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INTRODUCTION

Prostate cancer (PCa) is one of the most common male 
cancers and is the leading cause of death in men worldwide 
(1). Approximately 15–40% of patients will experience 
a detectable rise in the serum level of prostate specific 
antigen (PSA) within 10 years after primary treatment, 
despite highly successful treatment results for localized 
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PCa (2). Localized PCa can range from those with a low 
malignant potential to those with locally or systemically 
recurrence after successful local therapy. The latter category 
is broadly considered as ‘high-risk’ or alternatively ‘locally 
advanced’ in clinical practice. Additionally, many patients 
who die from PCa initially present with tumors seemingly 
confined to the prostate gland. 

Prostate cancer is highly heterogeneous; therefore, risk 
stratification is often inappropriate to determine treatment 
managements and predict prognosis. PCa is currently 
classified into three risk groups (low, intermediate, and 
high) based on serum PSA level, Gleason score, and clinical 
stage (3). Incorrect risk stratification can be inherent with 
the biopsy method and tumor heterogeneity. It is possible 
that false-negative biopsies underrepresent high-grade 
tumor foci that are related to the tumor biology and clinical 
outcome. In practice, a standard 10- to 12-core biopsy 
could miss 38% of multifocal PCa (4), and this figure is 
not greatly improved by increasing the number of samples 
(5). High false-negative rates primarily stem from the 
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heterogeneity of PCa, which is considered a major limitation 
of the Gleason grading system. 

Imaging plays an important role in the management of 
PCa patients. Imaging is essential to assess the clinical 
stage in primary staging, which aids selection of the 
optimal treatment strategy and provides information for 
the accurate prognosis. Imaging also plays a key role in the 
surveillance of PCa patients. It is particularly important to 
distinguish between local recurrence and distant metastasis 
when developing appropriate treatment strategies for PCa 
patients with biochemical recurrence (BCR). Although 
serum PSA is a tissue-specific and sensitive tumor marker, 
the PSA level itself does not provide information regarding 
the origin of the PSA. In this regard, the development of 
accurate imaging is required as an effective diagnostic tool 
to detect, localize, and characterize PCa. 

The prostate-specific membrane antigen (PSMA) is a 
promising target for both diagnosis and treatment of 
PCa, since it has appropriate properties as a biomarker 
in PCa patients. The PSMA is a type II transmembrane 
glycoprotein that is primarily expressed in prostatic tissues 
(6). The PSMA is overexpressed in nearly all primary 
prostate tumors in addition to metastatic tumors (7) and 
PSMA expression further increases in de-differentiated, 
metastatic, or hormone-refractory disease (8, 9). Moreover, 
PSMA expression level is an independent prognostic factor 
for the clinical outcome of PCa (10). In addition, it is 
advantageous that the PSMA is not appreciably released 
into the circulation, in contrast to other candidates 
including highly specific prostate-related markers: PSA, 
prostate secretory protein, and prostatic acid phosphatase, 
which are secretory proteins (11, 12). Currently, the PSMA 
is being investigated intensively, as it holds promise for 
extending its application from imaging to therapy using 
therapeutic radionuclides. 

Herein, we review the characteristics of PSMA ligands for 
PET imaging and their clinical applications in PCa. We will 
briefly introduce PCa-targeted PET tracers with different 
targeting strategies, since they have also been actively 
investigated as a promising imaging tool for PCa. In 
addition, we will discuss the development of PSMA ligands 
labeled with therapeutic radionuclides, which is expected to 
expedite the progress of PSMA PET imaging and enable the 
effective treatment of patients with advanced PCa.

PCa-targeted PET Gained FDA Approval 

Currently, two PCa-targeted PET tracers have gained Food 
and Drug Administration (FDA) approval in the United 
States for the identification of recurrent PCa: 11C-choline 
and anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid 
(18F-FACBC). Choline PET assesses choline metabolism, which 
is altered in prostate tumor cells (13) and has demonstrated 
high sensitivity in the detection and localization of PCa 
(14, 15). However, its specificity is limited to the detection 
of primary PCa, because choline transporter expression 
and choline transport rate also increased in benign 
prostatic hyperplasia (15, 16). In addition, there is another 
promising candidate for FDA approval among choline PET 
tracers. 18F-fluorocholine has yet to acquire FDA approval 
in the United States, but it is officially registered on the 
European Pharmacopoeia and qualified as a New Health 
Technology in Korea. Based on the established credibility, 
18F-fluorocholine has been actively investigated in PCa 
patients. 

18F-FACBC (fluciclovine or AxuminTM) is a radiolabeled 
amino acid analog that is accumulated after preferential 
uptake by prostate tumor cells, because it does not undergo 
further metabolism in the cells (17, 18). Fluciclovine PET 
was found to be successful in the assessment of primary 
and metastatic PCa (19, 20). Fluciclovine PET effectively 
localized the source of increased PSA in patients with 
BCR. In a meta-analysis evaluating 6 articles and 251 
patients with BCR, the pooled sensitivity and specificity 
of fluciclovine PET on a per-patient analysis were 87% and 
66%, respectively (21). These PCa-targeted PET tracers 
are not specifically targeting to prostate tumor cells, but 
are worthy of attention in this review, because they are 
promising competitors as PCa-targeted PET tracers. 

PSMA-targeting Strategies

The PSMA has appropriate characteristics as an ideal 
target for the evaluation of PCa. PSMA expression in PCa has 
been demonstrated to be 100- to 1000-fold greater than 
that in normal tissues (6). Furthermore, PSMA expression 
may increase as tumor grade and castration resistance 
increases (8, 9). The PSMA is not appreciably released into 
the circulation, because it is an integral membrane protein 
of the prostate (11). After binding to the PSMA, PSMA 
ligands are internalized and undergo endosomal recycling, 
leading to enhanced uptake and retention in tumor cells. 
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Based on these characteristics of PSMA ligands, high image 
quality for diagnostic procedures is induced and a high 
local dose for therapeutic applications is guaranteed. PSMA-
targeting strategies are classified into two methods using 
antibodies or ligands. 

PSMA-targeting mAb
Prostate-specific membrane antigen-targeting monoclonal 

antibodies (mAbs) were investigated in the late 90’s. 111In-
capromab pendetide (ProstaScint®) was approved by the FDA 
for the evaluation of patients with biopsy-proven PCa with 
high-risk of pelvic lymph node (LN) metastasis. However, the 
overall diagnostic accuracy of ProstaScint® fell short, since 
the murine mAb used for ProstaScint® (7E11-C5.3) binds 
to an intracellular epitope of the PSMA (15), which may 
be accessible only in dead, dying, or apoptotic cells within 
tumors. Accordingly, the next generation anti-PSMA mAbs 
were designed to bind to the extracellular portion of PSMA 
to enhance diagnostic accuracy. Besides targeting affinity 
and specificity, drawbacks are still remained in the use of 
radiolabeled mAbs as an effective diagnostic tool. Their long 
biological half-life in the circulation and poor penetrating 
ability to the solid tumor result in high non-specific 
background-to-tumor noise and reduce diagnostic accuracy. 

Immuno-PET has been introduced to overcome the 
limitations of conventional antibody imaging, via 
modification of antibodies and selection of appropriate 
positron emitters. The half-life of a positron emitter should 
be long enough to achieve optimal background-to-tumor 
ratios, and an antibody or antibody fragment should be 
sufficiently maintained during in vivo binding. In this 
regard, studies have investigated biologically-engineered 
single chain fragments or minibodies combined with the 
longer-lived positron emitters such as 89Zr and 64Cu for 
immuno-PET. The introduction of immuno-PET is also an 
attractive novel option for PSMA-targeting imaging. The 
humanized antibody J591 (huJ591) directly targets the 
extracellular domain of the PSMA, and the modified form 
of huJ591 labeled with 89Zr showed promising results 
in clinical trials (22). The minibody IAB2M, genetically 
engineered from huJ591, labeled with 89Zr demonstrated 
superior results for the detection of bone metastases, 
compared to conventional imaging modalities in clinical 
phase I trial (22).

PSMA Ligands
The PSMA has a unique feature that forms a ligand-

receptor complex with a substrate. Based on this feature, 
small molecules mimicking the endogenous substrate for 
the PSMA that are labeled with radionuclides have been 
developed for the diagnosis and treatment. The basic 
chemical structure of these PSMA ligands incorporates 
glutamate-urea-glutamate or glutamate-urea-lysine dimers, 
which are essential structural components required for 
binding to the catalytic domain of PSMA (23). The first 
generation of PSMA ligands was glutamate-urea amino acid 
heterodimeric inhibitors of the PSMA, which was initially 
developed for scintigraphy and/or SPECT (24). Thereafter, 
PSMA ligands linked with a chelator for 68Ga complexation 
were developed for PET imaging, as PET imaging is much 
advantageous over scintigraphic imaging in terms of image 
resolution and quantification. In addition to 68Ga-labeled 
PSMA ligands, 18F-labeled PSMA ligands are available for 
clinical use. These PSMA ligands radiolabeled with positron 
emitters are of utmost clinical interest for both the 
diagnosis and treatment of PCa and will be discussed as a 
main topic in this review. 

Radiopharmaceuticals for PSMA PET

68Ga-PSMA PET
Prostate-specific membrane antigen ligands that are 

labeled with 68Ga, a positron emitter, are promising and 
widely available in clinical practice. Among 68Ga-PSMA 
ligands, 68Ga labeled with Glu-NH-CO-NH-Lys-(Ahx) (68Ga-
HBED-CC or 68Ga-PSMA-11) is a leading PET tracer that is 
the most widely used and actively investigated in clinical 
settings. 68Ga-PSMA-11 has a strong binding affinity for 
the PSMA and is efficiently internalized into prostate 
tumor cells (25). Several biodistribution studies of 68Ga-
PSMA-11 well demonstrated cellular expressions of PSMA 
across the body; in the lacrimal and salivary glands, liver, 
spleen, kidneys, and some parts of the intestines (26-
28) (Fig. 1). The uptake of 68Ga-PSMA-11 in these tissues 
is considered physiological, and the expression level of 
PSMA are markedly below than that of prostate tumor cells 
(29). On the other hand, unbound form of 68Ga-PSMA-11 
is excreted via the kidneys and urinary tract (30). Another 
68Ga-PSMA ligands such as 68Ga-PSMA-617, and 68Ga-PSMA-
I&T have demonstrated similar biodistribution and imaging 
properties to 68Ga-PSMA-11. Due to their similarities each 
other, 68Ga-PSMA-11, 68Ga-PSMA-617, and 68Ga-PSMA-I&T 
are collectively known as 68Ga-PSMA ligands. 68Ga-PSMA 
ligands are advantageous over anti-PSMA antibodies since 
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they are “small molecules.” These ligands possess high 
receptor affinity for the PSMA as aforementioned; they have 
excellent tissue penetrating abilities, and then diffuse well 
into solid tumor lesions such as bone metastases of PCa.

18F-PSMA PET
Although 68Ga-PSMA ligands have prevailed in the studies 

for the development of PCa imaging, there appears to 
be growing interests in developing 18F-PSMA ligands. In 
general, 18F-based PET would offer advantages over 68Ga-
based PET with respect to availability, amount of production, 
and image resolution (Fig. 1). The first-generation 18F-PSMA 
ligand was N-[N-[(S)-1,3-dicarboxyprophyl]carbamoyl]-4-
[18F]-fluorobenzyl-L-cysteine (18F-DCFBC), and a first-in-
human study of 18F-DCFBC was performed in 5 patients with 
metastatic PCa (31). In this study, 18F-DCFBC had favorable 
dosimetry and a good biodistribution profile and was able to 
detect putative sites of occult disease that were not defined 
by conventional imaging modalities. However, 18F-DCFBC 
had persistently high blood-pool activity and relatively low 
background-to-tumor ratios. To overcome these limitations, 
the second generation 18F-PSMA ligand, 2-(3-(1-carboxy-5-

((6-[18F]fluoro-pyridine-3-carbonyl)amino)-pendtyl)-ureido)-
pentanedioic acid (18F-DCFPyL) was clinically introduced (32, 
33). A first-in-human study of 18F-DCFPyL was performed in 
9 patients with metastatic PCa; this ligand also exhibited 
favorable dosimetry, biodistribution, and safety profiles 
(33). Most recently, 18F-PSMA-1007 was developed so as 
to improve the biodistribution profiles of the previously 
developed 18F-PSMA ligands. 18F-PSMA-1007 reduces urine 
clearance, which could potentially facilitate the evaluation 
of the prostatic bed (34).

Clinical Applications of PSMA PET 

As aforementioned, different types of PSMA-targeting 
PET tracers have been investigated for the diagnosis and 
treatment of PCa. Unmet clinical needs for the management 
of PCa are identical for all the PSMA-targeting PET tracers, 
but the majority of studies have been performed using 
68Ga-PSMA ligands, in particular 68Ga-PSMA-11. Hereafter, 
the critical review of clinical applications mainly focuses 
on studies investigating with 68Ga-PSMA-11. The clinical 
applications of PSMA PET are classified as follows; 1) BCR, 2) 
primary staging, 3) treatment planning/response evaluation, 
4) PSMA radioligand therapy (RLT), 5) comparisons with 
other PCa-targeted PET tracers, and 6) the implementation 
of the hybrid PET/MRI.

Biochemical Recurrence
Biochemical recurrence refers to the clinical status of an 

increasing serum PSA level after curative intent of local 
treatments in PCa patients. Currently, BCR is defined as two 
consecutive values of PSA > 0.2 ng/mL in patients receiving 
radical prostatectomy (RP). BCR is a commonly encountered 
but very difficult clinical situation for clinicians, because 
both the early detection of treatment failure and exact 
localization of tumor recurrence are important in treating 
patients with BCR. Different therapeutic options are 
available for the treatment of BCR after RP, according to the 
disease extent; a locoregional disease vs. systemic disease. 
In the absence of systemic disease, salvage radiation 
therapy could be the first treatment option for patients 
with BCR. In addition, metastasis-directed therapies could 
enhance therapeutic outcomes and reduce unnecessary 
side effects when administered at lower PSA levels (35). In 
particular, it has been reported that the patient’s prognosis 
was improved when the salvage therapy was initiated before 
the PSA level exceeds 0.5 ng/mL (36). Therefore, there is 

Fig. 1. Representative images of PSMA PET. 
A. 68Ga-PSMA-11 PET shows normal biodistribution of PSMA across 
body; lacrimal and salivary glands, liver, spleen, kidneys, and 
intestines. B. 18F-DCFPyL PET demonstrates normal biodistribution 
of PSMA which is similar to 68Ga-PSMA-11 PET with better image 
resolution. These images were reprinted with permissions from 
reference articles 28 and 81, respectively. Adapted from Fendler et 
al. Eur J Nucle Med Mol Imaging 2017;44:1014-1024, 2017;44:2117-
2136 [28] and Sheikhbahaei et al. Eur J Nucl Med Mol Imaging 
2017;44:2117-2136 [81], with permissions of Springer Science and 
Bus Media B V. PSMA = prostate-specific membrane antigen
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a rising demand for a reliable and accurate diagnostic tool 
to detect tumor recurrence and assess its extent in patients 
with BCR.

Prostate-specific membrane antigen PET can detect 
recurrence sites at lower PSA levels than conventional 
imaging modalities, as well as localize the origin of PSA 
increase, because it is important to distinguish local 
recurrence and systemic metastases in order to plan 
therapeutic approach. Although MRI has proven to be useful 
in the detection of locoregional recurrence of PCa, but PSA 
levels in the studies were generally higher than those in 
PSMA PET studies. Several retrospective studies using MRI 
demonstrated high diagnostic accuracies with sensitivities 
of 53–95% in the detection of BCR, but mean PSA levels 
ranged from 1.23 ng/mL to 2.18 ng/mL (37-39). In a recent 
study comparing a combined technique of multiparametric 
MRI (mpMRI) with 18F-fluorocholine PET, average serum level 
of PSA was 1.1 ng/mL in group A and 1.9 ng/mL in group B, 
retrospectively (40). PSMA PET, whereas, can detect BCR at 
a very lower level of PSA. The tumor detection rates ranged 
wide from the 50.0% to 89.5%, according to the PSA levels 
set by retrospective studies (41, 42). An overall detection 
rate was 89.5% in a retrospective series study for 248 
patients after RP, and detection rates for early BCR differed 
by PSA levels; 57.9% at PSA levels of 0.2–0.5 ng/mL, and 
72.7% at PSA levels of 0.5–1.0 ng/mL, respectively (41). 
The detection rates of 68Ga-PSMA PET for tumor recurrence 
gradually increased according to the PSA levels (Fig. 2) (42). 

In a recent meta-analysis analyzing 16 articles including 
1309 patients, the pooled detection rate was 58% at PSA 
levels of 0.2–1.0 ng/mL, which increased to 76% with PSA 
levels of 1.0–2.0 ng/mL and further increased to 95% for 
PSA > 2.0 ng/mL (42). However, the cut-off value for PSA 
performing PSMA PET has yet to be concluded, and thus 
prospective studies are required to recommend PSMA PET 
for patients with BCR. 

Recently, a few studies raised possibilities that the 
detection rates of PSMA PET are also related with PSA 
doubling time. Aforementioned retrospective studies failed 
to prove the association between the detection rates and 
PSA doubling time in patients with BCR (23, 41). However, 
in a recent study analyzing 39 patients with a PSA level of 
less than 2 ng/mL, a strong relationship was found between 
the detection rates and PSA doubling time; the detection 
rates were 85% for a PSA doubling time of less than 6.5 
months but only 19% for a PSA doubling time of greater 
than 6.5 months (43). In addition, higher sensitivities 
were noted in patients with shorter PSA doubling times and 
those with higher initial Gleason scores (44). Interpretation 
should be cautiously applied for both studies, since 
reliabilities are limited because of small number of study 
populations. Further studies with a larger number of 
patients are required to prove this relationship between the 
detection rates and PSA doubling time.

Clinical Staging
Potential roles of PSMA PET have yet to be fully 

investigated for other clinical applications, except patients 
with BCR after curative treatments. Recently, it has been 
suggested that PSMA PET is useful for primary staging 
in patients with high-risk PCa. Almost one third of PCa 
patients will experience a BCR within 10 years after primary 
treatment. Thus, it is of great concern for many clinicians 
to distinguish PCa with a malignant potential that will 
eventually recur despite successful local treatments, from 
other type of localized PCa. Accurate initial staging in 
consideration of malignant potential is one of the clinical 
unmet needs in the management of PCa, since it is a 
requisite for tailoring initial and subsequent treatment 
strategies. The diagnostic performances of 68Ga-PSMA PET 
for primary staging are yet to be proven, but several studies 
have shown promising results.

Primary staging is important to establish treatment 
strategies in PCa patients with high-risk disease before 
surgical procedures or external beam radiation therapy (Fig. 

Fig. 2. PSA level and 68Ga-PSMA PET positivity. Scatterplot shows 
association between PSA level and 68Ga-PSMA PET positivity. Red line 
is meta-regression prediction and shading shows 95% confidence 
interval. Size of circles is related to inverse of variance. This image 
was reprinted with permission from reference article 42. Adapted from 
Perera et al. Eur Urol 2016;70:926-937, with permission of Elsevier 
Science and Technology Journals [42]. PSA = prostate specific antigen
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3). In particular, LN and bone metastases are likely to be 
present in patients with high-risk disease (Gleason score 
> 7, PSA > 20 ng/mL, clinical stage T2c–3a), even at the 
initial presentation. Although guidelines recommend to 
perform abdominal CT and bone scan for the evaluation of 
metastases in high-risk patients, diagnostic performances of 
these modalities are still poor (45). In patients with lower 
PSA levels, it is particularly difficult to detect metastases 
by conventional imaging modalities. The diagnostic 
accuracies for the detection of bone and LN metastases were 
associated with PSA levels in a meta-analysis evaluating 23 
studies; 2.3% for PSA < 10 ng/mL, 5.3% for PSA 10.1–19.9 
ng/mL, and 16.4% for PSA 20.0–49.9 ng/mL, respectively 
(12). The imaging modalities in the diagnosis of bone 
metastases were compared in a meta-analysis evaluating 
27 studies, the pooled sensitivity and pooled specificity of 
bone scan with 99mTc-bisophophonate were 79% and 82%, 
respectively (46). The diagnostic accuracy of CT and MRI for 
the pelvic LN staging are so poor that the pooled sensitivity 
was 42% (95% confidential interval: 26–56%), and the 
pooled specificity was 82% (95% confidential interval: 
80–83%), respectively, in a meta-analysis evaluating 24 

studies (47). 
Several studies have demonstrated the superiority of 

PSMA PET compared to conventional imaging modalities 
for the detection of LN metastases at primary staging. In 
a patient with high-risk disease, staging may be beneficial 
to provide a curative intent treatment plan, but the 
preoperative evaluation of LN metastasis by conventional 
imaging modalities has limited sensitivity and specificity. 
Conventional imaging modalities apply only size criteria 
to determine LN metastasis; pelvic LNs larger than 8 mm 
to 10 mm in diameter are usually considered suspicious 
(47). The sensitivity of CT and MRI in the LN detection 
was found to be < 40% using minimum size of 10 mm as 
a threshold, and about 80% of the pathologically-proven 
metastatic LNs were smaller than 8 mm (48). The sensitivity 
of morphological cross-sectional imaging was low without 
significant difference in the diagnostic performance between 
CT and MR (47). Therefore, pelvic LN dissection or sampling 
is considered to be the gold standard for the LN staging in 
PCa patients (49, 50).

In a meta-analysis analyzing 68Ga-PSMA PET, the pooled 
sensitivity for the LN detection was 61% and pooled 
specificity was 97% by patient-based analysis (42). 
Similar results were deducted by a prospective study 
performed in 30 patients with intermediate-to high-risk 
PCa using 68Ga-PSMA PET; sensitivity and specificity for 
the LN detection were 64% and 95%, respectively by per-
patient analysis (51). In this study, the size dependence 
of positively imaged LN was suggested as the median size 
of metastatic deposit of true-positive LNs was significant 
larger than that of false-negative LNs (4.7 mm vs. 2.7 mm) 
in the histopathological evaluation. It is understandable 
considering of the spatial resolution of state-of-the-art 
PET cameras with 4.9 mm and 5.1 mm (52). Also, a close 
association was suggested between detection rates of the 
LN and the size of LNs. The median size of detected LNs 
was significantly larger than that of undetected LNs (13.6 
mm vs. 4.3 mm) in a study using 68Ga-PSMA PET for the 
evaluation of patients with high-risk disease prior to RP 
(53). The detection of radiologically occult LN metastases 
can significantly influence patient management by 
modification of treatment plans, but the impact of improved 
sensitivity by 68Ga-PSMA PET on overall survival remains 
unanswered in patients with high-risk disease. 

Prostate-specific membrane antigen PET is also 
expected to demonstrate a better diagnostic accuracy for 
the detection of bone metastases in primary staging. A 

Fig. 3. Potential benefits of PSMA PET for treatment planning. 
68Ga-PSMA-I&T PET/CT was performed in prostate cancer patient 
(Gleason Scores 4 + 5 = 9) who planned external beam radiation 
therapy after radical prostatectomy 1 month ago, and PSA level was 
0.37 ng/mL at time of PET scanning. Maximum intensity projection 
shows multiple uptakes (arrows) suggestive of metastases (A), and 
axial fusion PET/CT images demonstrate metastatic retroperitoneal 
lymph nodes (arrows) with diameters of 3 mm (B) and 9 mm (C). 
These images were provided by courtesy of Professor Dr. Richard P. 
Baum at THERANOSTICS Center for Molecular Radiotherapy & Molecular 
Imaging, Zentralklinik Bad Berka, Germany.
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comparison study was retrospectively performed in 126 
patients, which revealed that a sensitivity and specificity 
of 98.8–99.0% and 98.9–100% for 68Ga-PSMA PET, and 
82.4–86.6% and 91.6–97.9% for bone scan, respectively, 
by lesion-based analysis (20). In this study, 68Ga-PSMA 
PET showed better results in all subgroup analyses, except 
patient-based analysis in castration-resistant PCa (CRPCa). 
This PSMA finding suggested a loss of PSMA expression that 
is infrequently occurred in CRPCa patients (54). It seems 
relevant that bone scan or 18F-NaF PET are followed in order 
to assess PSMA-negative tumors or sclerotic bone lesions on 
PSMA PET. 

However, the application of PSMA PET is limited for the 
evaluation of primary prostate tumor, because the spatial 
resolution of PET is relatively low and exact evaluation 
of the prostate area can be hampered by the retention 
of the PET tracer in the bladder. Combination with 
multi-parametric magnetic resonance imaging (mpMRI) 
or development of novel PSMA ligands with different 
biodistribution profile are suggested to enhance diagnostic 
accuracies of PSMA PET of primary tumor. In a retrospective 
study comparing 68Ga-PSMA PET and mpMRI, 68Ga-PSMA PET 
was well correlated with the tumor extension assessed in 
mpMRI in patients with a high pre-test probability for large 
primary tumor in the primary staging (55). Furthermore, 
simultaneous acquisition of 68Ga-PSMA PET with mpMRI 
was reported to improve the localization of primary tumor, 
and 68Ga-PSMA PET was more accurate in the primary tumor 
localization, as compared with mpMRI (56). Further details 
about the combination with PET and MRI will follow in the 
later section of this review. 

Treatment Planning and Response Evaluation 
Imaging guided targeted biopsy can be a possible 

application of PSMA PET at the initiation presentation. High 
false-negative results are inherent from the biopsy method 
and tumor heterogeneity of PCa, and targeted biopsy after 
negative result is often recommended to patients with 
high suspicion of PCa. Recently, a supplementary role of 
68Ga-PSMA PET was suggested for the guidance of repeated 
biopsies in patients with high suspicion of PCa (56). In 
addition, 68Ga-PSMA PET-guided biopsy could be used 
for the surveillance of patients who already underwent 
multiple repeated biopsies. For this purpose, combination 
of 68Ga-PSMA PET with mpMRI was investigated to allow 
for the potential image-guided fusion biopsy incorporating 
information provided by mpMRI, which could lead to an 

increase of the diagnostic confidence (56). 
Prostate-specific membrane antigen PET can assist 

salvage radiotherapy (SRT) by accurately delineating the 
target tumor volume. SRT is the main therapeutic option 
for patients with BCR after RP, which may potentially be 
curative or enhance the probability of progression-free 
survival (57, 58). It is essential to delineate clinical target 
volumes (CTVs) so as to include all the areas with potential 
microscopic occult tumors in SRT planning. The potential 
roles of PSMA PET have been investigated in several 
retrospective studies (58, 59), which is limited because 
of inhomogeneous study populations and study designs. 
Recently, a multicenter post hoc retrospective analysis 
of 68Ga-PSMA-11 PET was performed in 270 patients with 
early BCR at very low PSA levels < 1.0 ng/mL (60). It was 
reported that there was a major impact on SRT planning, 
which suggests the presence of at least one PSMA-positive 
lesion that was originally not covered by the consensus 
CTVs. However, it still remains unclear that expansion 
of radiation field could be beneficial in patients with 
BCR, putting up with additional toxicity. Further studies 
including randomized trials of SRT are required to evaluate 
potential benefits of PSMA PET in SRT planning. 

Prostate-specific membrane antigen PET can be utilized in 
monitoring treatment response of PCa. Although Response 
Criteria in Solid Tumors (RECIST) guideline is commonly 
used for the response evaluation, revised RECIST 1.1 
application is limited for the evaluation of PCa because of 
the high prevalence of non-measurable lesions in the LNs 
and bones. Currently, no reliable, objective surrogate marker 
is available for the response evaluation of metastatic PCa, 
considering that bone is the most frequently and almost 
exclusively metastasized sites. The diagnostic accuracies of 
bone scan or 18F-NaF PET for the response evaluation can be 
hampered by flare phenomenon. In this regard, PSMA PET 
can be a potential candidate for the monitoring of systemic 
disease. PET Response Criteria in Solid Tumors (PERCIST) was 
initially developed for systematic and structured assessment 
of response to therapy with 18F-fluorodeoxyglucose (61). 
In order to apply PSMA PET for the response evaluation of 
PCa, validation studies are required using PERCIST in PCa 
patients.

PSMA RLT
Another promising application of PSMA PET is the 

realization of theranosis. Therapeutics using PSMA ligands 
labeled with therapeutic radionuclides (177Lu or 90Y) has 
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been developed for patients with advanced and metastatic 
PCa. Although PSMA-11 is the most widely investigated 
PSMA ligand for PET, but it is not available for RLT. PSMA-
11 is unlikely to bind with other radiometals except 68Ga. 
Instead of PSMA-11, PSMA-617 labeled with a therapeutic 
radionuclide was developed for PSMA RLT (62). 177Lu-
PSMA-617 is the most actively investigated radioligand 
for the treatment of PCa, and it has yielded promising 
outcomes in a multinational multicenter clinical trial in a 
large cohort of PCa patients (63). Accordingly, there is a 
growing experience regarding theranostic applications of 
PMSA PET. Multiple sessions of PSMA PET performed before 
and during PSMA RLT. In particular, PSMA PET is required for 
the patient selection before PSMA RLT, since it is crucial to 
determine the presence and intensity of PSMA expression 
in PCa patients (63-66). PSMA RLT can be futile, leaving 
immense complications without significant clinical benefits 
when given to patients presenting with a low level of PSMA 
expression. 

Comparisons with Other PCa-targeted PET Tracers
There are several studies comparing 68Ga-PSMA PET to 

choline PET; however, data from prospective multicenter 
trials are not yet available. In a retrospective study 
evaluating 67 patients with 458 LN metastases, 68Ga-
PSMA-11 demonstrated a higher detection rate in patients 
with BCR than that of 11C-choline (67); 39% were exclusively 
identified with 68Ga-PSMA-11, while 6% were identified with 
11C-choline. There was a study comparing 18F-fluorocholine 
and 68Ga-PSMA PET, and these two PET scans performed 
within 30 days in 37 patients with BCR; 86.5% of tumors 
were detected by 68Ga-PSMA-11, and 70.3% were detected 
by 18F-fluorocholine by a patient-based analysis (26). In 
this study, 68Ga-PSMA-11 offered a higher detection rate, 
higher maximum standardized uptake value, and higher 
tumor-to-background ratio than 18F-fluorocholine. In 
another study with a prospective design demonstrated that 
68Ga-PSMA exhibited a better diagnostic accuracy than did 
18F-fluorocholine in patients with BCR (17).

There are several different PSMA ligands for 68Ga 
complexation; 68Ga-PSMA-11, 68Ga-PSMA-617, and 68Ga-
PSMA-I&T. These PSMA ligands are collectively known 
as 68Ga-PSMA in this review, because they shared similar 
biodistribution and imaging properties. Studies discussed 
in the above section were mainly performed with 68Ga-
PSMA-11 PET, but only a small number of studies have been 
performed using other 68Ga-PSMA ligands, and the difference 

in the diagnostic performances of 68Ga-PSMA ligands 
appears marginal. A retrospective study with 68Ga-PSMA-
I&T reported detection rates of 52% for a PSA level of < 0.5 
ng/mL, 55% for 0.5–1.0 ng/mL, 70% for 1.0–2.0 ng/mL, 
and 93% for 2.0–5.0 ng/mL; these results were relatively 
comparable to those for 68Ga-PSMA-11 (68). Notably, there 
are still no data directly comparing the 68Ga-PSMA ligands 
each other, and 68Ga-PSMA-11 is the most prominent 
PSMA ligand for PET imaging in PCa. The most suitable 
PSMA ligand for both diagnosis and treatment is yet to be 
determined, and investigations continue to accomplish an 
efficient and successful theranosis for PCa. 

In general, 18F-based PET is known to be advantageous 
over 68Ga-based PET, but there are no head-to-head 
comparison studies comparing 68Ga-PSMA and 18F-PSMA PET. 
In a study evaluating 14 selected patients who underwent 
both 18F-DCFPyL PET and 68Ga-PSMA-11 PET, 18F-DCFPyL 
PET revealed additional lesions in 3 out of 14 patients in 
whom 68Ga-PSMA-11 PET revealed negative and inconclusive 
findings (69). In a follow-up study performed by the same 
group, PSA-stratified detection rates were compared in 
different patients and the diagnostic accuracy of 18F-DCFPyL 
PET was non-inferior to that of 68Ga-PSMA-11 PET (70). 
These initial data suggested that 18F-PSMA PET might have 
improved sensitivity for the detection of relapsed tumor 
in patients with BCR after RP with moderately increased 
PSA levels. However, these data should be interpreted 
with caution because of the different patient populations, 
administered activities, and PET acquisition techniques. 
Further studies are required to confirm the potential 
superiority of 18F-PSMA PET over other imaging modalities. 

The Implementation of the Hybrid PET/MR
MRI is considered to be the standard imaging tool for 

the evaluation of soft tissues, but MRI remains challenging 
for the diagnosis of PCa. mpMRI is accurate and useful to 
evaluate PCa, since it combines conventional anatomical 
imaging based on T2-weighted sequences and functional 
imaging such as diffuse-weighted sequences. mpMRI has 
been integrated into the management of PCa, in particular 
for assisting prostate biopsies through image guidance. 
It has been demonstrated that mpMRI-guided prostate 
biopsies enhanced diagnostic yields for patients with 
clinically significant PCa, which lead to improvement of 
patient care (71, 72). However, the reported diagnostic 
performances of T2-weighted sequences varied widely in 
the detection of PCa, with sensitivities of 47.8–88.2% and 
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specificities of 44.3–81.0%, respectively (73). Treatment-
induced changes such as distorted anatomy, fibrosis, 
artifacts can contribute misinterpretations of MRI findings, 
and thus hinder the diagnostic accuracy. In addition, 
the widespread use of mpMRI has been hampered by its 
relatively high cost, its complexity, and lack of training.

Recently, technological progress including simultaneous 
acquisition of PET and MRI (hybrid PET/MRI) has lead the 
active use of PET/MRI. Functional information provided 
by PET is expected to enhance diagnostic performances of 
conventional anatomical MRI. The hybrid PET/MRI allows 
optimal conditions for the registration of the two modalities, 
and thus both PET and MRI data can be reliably acquired in 
a single session. Moreover, the hybrid PET/MRI enables the 
whole-body survey in one examination without additional 
radiation originating from the use of CT. In this respect, 
the hybrid PET/MRI provides a potential added value of 
combined MRI and PET over mpMRI alone or PET/CT. 

The feasibility of the hybrid PET/MRI has been 
investigated with various prostate specific PET tracers. 
The diagnostic benefits of the hybrid PET/MRI with the 
clinically established choline tracers were suggested in the 
detection of PCa (74, 75). The diagnostic performances of 
the hybrid PET/MR with 18F-fluorocholine and 11C-choline 
was compared with that of mpMRI alone, which showed 
a better diagnostic accuracy in the peripheral zone 
than in the transition zone of the prostate (75). PSMA-
targeting PET tracers have also been explored for the 
implementation of the hybrid PET/MRI. In the diagnosis 
of recurrent PCa, 68Ga-PSMA PET/MRI detected PCa more 
easily and more accurately than 68Ga-PSMA PET/CT, and 
unclear findings on PET/CT could be clarified by PET/MRI 
(76). Also, 68Ga-PSMA PET/MRI improved the localization 
of primary PCa, compared both with mpMRI and with PET 
alone (56). Recently, 18F-PSMA-1007 was applied for the 
hybrid PET/MRI system in PCa patients (77). In this study, 
18F-PSMA-1007 presented better imaging features compared 
with those of 68Ga-PSMA, which is mainly due to improved 
pharmacokinetics of 18F-PSMA-1007 and optimized imaging 
protocols for the hybrid PET/MRI. 

The hybrid PET/MRI with prostate specific PET tracers is 
a promising tool to add potential values in the diagnosis 
of PCa, and it is also expected to significantly influence 
on the management of PCa patients. However, further 
technological advances including optimization of imaging 
protocols and selection of the best suited PET tracer are 
needed to become a preferred imaging tool for PCa. In 

addition, prospective studies using the hybrid PET/MRI with 
prostate specific PET tracers are required, particularly in 
comparison with other imaging modalities such as PET/CT 
and mpMRI alone.

LIMITATIONS

There are several limitations in PSMA PET stemming from 
characteristics of PSMA ligands and PCa biology. 68Ga-PSMA 
PET can produce false-negatives in up to 10% of patients 
with primary PCa (78, 79). However, the underlying etiology 
of PCa with negative findings on PSMA PET is still unclear, 
given the lack of prospective studies and correlation with 
immunohistochemistry. In addition, it has been reported 
that in advanced metastatic CRPCa, metastases (mainly in 
the liver) can lose PSMA expression (54). The evaluation 
of the prostate area can be disturbed by the activity 68Ga-
PSMA-11 in the urinary bladder. A whole-body scan usually 
starts at 60 minutes post-tracer injection (p.i.) of 68Ga-
PSMA-11 in the clinical routine, and the identification of 
local recurrence may be hampered due to high physiologic 
urinary bladder activity at this time point. It is known 
that tumor uptake of 68Ga-PSMA-11 occurs earlier than 
tracer accumulation in the urinary bladder. In this regard, 
additional dynamic imaging acquisition during the first 
8 minutes p.i. was suggested as an alternative, and the 
detection rate of local recurrence increased in patients with 
BCR (80).

Despite enthusiasms and scientific efforts to drive PSMA 
researches that enables huge number of publications in 
a short period time, many challenges are awaiting PSMA 
PET to be incorporated into the clinical practice. However, 
evidence is still limited for the clinical applications of PSMA 
PET. Improved diagnosis by PSMA PET is expected to lead 
improvements in the management of patients with high-
risk disease, but the impact of the increased metastatic LN 
detection on the overall survival remains unanswered. At 
this early stage, prospective multicenter trials are needed to 
validate the effectiveness and usefulness of PSMA PET. 

CONCLUSION

Prostate-specific membrane antigen PET has emerged as 
a promising, accurate method for the detection of tumor 
recurrence in patients with BCR. Patients in this clinical 
situation could get considerable benefits from PSMA PET 
to localize the origin of the PSA increase, even at very low 
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PSA levels. PSMA PET also has important clinical utilities in 
primary staging, treatment planning, response evaluation, 
and PSMA RLT. Nevertheless, prospective multicenter trials 
are needed to confirm the effectiveness and usefulness of 
PSMA PET.
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