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Abstract: Objective: Sarcopenia, characterized by progressive skeletal muscle loss, poses significant
health risks, including physical impairment and mortality. The relationship between sarcopenia
and insulin resistance suggests insulin therapy’s potential in preserving muscle mass, particularly
in Type 2 diabetes mellitus (T2DM) patients. This study aims to evaluate the Psoas Muscle Index
(PMI) via computed tomography (CT) in middle-aged T2DM patients on insulin therapy versus oral
antidiabetic drugs (OAD) and controls. Methods: This retrospective study included 107 middle-aged
T2DM patients undergoing non-contrast CT scans and 58 age-matched controls. CT images were
analyzed to calculate PMI. Statistical analysis included Chi-square tests, independent samples t-tests,
Mann–Whitney U tests, and correlation analyses. Results: Insulin-treated patients exhibited higher
PMI than OAD users (p < 0.001), while OAD users had lower PMI than controls (p < 0.001). No
significant difference was found between insulin-treated patients and controls (p = 0.616). Nega-
tive correlations were observed between T2DM duration/age and PMI across all groups, with a
positive correlation between T2DM duration and BMI observed in the OAD group. Conclusions:
Insulin therapy in T2DM patients, regardless of age or disease duration, positively impacts muscle
mass, highlighting its potential in preserving muscular health and advocating for tailored treatment
strategies in T2DM management.

Keywords: sarcopenia; type 2 diabetes mellitus; psoas muscle index; insulin; psoas muscle density;
computed tomography

1. Introduction

Type 2 diabetes mellitus (T2DM) is characterized by glucose intolerance, insulin re-
sistance, inflammation, advanced glycation end-product buildup, and elevated oxidative
stress. These characteristics can have a detrimental impact on a variety of elements of
muscle health, and as a result, they considerably contribute to the worsening of sarcope-
nia [1–4]. The prevalence of sarcopenia is notably higher in T2DM patients, with estimates
suggesting a bidirectional relationship between these conditions [5].

Sarcopenia is a syndrome defined by a progressive and widespread loss of skeletal
muscle mass and strength, with the potential for negative effects such as physical impair-
ment, poor quality of life, and mortality [6–8]. Early detection and intervention are crucial
as sarcopenia is a treatable condition with appropriate musculoskeletal therapy [9].

Irwin Rosenberg [10] defined sarcopenia for the first time in 1988 as an age-related
decline in skeletal muscle mass and function. In 1998, Baumgartner et al. [11] developed
a method for assessing sarcopenia based on appendicular lean mass adjusted for height
(kg/m2). While muscle mass and quality have been assessed using a variety of proce-
dures and technologies in the past, computed tomography (CT) measurements are now
considered the gold standard in studies [12–15].

The first preferred approach for determining total body muscle mass is the calculation
of the psoas muscle index from lumbar 3rd vertebral (L3) level measurements. According
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to studies, the muscle mass acquired from a single section can provide an estimate of the
whole body’s muscle mass [12,16]. Studies indicate that the psoas muscle index (PMI),
calculated by dividing the cross-sectional area of the right and the left psoas at the L3 level
by the square of the height, correlates positively with the total skeletal muscle volume and
is effective for the diagnosis of sarcopenia [17–19].

Recent studies have highlighted several mechanisms by which T2DM exacerbates
sarcopenia. Hyperglycemia-induced oxidative stress and chronic inflammation are primary
contributors to muscle degradation in diabetic patients [20,21]. Additionally, advanced
glycation end products (AGEs) accumulate in muscle tissue, further impairing muscle
function and regeneration [21].

The relationship between sarcopenia and insulin resistance is well documented. In-
sulin resistance exacerbates muscle protein degradation and reduces muscle protein syn-
thesis, contributing to muscle wasting in T2DM patients [22,23]. Although prior research
has demonstrated that insulin sensitizers can increase skeletal muscle mass by inhibit-
ing protein breakdown, the effect of insulin treatment on skeletal muscle mass remains
unclear [24–26].

Sugimoto et al. [27] discovered that improving glycemic control and using insulin
were significantly associated with increases in skeletal muscle mass in T2DM patients.
Tanaka et al. [28] found that a reduction in endogenous insulin is an independent risk
factor for diabetes-related sarcopenia. In another study, Bouchi et al. [23] discovered that
patients with type 2 diabetes treated with insulin may be at a lower risk for the loss of
skeletal muscle mass in the lower extremities compared with those who do not receive
insulin treatment. It should be noted that the majority of the patients and control subjects
in these reports were elderly.

Whereas previous research has focused on elderly patients, the aim of this retrospective
study was to evaluate the CT measurements of the PMI, which is a radiological finding
of sarcopenia in middle-aged patients with T2DM, and compare them with those of the
normal population.

2. Materials and Methods
2.1. Participants

The study included 107 patients with Type 2 Diabetes Mellitus (T2DM) aged 35–65 years
and 58 age-matched controls. Among the T2DM patients, 55 were treated with Oral
Antidiabetic (OAD) medications and 52 with insulin. The inclusion criteria comprised
patients aged 35–65 years, diagnosed with T2DM at least 3 years prior. Individuals with
organ failure (n = 17), users of any drug that alters body composition (n = 3), individuals
with a body mass index (BMI) greater than 35 (n = 12) or less than 18 (n = 3) kg/m2, and
users of illegal drugs or hormonal or nutritional supplements (n = 4) were excluded from
the study. Patients with psoas asymmetry (n = 6) due to scoliosis or for other reasons were
also excluded. This process ensured that the final sample size remained at 107 patients.

In this study, 107 patients who presented to our hospital with complaints such as
abdominal pain, kidney stones, or other conditions requiring a non-contrast abdominal
CT scan were included. These CT scans were performed for various reasons, providing a
diverse patient sample.

For the control group, 58 patients with comparable age and gender distribution were
selected. All participants were investigated retrospectively by thoroughly examining hospital
records. This included reviewing detailed laboratory results and ensuring that the control
subjects were not diagnosed with diabetes mellitus nor receiving any diabetes treatment.

The data used for this study were collected anonymously, and local ethics committee
approval was obtained for this study (ethics committee number: E-145678230-2347510.003).
This study adhered to the Declaration of Helsinki. Because the study was retrospective,
informed consent was not obtained.
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2.2. Psoas Muscle Assessment

Abdominal CT scans of the 107 patients and 58 participants in the control group were
evaluated. Non-contrast abdominal CT examinations were performed using a 64-detector
CT scanner (Revolution EVO; GE Medical Systems, Chicago, IL, USA) in our clinic for any
reason were used for analysis. The CT scan parameters comprise a tube potential of 120 kV,
a beam collimation of 0.625 mm, mA ranging from 140 to 250, a rotation time of 0.5 s, and a
reconstructed section thickness of 3 mm.

In the psoas muscle measurement process, the L3 level was determined to be the
benchmark. The images were evaluated using CT images, which were transferred to
an Advantage Windows workstation (ADW 4.7 Ext. 16 Software, GE Medical Systems,
Chicago, IL, USA), and the psoas muscle areas were assessed using workstation’s software.

The free hand region of interest (ROI) was traced manually to assess the psoas cross-
sectional area (PCSA) and attenuation values in Hounsfield Units (HU) of the outer edge of
the psoas muscles at the L3 level. The PMI was calculated by evaluating all images, regard-
less of other clinical parameters or patient outcomes. To calculate the PMI (mm2/m2), the
sum of the left and right PCSA (cm2) was divided by the square of the height (m2). Bilateral
psoas muscle density (PMD) was expressed in Hounsfield Units (HU) by calculating the
mean psoas muscle attenuation value (Figure 1).
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Figure 1. Psoas Muscle Assessment. The outer edge of the major psoas muscle was traced manually to
assess the psoas cross-sectional area (PCSA) (mm2) and average (Av) attenuation values in Hounsfield
Units (HU) at the lumbar third vertebral level with the free hand region of interest (ROI). ROI1: Right
psoas muscle measurements. ROI2: Left psoas muscle measurements.

2.3. Statistical Analysis

Data were analyzed using the Statistical Package for Social Sciences (SPSS) for Win-
dows version 20 software (IBM SPSS Inc., Chicago, IL, USA). The conformity of the data
to normal distribution was assessed by the Kolmogorov–Smirnov test. Numerical vari-
ables with a normal distribution are shown as the mean ± standard deviation (SD) values,
variables without a normal distribution as median (minimum–maximum) values, and
categorical variables as number (n) and percentage (%). A Chi-square test was used to
compare categorical variables. For comparison between the groups, the independent sam-
ples t test was used for data with normal distribution, and the Mann–Whitney U test was
used for data without normal distribution. Pearson correlation analysis was used for data
with normal distribution, and Spearman correlation analysis was used for data without
normal distribution. A reliability analysis test was applied to determine the interrater relia-



Tomography 2024, 10 1057

bility levels between two different physicians, and ICC (Intraclass correlation coefficient)
was calculated. ICC values from 0.75 to 1.0 were considered excellent, and ICC values
from 0.40 to 0.75 were considered quite good [29]. A value of p < 0.05 was regarded as
statistically significant.

3. Results

The participants had a mean age of 49.4 ± 9.1 years, with 46.1% (n = 76) being
male and 53.9% (n = 89) female. Insulin-treated patients had a significantly higher Psoas
Muscle Index (PMI) (618 ± 95 mm2/m2) compared to OAD users (533 ± 85 mm2/m2,
p < 0.001). Additionally, the PMI of OAD users was significantly lower than that of the
control group (627 ± 103 mm2/m2, p < 0.001), while no significant difference was found
between insulin-treated patients and the control group (p = 0.616). Furthermore, the total
Psoas Cross-Sectional Area (PCSA) was higher in the insulin group (1579 ± 278 mm2)
compared to the OAD group (1459 ± 225 mm2, p = 0.015) and lower in the OAD group
compared to the control group (1613 ± 307 mm2, p = 0.003). There were no significant
differences in Psoas Muscle Density (PMD) across all groups.

The age and gender distribution displayed no statistically significant difference be-
tween the study and control groups, both in the overall population (healthy + patients) and
when each group was assessed independently (p > 0.05) (Table 1).

Table 1. Age and gender distribution of the participants.

Study Group

Control Group d

(n = 58)
a,b p Value c,d p ValueInsulin a

(n = 52)
OAD b

(n = 55)

Total Study
Group c

(n = 107)

Age * (year) (Mean ± SD) 49.6 ± 9.6 48.7 ± 8.5 49.1 ± 9.0 50.0 ± 9.3 0.592 0.576
Gender ** (Male/Female),

n (%)
24(46)/
28(54)

25(45)/
30(55)

49(46)/
58(54)

27(47)/
31(53) 0.548 0.528

* Independent samples t test ** Chi-square test, SD: standard deviation, OAD: oral antidiabetics. Superscript
letters were added so that p values could be compared in pairs.

Detailed comparisons of Body Mass Index (BMI), total Psoas Cross-Sectional Area
(PCSA), Psoas Muscle Index (PMI), Psoas Muscle Density (PMD), the duration of Type 2
Diabetes Mellitus (T2DM), and HbA1c measurement results are presented in Table 2.

Table 2. Data in the study and control group and comparison between groups.

Study Group
Control
Group d

(n = 58)

a,b p Value a–d p Value
b–d p
Value

c,d p ValueInsulin a

(n = 52)
OAD b

(n = 55)

Total Study
Group c

(n = 107)

BMI * (kg/m2)
(Mean ± SD)

27.8 ± 3.1 27.1 ± 3.3 27.4 ± 3.2 26.5 ± 3.3 0.234 0.036 0.372 0.084

Total PCSA * (mm2)
(Mean ± SD)

1579 ± 278 1459 ± 225 1517 ± 258 1613 ± 307 0.015 0.544 0.003 0.035

PMI * (mm2/m2) 618 ± 95 533 ± 85 574 ± 99 627 ± 103 <0.001 0.616 <0.001 0.001
PMD * 44.2 ± 4.1 43.9 ± 3.9 44.0 ± 4.0 44.4 ± 3.9 0.756 0.823 0.595 0.685

HbA1c * (%)
(Mean ± SD) 7.1 ± 4.2 7.1 ± 0.5 7.1 ± 0.4 - 0.736 - - -

Duration of T2DM
(year) (Mean ± SD) 10.3 ± 3.7 7.1 ± 2.7 8.6 ± 3.6 - <0.001 - - -

* Independent samples t test, SD: Standard Deviation, BMI: Body Mass Index, PCSA: Psoas Cross-Sectional Area,
PMI: Psoas Muscle Index, PMD: Psoas Muscle Density, T2DM: Type 2 Diabetes Mellitus, OAD: Oral Antidiabetics.
Superscript letters were added so that p values could be compared in pairs.

In group comparisons, PMI values were significantly higher in the insulin group
compared to the OAD group (p < 0.001). The OAD group exhibited significantly lower
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PMI values than the control group (p < 0.001), while no significant difference was observed
between the insulin group and the control group (p = 0.616) (Table 2) (Figure 2).
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Figure 2. Graph of psoas muscle index (PMI) values and p values.

No significant difference was found in total PCSA measurements between the insulin
group and the control group (p = 0.544). However, the OAD group presented with a
significantly lower total PCSA compared to both the insulin group and the control group
(p = 0.015 and p = 0.003, respectively) (Table 2).

BMI values were only significantly higher in the insulin group compared to the control
group (p = 0.036), with no significant differences between the insulin group and the OAD
group or between the OAD group and the control group (p > 0.05) (Table 2).

The duration of Type 2 DM was significantly higher in the insulin group compared to
the OAD group (p < 0.001). No significant differences were observed between any group in
density or HbA1c values (p > 0.05) (Table 2). Inter-rater reliability values (ICC) in PCSA
measurements were 0.838 (95% CI, 0.730–0.903), indicating an excellent correlation.

Correlation analyses revealed a negative correlation between the duration of T2DM
and PMI (Figure 3) and between age and PMI (Figure 4) across the total study group, OAD
group, and insulin group separately. While no correlation was found between the duration
of Type 2 DM and BMI in the insulin group, a significant positive correlation was observed
in the OAD group and the total study group (Table 3).

Table 3. Correlation analyzes between duration of Type 2 Diabetes Mellitus (T2DM), age, psoas
muscle index (PMI), and body mass index (BMI) (r = correlation coefficient; p = statistical significance).

Insulin
(n = 52)

OAD
(n = 55)

Total Study Group
(n = 107)

r p r p r p

Duration of T2DM/PMI * −0.474 <0.001 −0.525 <0.001 −0.192 0.038
Age/PMI ** −0.663 <0.001 −0.707 <0.001 −0.597 <0.001

Duration of T2DM/BMI * 0.233 0.096 0.779 <0.001 0.332 <0.001
BMI/PMI * −0.078 0.582 −0.213 0.118 −0.093 0.338

* Pearson correlation test, ** Spearman correlation test, T2DM: Type 2 Diabetes Mellitus, PMI: Psoas Muscle Index,
BMI: Body Mass Index, OAD: Oral Antidiabetic Figure Legends.
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4. Discussion

Our study revealed a significant decrease in Psoas Muscle Index (PMI) values among
middle-aged Type 2 Diabetes Mellitus (T2DM) patients compared to the control group,
while no significant difference was observed between the insulin-using group and the
control group. These findings suggest that middle-aged T2DM patients treated with
insulin may have a reduced risk of sarcopenia compared to those treated solely with oral
antidiabetic medications (Table 2).
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Although the mechanism of sarcopenia in T2DM remains unclear, decreased endoge-
nous insulin secretion has been implicated in reducing muscle mass in diabetic patients [23].
Insulin resistance and sarcopenia share a close association, as insulin plays a crucial role
in maintaining muscle protein synthesis and degradation balance [30]. The cytoprotective
effect of oral antidiabetic medications in T2DM patients remains uncertain [31]. Recent
studies have shown accelerated declines in muscle function and mass in individuals with
T2DM, with insulin therapy associated with muscle mass preservation [32]. Insulin’s an-
abolic properties promote muscle protein synthesis and inhibit breakdown, potentially
aiding both T2DM treatment and muscle dysfunction management. However, while insulin
therapy increases protein anabolism in younger T2DM patients, it may not confer beneficial
effects regarding muscle hypertrophy or function in older individuals [31,33]. Consistent
with this, recent research indicates significant declines in muscle mass and strength among
elderly T2DM patients compared to normoglycemic controls [2,34]. Aging’s role in these
changes is often indistinguishable from disease [32,34,35]. Hence, we excluded T2DM
patients over 65 years old from our study to mitigate age-related sarcopenia effects.

The findings of our study are consistent with Shishikura et al.’s study [36], which
showed a negative correlation between skeletal muscle mass and endogenous insulin secre-
tion in T2DM patients and emphasized the critical role of insulin therapy in maintaining
muscle mass. Similarly, Kim et al.’s [37] results highlighting the increased risk of sarcopenia
in diabetic patients with normal BMI reinforce our observation of a limited correlation
between BMI and PMI values.

While various methods and technologies have been used in the past to evaluate muscle
mass and quality, studies now regard CT measurements as the most reliable and accurate
approach. This is due to CT’s exceptional accuracy in distinguishing between different
tissue types, such as muscle and fat, and its capacity to provide highly detailed cross-
sectional images. CT imaging allows for the precise measurement of muscle area, density,
and quality, which is crucial for diagnosing conditions like sarcopenia. The reliability of
this method, compared to other techniques like dual-energy X-ray absorptiometry (DXA)
and magnetic resonance imaging (MRI), makes it a preferred choice. Additionally, CT
scans can be seamlessly integrated into clinical workflows, providing quick and easy
assessments [12–15].

As fat has a high negative attenuation value for CT imaging, decreased muscle at-
tenuation primarily reflects an increased fat content around muscle fibers [38]. Thus, we
evaluated muscle mass and quality separately by assessing Psoas Muscle Density (PMD) in
addition to PMI assessments (Figure 1). Non-contrast abdominal CT scans of patients in
both groups were analyzed to minimize differences in CT acquisition parameters and image
analysis techniques. No significant difference in PMD values was observed between the
study and control groups, indicating that the PMI disparity directly relates to muscle mass.

Uncontrolled hyperglycemia leads to catabolism, potentially resulting in muscle pro-
tein breakdown and inadequate energy utilization, contributing to poor muscular per-
formance. Poor glycemic control in diabetes is associated with increased systemic in-
flammatory cytokines, which negatively impacts muscle performance [35]. Studies have
found associations between poor glycemic management, high HbA1c levels, and muscu-
lar weakness and sarcopenia [39,40]. However, in our study, no association was found
between HbA1c levels and PMI values. This discrepancy may stem from HbA1c levels
reflecting short-term glycemic management, while CT measurements and HbA1c values
were obtained at different times.

Our findings revealed no statistically significant correlation between BMI and PMI
(Table 3). T2DM patients with a high body fat percentage and low BMI face an increased sar-
copenia risk. However, sarcopenia risk assessment in diabetic patients should not solely rely
on BMI. While a low BMI and high body fat percentage increase the likelihood of sarcopenia,
insulin therapy’s muscle-mass-loss-inhibitory effects may be BMI-independent [23,41].

A longer T2DM duration increases sarcopenia risk among patients [28,42]. We ob-
served a significant negative correlation between T2DM duration and PMI, with insulin-
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using patients having a much longer diabetes duration than those using oral antidiabetic
medications. Despite this, PMI values were significantly higher in the insulin group than
the oral antidiabetic group (Tables 2 and 3 and Figures 2 and 3), indicating that insulin
therapy reduces sarcopenia risk regardless of diabetes duration.

Research has shown that age-related changes significantly affect muscle quality and
quantity. In a study by Prashanthi et al., standardized PMI measurements were made using
CT and it was found that average PMI values decreased significantly with age in the Indian
population [43]. Similarly, Zannoni et al. emphasized that the attenuation values of the
psoas muscles correlate well with other hip muscles and that age-related muscle quality
changes can be reliably evaluated with CT scans in different anatomical regions [44]. This
reinforces the findings of our study that PMI can serve as a robust indicator of muscle
health in T2DM patients.

A notable aspect of our study is its retrospective evaluation of T2DM patients under
long-term treatment. While the literature predominantly reports findings from elderly
subjects, our study sheds light on early sarcopenia diagnosis in middle-aged T2DM patients.
Our results confirm that insulin therapy prevents early muscle mass reduction in T2DM
patients, irrespective of disease duration, metabolic control, or age.

Our study has several limitations:

1. The retrospective design precluded obtaining data on muscle strength and function,
which are essential for a comprehensive definition of sarcopenia.

2. Due to the retrospective nature of the study, we were unable to analyze the short- and
long-term effects of patient medications.

3. The small sample size limits the generalizability of our findings.
4. We did not have sufficient information on the physical activity levels of the patients.

Further research is needed to validate our findings and explore potential contributing
factors.

5. Conclusions

Our study underscores the significance of insulin therapy in mitigating sarcopenia
risk among Type 2 Diabetes Mellitus (T2DM) patients. The findings highlight the critical
role of insulin in preserving muscle mass and quality, irrespective of diabetes duration,
metabolic control, or age. This suggests a promising avenue for managing sarcopenia in
T2DM patients.

Moving forward, further research is warranted to validate these findings and explore
potential mechanisms underlying the protective effects of insulin therapy. Additionally,
future studies should investigate the long-term impacts of different antidiabetic medications
on muscle health and function in T2DM patients. Such investigations can inform tailored
treatment approaches aimed at optimizing both glycemic control and muscular well-being
in this population.
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