, Butyricimonas, E. biforme, B. fragilis, Mega-
monas and glucose levels (AUC) or related parameters (HbA1c) after treatment.

Several studies have shown that these bacteria, with a special mention to Megamonas Rike-
nellaceae and Butyricimonas, are involved in the fermentation of non-digestible carbohydrates

and generation of short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate [39–

42]. Previous studies have linked these SCFAs with the host metabolism, and especially with

glucose metabolism. In fact, butyrate-producing bacteria have been related to an improvement

of the glucose tolerance in association with decreased endotoxemia [43], as well as with an ame-

lioration in insulin sensitivity [44–45]; propionate induces intestinal gluconeogenesis, through

the gut–brain neural circuit, improving peripheral glucose production and insulin sensitivity

[46]; and acetate could also act on the parasympathetic activity increasing food intake and pro-

moting glucose-stimulated insulin secretion [47].Other studies have suggested that the binding

of SCFAs to GPR43 and GPR41 increases the plasma levels of glucagon-like peptide-1 (GLP-1)

and peptide YY (PYY), leading to an improved glucose homeostasis and reduced appetite [48].

However, few studies have associated these bacteria with glucose homeostasis [49]. But, more

interestingly, Rikenellaceae and Butyricimonas members are also able to use the environmental

glucose for this SCFAs production, helping to regulate glucose levels [41–42]. In this regard, our

data have related, for the first time, changes Rikenellaceae and Butyricimonas with the predic-

tion of glucose proportions. Moreover, Rikenellaceae, Butyricimonas explained 8% and 13%,

respectively, of the changes observed in AUC. These results could indicate that the loss of diver-

sity and richness produced by the antibiotic therapy is not as important as the loss or gain of the

function that these organisms may play.

In the present study, there are several limitations that must be taken into consideration.

The 16S ribosomal RNA gene sequencing used has limitations in identifying genetically spe-

cific species and strains as well as little information on bacterial genes and their functions. On

the other hand, sample size could be augmented, although previous sample size calculations

were done ensuring a realistic approach. Another limitation of the study was, the lack of group

of subjects without an H. pylori infection exposed to the eradication treatment due to ethical
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reasons. These data could have provided more detailed information on the role of antibiotic

treatment in the association found. Moreover, microbial metabolites data could help to sup-

port our results, which will have taken into account for future experiments.

Importantly, these findings suggest that compositional changes in the gut microbiota pro-

duced by H. pylori eradication with antibiotic treatment could be related, with the glucose

homeostasis of the host. The involvement of glucose-removing bacteria such as Rikenellaceae
and Butyricimonas, as well as the increase SCFA-producing bacteria as Megamonas, could play

a role in this association. These findings may be useful for developing strategies for the

improvement of glucose homeostasis in subjects with a glucose imbalance by modulation of

the abundance of specific taxa, such as those discovered in this study: mainly Megamonas, Rile-
nellaceae and Butyricimonas. Next steps could be to validate these associations in independent

cohorts and to prove a possible causal axis between these bacteria and glucose homeostasis in

functional studies.
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H. pylori eradication.

(TIFF)

Acknowledgments

The authors thank the Oncology Unit of the University Hospital of Malaga for access to the

MiSeq platform, and especially to Martina A, Rosario C, and Vanessa DL for their support and

technical help. We gratefully acknowledge the help of Marı́a Repice for her language expertise

in improving the English of this manuscript.

Author Contributions
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