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Abstract

Knowledge about the diversity microglia (MG) type and function in the rodent and

human brain has advanced significantly in the last few years. Nevertheless, we have

known for 40 years that MG, monocytes, and macrophages in the brain play crucial

roles in the pathogenesis of the HIV-1 in all tissues. HIV enters and spreads in the

brain early, long before the initiation of antiviral therapy. As a result, many people with

HIV continue to experience neurologic and neuropsychiatric comorbid conditions col-

lectively known as HIV-associated neurocognitive disorder (HAND). HIV pathogenic

sequelae in the CNS pose a challenge for cure strategies. Detailed understanding at a

mechanistic level of how low-level and latentHIV-1 infection inMGnegatively impacts

neuroglial function has remained somewhat elusive. Direct rigorous in vivo experimen-

tal validation that the virus can integrate intoMGandassumea latent but reactivatable

state has remained constrained. However, there is much excitement that human in

vitro models for MG can now help close the gap. This review will provide a brief back-

ground toplace the roleofMG in theongoingneurologic complicationsofHIV infection

of the CNS, then focus on the use and refinement of human postmitotic monocyte-

derived MG-like cells and how they are being applied to advance research on HIV

persistence and proinflammatory signaling in the CNS. Critically, an understanding

of myeloid plasticity and heterogeneity and rigorous attention to all aspects of cell

handling is essential for reproducibility.

Summary Sentence: This review focuses on human postmitotic monocyte-derived

microglia-like cells as tools to advance research on HIV persistence and neuroinflam-

matory signaling.
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KEYCONCEPTS

Myeloid plasticity: The phenotype and function of myeloid cells (monocytes,

macrophages, and microglia) are shaped and regulated by intercellular signals. These

include cytokines, chemokines, and other cues from neighboring cells in the tissue

microenvironment. In addition, paracrine and autocrine signals under the homeostatic

state are alteredwith injury, stress, infection, or chronic disease conditions. In respond-

ing to these cues, myeloid cells undergo some or all of the following: morphologic

changes, altered metabolism, variation of components released into the extracellular

matrix, increasedmigration, cytokine/chemokine production, and phagocytosis.

Human monocyte-derived microglia (hMMGS): Purified subpopulations of bone

marrow-derivedmonocytes incubated in highly defined in vitro culture conditions that

support thedevelopment ofmicroglia-like cells. Their phenotype closely resembles pri-

mary cells (e.g., TMEM119, CXC3R1, P2YR12, PU.1, IRF8), and functionally, hMMGs

are phagocytic and possess synaptic pruning and calcium signaling activity.

1 INTRODUCTION

1.1 Human microglia as reservoirs for HIV in the
CNS

Forty years ago, an aggressive dementia-like syndrome accompanied

by movement disorders and a general failure to thrive or wasting

was the first defining differential diagnosis for AIDS.1 These clini-

cal findings pointed to the brain, spinal cord, and immune system as

targets for the retrovirus that would become known as the HIV-1.

Examination of human postmortem brain tissue showed a regional

congregation of microglia (MG) forming walled-off barriers around

a central core (named microglial nodules), the massive proliferation

of astrocytes (called astrocytosis), and multinucleated giant cells, the

products of macrophage-to-macrophage cell fusion.1–5 These neu-

ropathologic hallmarks provided the most substantial evidence at the

time thatHIV-1enters and replicates inbrainmacrophages andMG.1–5

With techniques like laser capture microdissection, HIV-1 proviral

DNA was detected in human brain astrocytes.6 HIV-1 infects astro-

cytes via CD4-independent alternative entry pathways resulting in

limited viral replication.7–9 However, under conditions of inflamma-

tion or drugs of abuse that are known to potentiate HIV replication,

infected astrocytes could be a significant source of early gene viral

proteins.10,11 Using sensitive sandwich ELISA detection methods, the

HIV transcriptional activator protein Tat can be readily found in cere-

brospinal fluid (CSF).12 A recent study found a positive correlation

between levels of Tat and soluble insulin receptor in the CSF of cog-

nitively impaired persons with HIV infection.13 HIV Tat alters cellular

pathways controlling calcium regulation that causes neurons to die by

apoptosis.14–16

Binding of the HIV envelope (env) protein with chemokine

receptors such as CCR5 and CXCR4 on cultured neurons induces

death signals.17–21 Indeed, the first rodent models for HAND were

generated by constitutive or regulated expression of HIV env

driven by the astrocyte-specific promoter for glial acidic fibrillary

protein.22 In the absence of anti-HIV therapy, the action of cytokines,

chemokines, and metabolic pathways, which under normal condi-

tions serve to protect and maintain neural function, instead become

chronically active and pathologic. The clinical syndrome described

earlier, known as HIV-associated neurocognitive disorder (HAND),

though significantly decreased in severity with current antiretroviral

therapy, remains a debilitating comorbidity for many people with

HIV.23,24

Today, HIV replication and person-to-person transmission are effec-

tively controlled by strict adherence to an antiretroviral drug regimen

that targets 2-to-3 different phases of the viral life cycle. Unfor-

tunately, by ultrasensitive assays, we know that long-term treat-

ment does not effectively increase the clearance of infected T-cells,

macrophages, and MG in tissues nor completely block early viral

gene transcription.25 Another early gene, the harmful effector pro-

tein, Nef, interferes with immune recognition mechanisms that help

target infected cells for elimination.26–29 Additionally, these viral

proteins, perhaps carried in extracellular vesicles13,30–32 and low-

level virus replication in tissues, stimulate immune activation and

inflammatory signaling in a chronic fashion. The comorbid conditions,

including cardiovascular disease, metabolic disorders, and neuro-

logic and neuropsychiatric complications that affect many aging with

HIV, are exacerbated in a proinflammatory milieu.33–35 In the brain,

while MG are the primary resident immune cells, they also collab-

orate with astrocytes and neurons in regulating homeostasis in the

CNS.

To fully realize a cure for HIV, we need to understand whether the

molecular mechanisms of the viral life cycle and potential for latent

infection in macrophages andMG are similar or not to those in T-cells.
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Given their central roles in neuroinflammation andneurodegeneration,

researchers working in these fields, and more broadly in neurovirol-

ogy, have renewed interest in reproducible, physiologically relevant, in

vitro postmitotic human MGl culture systems for mechanistic studies.

Several recent excellent reviews on induced pluripotent stem cell-

derived (iPSC) MG have been published.36–38 A comprehensive com-

parison between in vitro models to study HIV-microglial biology using

cultured primary human MG, microglial cell lines, human postmitotic

monocyte-derived microglia-like cells (hMMGs), iPSC-MG, and 3D

organoids was published most recently.39 Each model has advantages

and limitations in that they recapitulate aspects of primary brain MG

morphology, gene expression, function, and capacity to support HIV

replication.39 Importantly, all agree that thesemodel systemsprovide a

starting point from which continuous cycles of assessment and refine-

ment are expected. This review will focus on hMMG models, recent

experimental findings using this technology, and how these cells will be

employed in humanized mouse models for HIV neuropathogenesis to

gain translational insights.

1.2 Early postmitotic microglial culture models
and microglial cell lines

The precursor to modern-day human brain organoids was dissociated

fetal or adult brain cell cultures plated on plastic surfaces in whichMG

were established as the targets of infection by HIV.3,40 These cultures

had a mixture of astrocytes (70–90%), neurons (10–30%), and MG (1–

5%) in similar proportions to the 3D brain.40 Long-term productive

infection of brain human fetalMG culturedwith GM-CSF alone or with

LPS was used to bring more reproducibility to these model systems.41

Out of these landmark studies, CD4 and the chemokine receptors

CXCR4, CCR3, and CCR5 were confirmed as the molecules allow-

ing HIV entry and replication in human MG.40 Electron microscopy

visualized the accumulation of immature viral particles in fetal MG.42

Analyses of HIV replication kinetics in MG showed that the virus grew

at lower titers than monocyte-derived macrophages but could form

syncytia formation.42 Culturesmaintained for 3–4weeks showed low-

level viral gene expression in long-term surviving MG 70 days after

infection.3,41

The availability of cell lines that faithfully recapitulate aspects of

biology/physiology remains a vital research tool with an understand-

ing of the need to validate research results in primary cells and in

vivo. As highlighted in a recent review by Timmerman et al.,43 2 cell

lines derived from the adult human brain telencephalon or cortexwere

immortalized with SV40 T antigen and the human telomerase reverse

transcriptase gene (Huμglia) or with the v-myc oncogene (HMO6).44,45

Clonal Huμglia lines containing integrated single-round-fluorescently

tagged reporterswere developed to study themechanism of latency.46

Prototypical proinflammatorymolecules reactivatedHIV gene expres-

sion of Huμglia clone HC69.5 to different extents, with TNF-a being

the most effective at stimulating 94% of cells, IL-1b, 78%, and LPS,

67%.44 The Huμglia displayed a wide range of cytokine/chemokine

secretion activity upon stimulation, had a gene expression profile simi-

lar to primary humanMG, could clear dead neurons in culture through

phagocytosis, and also exhibited a gene expression profile migratory

ability demonstrating these expectedMG functions are intact.44 While

there is some variability in the expression of CD4 andHIV coreceptors

CCR5 and CXCR4 with time in culture, infection with replication-

competent HIV is possible. DNA mimics activating TLR 3 signaling

released the MG clones from a latent state via a mechanism depen-

dent on IRF3.46 For TLRs 1, 2, 4, and 6, reactivation from latency was

driven via NFκ-b activation.46 The HC69 Huμglia clone demonstrated

its utility for identifying the possible role (s) of cortical and dopaminer-

gic neurons inmechanismsofHIVentry and exit from latency,46 testing

the ability of novel eradication strategies to cross in vitro blood–brain

barriers (BBBs) to disrupt the formation and maintenance of latent

HIV infection in MG47,48 and repopulation of the brain in humanized

mice.49

1.3 Postmitotic monocyte-derived microglial
culture models

The myeloid field is currently in the midst of an exciting inflection

phase. The fuller realization of myeloid tissue cells’ functional and

phenotypic heterogeneity and their critical roles in health and dis-

ease is rapidly emerging. We thought that all tissue myeloid cells

originated from progenitor cells residing in the bone marrow until

11 years ago. With a better understanding of the critical transcrip-

tion factors and promoters that drive lineage-specific differentia-

tion, landmark studies using genetically tagged mice convincingly

demonstrated that during development, MG arise in the mesoder-

mal layer from erythro-myeloid progenitors in the yolk sac. Under

homeostatic conditions, bone marrow-derived stem cells do not

contribute significantly to this pool.50–52 Single-cell RNA (sc-RNA)

sequencing studies of mouse brain MG isolated across several time

points in embryogenesis to the postnatal stage demonstrate the vast

heterogeneity of MG phenotypes in health and neurodegenerative

disease.53–57 In the mouse brain, canonical MG subpopulations segre-

gate with Tmem119, Fcrls, P2yr12, Cx3cr1, Trem2, and Clqa.53,58,59,60

In mouse models of multiple sclerosis, 4 significant MG subpopula-

tions were found. All expressed low levels of Tmem119, P2yr12, and

either Apoe, Cxcl10, and Tnfa, or Ccl5 as unique genes in their respec-

tive signatures.60 FourMG populations were found in the adult human

brain without disease Like mice, the human canonical MGMG1, MG2,

and MG3 expressed TMEM119, P2YR12, and CX3CR1, while the.61

Instead, the human MG4 population was defined by the expression of

CCL2, CCL4, EGR2, and EGR3.61 Like in the diseased mouse brain, the

canonical markers TMEM119, P2YR12, and CX3CR1 decrease in mul-

tiple sclerosis and Alzheimer’s disease.59 There is an understanding

that these new insights are viewed in the context of the current knowl-

edge that the phenotypic and functional plasticity of myeloid cells
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is profoundly shaped and influenced by cytokine/chemokine signals

from neighboring support cells and between othermyeloid-to-cell spe-

cific interactions particular to each tissue microenvironment.62,63,64

Regarding the brain, these cells include astrocytes, neuronal subtypes,

endothelial/epithelial cells of the BBB and blood–CSF barrier, the

lymphatics, meninges, blood vessels, and other discrete anatomical

structures that interface with immune cells in the peripheral circula-

tion. Knowledge of myeloid plasticity and their tissue heterogeneity

can be harnessed to fill the gaps in understanding MG–pathogen

molecular mechanisms.

For example, inhibition of M-CSF receptor signaling with pharma-

cologic agents induces the rapid death and depletion of brain MG65

demonstrating the critical role that the ligands M-CSF and IL-34 plays

in the trophic support for these cells.66,67 These studies revealed that

newly divided MG arise in 2 weeks from a brain progenitor popula-

tion.Under conditions of stress or injury to the brain, local proliferation

and HSC progenitors infiltrating the brain from the periphery con-

tribute to repopulation.65,68–70 Although the bone marrow-derived

MG were less dense processes than their yolk-sac counterparts,71

these studies demonstrate decisively the potential for blood myeloid

postmitotic progenitors to cross blood–brain barriers, enter the brain

parenchyma and differentiate intoMG.Many researchers have investi-

gated the possibility of human postmitotic monocytes developing into

MG. One of the first was Leone et al., who used elutriated mono-

cytes incubated on plastic flasks in DMEM with 10% heat-inactivated

fetal calf serum, M-CSF, and GM-CSF (see Table 1). However, there

have been significant recent advances in culturing physiologic human

MG. A recent study by Rai et al., comparingMG cell lines (C20, HMC3),

iPSC-derived MG, and hMMG found ∼78% conservation among 780

MG-enriched genes.72 After 14 days of HIVBal infection, the iPSC-

MG, in contrast to hMMG, showed significantly increased apoptotic

death.72 Overall, they found that the hMMGs and iPSC-derived MG

were more similar to human primary MG than the C20 and HMC3 cell

lines examined.72 We have been able to successfully adapt a proto-

col by Bohlen et al.,73 to reproducibly, and efficiently induce human

postmitotic monocytes intoMG-like cells that express TMEM119,71,74

P2YR12, and CX3CR1, markers of resting MG75 (Figure 1). A caution-

ary tale and comprehensive investigation of the historic development

and subsequent usage of the HMC3 microglial cell line (known by

different names) in laboratories worldwide that the ATCC recently

validated were recently published.76 We direct interested readers to

another recent review of culture methods for human embryonic or

PSCs-derived MG, which require 30–180 days to develop.43,77,78 Sev-

eral groups are beginning to successfully apply these culture systems

to ask key mechanistic questions about microglial function.79,80 Their

findings show that hMMGs provide a pathway to gaining molecu-

lar insights into HIV-MG pathogenesis. A key advantage of hMMGs

is that they can be readily derived from adult human donor blood

monocytes providing an opportunity to understand the contribu-

tion of biologic sex and somatic gene expression on phenotype and

function.

F IGURE 1 Humanmonocyte-derivedmicroglia-like cells 28 days
after differentiation. Negatively selected pan-monocyte bead-purified
humanmonocytes incubated in serum-free DMEM/F12 basemedium
with 2 ng/ml TGF-β and 100 ng/ml IL-34 (method of Bohlen et al.73) at
28 days after plating. Cells assume different intricatemorphologies
with extensive processes (green arrowheads), spine-like structures
(burgundy arrows), and intracellular vesicles (yellow arrows)

1.4 Future translational potential

Novel approaches using humanized mice have allowed researchers

to take more rigorous experimental methods to demonstrate that

myeloid cells can serve as sources of HIV replication under antiviral

therapy.81–83 Most recently, Mathews et al.84 showed that NOG-mice

brains expressing human IL-34 could be engraftedwith fetal cord blood

stem cells thatmature into hMG. The hMGshoweddense complex pro-

cesses, expressed microglial signature genes, and was susceptible to

HIV infection.84 In ongoing studies, we plan to use NOG-IL-34 mice to

determine whether hMMGs delivered to the neonatal brain differenti-

ate intomatureMG-like cells and supportHIV replication. If successful,

this approach could help ease the challenges and expense of procuring

cord blood needed to generate humanized mice. iPSCs often retain a

gene expression pattern that is embryonic.

In contrast,withhMMGsoriginating frompostmitotic cells, the gene

expression signatures are expected to represent more differentiated

adult cells. Furthermore, while a blood draw is required, this is a safe,

relatively quick procedure conducted by an expert in an outpatient

setting. Therefore, the hMMG approach could expand experimental
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F IGURE 2 Use of postmitotic adult humanmonocytes to generatemicroglia-like cells (hMMGs) and future basic and clinical translational
potential. Monocytes purified from leukopaks obtained from healthy blood donors were, after gradient centrifugation, negatively selected with
magnetic beads and plated in a serum-freemedium containing cholesterol, IL-34 and TGF-β2 (TICmedia) described by Bohlen et al.73 for primary
mousemicroglia.Within 4−7 days, the differentiated cells assumed amicroglia-like phenotype with numerous branched projections.
Immunochemistry and flow cytometric analyses are used to confirm the expression of microglia defining surface proteins, TMEM119, P2YR12,
CX3CR1, CD11b, CD45 as well as CD4 and the coreceptors, CCR5 and CXCR4 used byHIV-1. The functional competence of hMMGs is
demonstrated by productive infection with HIV and phagocytosis of toxic amyloid beta1–42 peptide.With the ability to rapidly produce functional
humanmicroglia-like cells having an adult phenotype in vitro, such cells are now in use in 2D-, 3D-, and in vivo rodent models of increasing
complexity. The end goals are to developmore relevant screening assays that better reflect the genetic architecture and physiology of adult
microglia. Illustration created by Lydia Gregg and Jeff Day© 2020 Johns Hopkins University

findings’ translational potential and relevance. The feasibility of this

approach is also encouraged based on recent successful studies using

human iPSC-derivedMG implanted inmouse brains.85–87

2 CONCLUDING REMARKS

As artfully illustrated by Ohgidani et al. and others, with contin-

ued refinement and attention to the rigor of the postmitotic hMMG

approach combined with advances in the range of technologies, 3D

in vitro brain models and humanized mice to safely translate the

findings to better the lives of those suffering from HAND and other

neurologic and neuropsychiatric disorders will be possible in the long

term (Figure 2).88–91 Moreover, these investigations will continue to

advance our understanding of novel regulatory mechanisms at the

juxtaposition of the brain and peripheral immune systems.
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