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Background: Observational studies have revealed the association between some
inflammatory cytokines and the occurrence of ischemic stroke, but the causal
relationships remain unclear.

Methods:We conducted a two-sample Mendelian randomization (MR) analysis to assess
the causal effects of thirty inflammatory cytokines and the risk of ischemic stroke. For
exposure data, we collected genetic variants associated with inflammatory cytokines as
instrumental variables (IVs) from a genome-wide association study (GWAS) meta-analysis
from Finland (sample size up to 8,293). For the outcome data, we collected summary data
of ischemic stroke from a large-scale GWAS meta-analysis involved 17 studies (34,217
cases and 406,111 controls). We further performed a series of sensitivity analyses as
validation of primary MR results.

Results: According to the primary MR estimations and further sensitivity analyses, we
established one robust association after Bonferroni correction: the odds ratio (95% CI) per
unit change in genetically increased IL-4 was 0.84 (0.89–0.95) for ischemic stroke. The
chemokine MCP3 showed a nominally significant association with ischemic stroke risk
(OR: 0.93, 95% CI: 0.88–0.99, unadjusted p < 0.05). There was no evidence of a causal
effect of other inflammatory cytokines and the risk of ischemic stroke.

Conclusions: Our study suggested that genetically increased IL-4 levels showed a
protective effect on the risk of ischemic stroke, which provides important new insights
into the potential therapeutic target for preventing ischemic stroke.
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INTRODUCTION

Stroke has become one of the leading causes of death and long-
term disability in humans (D 2019 Stroke Collabora, 2021).
Ischemic strokes account for approximately 70% of the
incidence of stroke and have an extremely high morbidity and
mortality rate. Globally, more than nine million people suffer
from ischemic stroke each year, placing a vast medical burden on
society (Phipps and Cronin, 2020; Powers, 2020), suggesting an
urgent need to find new treatment strategies to control stroke.
Ischemic stroke results from the disruption of blood supply to the
brain due to various causes and the corresponding neurological
deficits. In addition to the traditional risk factors such as
hypertension, diabetes, smoking, alcohol consumption, and
obesity, inflammatory factors play a crucial role in ischemic
stroke, with both adverse and beneficial effects (Bonaventura
et al., 2016).

Inflammation promotes infarct enlargement and is
accountable for its resolution with implications for remodeling
and repair (Lambertsen et al., 2019). This conflicting outcome
may be due to genetic variation in molecules involved in
inflammatory and metabolic pathways (Alfieri et al., 2020).
Although experimental evidence suggests that targeting some
of these inflammatory cytokines holds promise for treating
ischemic stroke (Lambertsen et al., 2019), studies on the
connection between circulating inflammatory cytokines and
stroke risk remain scarce. Some observational studies on the
role of inflammatory factors in the occurrence and recurrence of
ischemic stroke have failed to find a causal relationship
(Georgakis et al., 2019a).

Mendelian randomization (MR), as a widely used analytical
method for causal inference, is a specific case of instrumental
variable analysis. When MR assumptions are established, they
could be used to identify and quantify causal relationships
between exposures and outcomes of interest. This design is
not susceptible to confounders and reverse causality bias

(Smith and Ebrahim, 2003). In this study, we performed a
two-sample MR analysis to test whether there was a causal
relationship between inflammatory cytokines and the risk of
ischemic stroke.

METHODS

Study Design
The workflow of our study is shown in Figure 1. First, we
extracted genetic variants as IVs (instrumental variables) for
thirty inflammatory cytokines. Second, we collected the
summary data including all SNPs from the largest genome-
wide association studies (GWASs) for ischemic stroke; Third,
we performed two-sample MR analyses with five MR methods
[e.g., inverse-variance weighted (IVW), MR-Egger regression,
weighted median, MR-Robust adjusted profile score (MR-
RAPS), and MR-Pleiotropy Residual Sum and Outlier (MR-
PRESSO)]. Fourthly, we conducted a series of sensitivity
analyses, including Cochran’s Q Test, Egger intercept test, and
MR PRESSO global test to evaluate the heterogeneity and
horizontal pleiotropy of MR results.

Selection of Genetic Predictors of
Inflammatory Cytokines
We obtained the genetic predictors from the most comprehensive
cytokine-related GWAS meta-analysis for three independent
cohorts [the Cardiovascular Risk in Young Finns Study (YFS),
FINRISK 1997, and FINRISK 2002], including up to 8,293
Finnish participants (Ahola-Olli et al., 2017). The associations
between genetic variants and inflammatory cytokines were
adjusted for age, sex, and body mass index. We selected SNPs
associated with inflammatory cytokines as IVs using a genome-
wide p-value threshold (5 × 10–6, IV assumption 1,
Supplementary Figure S1). A stringent condition (linkage

FIGURE 1 | Diagram of Mendelian randomization framework in this study.
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disequilibrium threshold of r2 < 0.001 and distance located
10,000 kb apart from each other) was set to ensure that the
selection of IVs is conditionally independent of each other. F
statistic represents the strength of the relationship between IVs
and inflammatory cytokines. Generally, F > 10 may attenuate bias
produced by weak IVs (Burgess and Thompson, 2011).

Selection of Ischemic Stroke
We collected summary data of ischemic stroke from a large-scale
GWAS meta-analysis containing 17 studies that involved only
European participants (34,217 cases and 406,111 controls) (Malik
et al., 2018). The largest available GWAS summary statistics were
extracted from the MR-Base database (∼8,000,000 genetic
variants) (Hemani et al., 2018). The participants had an
identical genetic background (all Europeans), and to our
knowledge, there was no sample overlap between the exposure
and outcome GWASs.

Statistical Analysis
Two-Sample Mendelian Randomization Analysis
As shown in Supplementary Figure S1, we estimated the causal
association between inflammatory cytokines and ischemic stroke
using a classic MR model: βcausal effect � βZY/βZX (βZX and βZY
represent the regression coefficient of SNPs on inflammatory
cytokines and ischemic stroke, respectively) (Smith and Ebrahim,
2003; Zheng et al., 2017). MR analysis also relies on three IV
assumptions (Supplementary Figure S1) (D 2019 Stroke
Collabora, 2021): must be truly associated with inflammatory
cytokines (in this study, defined as the genetic association p < 5 ×
10–6) (Phipps and Cronin, 2020); not associated with
confounders of inflammatory cytokines and ischemic stroke
[in this study, we conducted a phenome-wide association test
to assess the relationships of IVs with potential confounders such
as body mass index, blood pressure, hypertension, and plasma
lipid levels using PhenoScanner V2 (Kamat et al., 2019)]; and
(Powers, 2020) should only be associated with ischemic stroke
through inflammatory cytokines.

To evaluate the causal effects of inflammatory cytokines on the
risk of ischemic stroke by combining multiple SNPs, we
conducted a two-sample Mendelian randomization (Burgess
et al., 2015) analysis using five primary methods, including
IVW (Johnson and Uk, 2012), MR-Egger regression (Bowden
et al., 2015), weighted median (Bowden et al., 2016), MR-RAPS
(Zhao et al., 2020), and MR-PRESSO (Verbanck et al., 2018). The
IVW is a conventional method to combine each Wald ratio
estimation for multiple SNPs, with the largest statistical power
among all MR methods. The weighted median estimator could
provide valid estimation even when including 50% of the invalid
genetic instruments. With the criterion relaxed, the MR-Egger
regression provides a valid estimation even when all genetic
instruments are invalid (presence of horizontal pleiotropy
across SNPs). Nevertheless, it still requires the InSIDE
assumption (Instrument Strength Independent of Direct Effect
assumption) to be satisfied (Bowden et al., 2015). Notably, the
MR-Egger regression has less power and provides wider
confidence intervals. Since we used a relatively higher
significant threshold (p < 5 × 10–6) to select genetic variants,

we further performed the MR-RAPS to obtain MR estimations
using potentially weak instruments. The MR-PRESSO regresses
the SNP-outcome estimates against the SNP-exposure estimates
to identify outlier SNPs and outputs a corrected MR estimate.

Sensitivity MR Analyses
We examined the heterogeneity of the MR results using the
Cochran’s Q-test (Burgess et al., 2017) and evaluated the
horizontal pleiotropy by testing whether the intercept in MR-
Egger regression and MR-PRESSO global test. Once
heterogeneity or horizontal pleiotropy was noted, we
recomputed MR estimates after removing the outlier SNPs
identified by MR-PRESSO.

Based on the 5 MR methods mentioned above, we took the
IVW results as the primary MR estimates and considered the
consistency of the results across other MR methods. Here, we
defined the evidence for a potential causal effect when the
following criteria were met (D 2019 Stroke Collabora, 2021):
MR results of IVW passed the multiple comparisons adjusted
p-value < 0.0017 (0.05/30) after Bonferroni correction (Phipps
and Cronin, 2020); other MR methods showed a similar
magnitude and same direction with IVW; and (Powers, 2020)
there was no evidence of heterogeneity and horizontal pleiotropy
(e.g., P heterogeneity, P intercept, and p-value for MR-PRESSO global
test >0.05).

MR analysis was performed in R (version 4.0.3) with R
packages “TwoSampleMR” (12), “mr-raps” (Zhao et al., 2020),
and “MR-PRESSO” (Verbanck et al., 2018). p values were two-
sided, and the statistical significance was set at the adjusted
p-value < 0.0017.

RESULTS

Participant Characteristics and Genetic
Instruments
The characteristics of the participants from YFS and FINRISK
and meta-analysis of GWAS for ischemic stroke are shown in
Table 1. We selected 4–20 SNPs, 3–17 SNPs, 3–17 SNPs as
instruments for interleukins, chemokines, and other cytokines,
respectively (Supplementary Table S1), with an F statistic
ranging from 18.7–99.7, reflecting a strong instrument
strength for inflammatory cytokines.

Estimation of Causal Effects of
Inflammatory Cytokines on Ischemic Stroke
Before we conductedMR analysis, we identified an invalid variant
rs7088799, which was an instrument variant of IL-10 and IL-
12p70, and also associated with body mass index, blood pressure,
and hypertension (p < 5 × 10–6) using PhenoScanner V2
(Supplementary Table S2). There was no evidence that any
other instrument variants violating the IV assumption 2.
Table 2 and Figure 2 show the overall results of MR analysis
for increased inflammatory cytokines on the risk of ischemic
stroke. There was evidence to support that (p < 0.0017 for IVW
after Bonferroni correction) genetically increased IL-4 was
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associated with a lower risk of ischemic stroke (OR: 0.89, 95% CI:
0.84–0.95). The results from other MR methods showed good
consistency with IVW (p < 0.05 in weighted median and MR-
RAPS, and MR-Egger showed a similar effect size). Similarly,
genetically determined MCP3 showed a negative association with
ischemic stroke risk (OR: 0.93, 95% CI: 0.88–0.99) at a nominally
significant threshold (p < 0.05). However, there was little evidence
to support causal relationships between other inflammatory
cytokines and the risk of ischemic stroke.

Validation of MR Results Using Sensitivity
Analyses
We carried out a series of sensitivity analyses to evaluate the
heterogeneity and potential horizontal pleiotropy (Table 2).
Cochran’s Q-test showed clear evidence (Ph < 0.05) for the
presence of heterogeneity for the MR results of IL-6, IL-16,
and TNFα (Table 2). MR-PRESSO identified outliers and
provided a corrected estimation. After removing the outlier
SNPs, the recomputed MR estimations of IL-6, IL-16 were
similar to the results mentioned above, and MR-PRESSO
failed to provide any results for TNFα because it proxied by
only three SNPs (Supplementary Table S3). The MR-Egger
intercept test showed no horizontal pleiotropy (Pintercept >
0.05) for all inflammatory cytokines.

DISCUSSION

In this study, we performed a two-sample MR analysis to test if
genetic evidence supported a causal relationship of inflammatory
cytokines with the risk of ischemic stroke. Understanding the
effect of inflammatory factors in ischemic stroke will help us
further insights into how inflammation contributes to the
initiation and progression of ischemic stroke. We found that
genetically predicted IL-4 levels were negatively associated with
ischemic stroke, which adds to epidemiological evidence to the
role of inflammatory factor-targeted drug therapy in the
prevention and treatment of ischemic stroke.

To our knowledge, there are three studies evaluating the
association between partial interleukins and the risk of
ischemic stroke so far (Jenny et al., 2019; Lin et al., 2020;
Yuan et al., 2020). Jenny et al. reported that IL-6 was linked
to an increased incidence of ischemic stroke and no significant
associations of IL-8 and IL-10 with ischemic stroke risk (Jenny

et al., 2019). Nevertheless, there were unmeasured confounders or
misclassification of covariates that could lead to bias (Jenny et al.,
2019). In addition, it was shown that IL-6 might promote early
clinical deterioration of ischemic stroke, and TNF-α did not play
a role in early clinical deterioration (Vila et al., 2000). Lin et al.
found that IL-1ra is positively linked to cardioembolic stroke
while IL-6 was negatively linked to stroke and coronary artery
disease (Yuan et al., 2020). However, another study reported that
genetically elevated IL-1Ra, soluble IL-6 receptor (sIL-6R), and
C-reactive protein (CRP) levels are not causally associated with
ischemic stroke. Our study found no statistically significant effect
of IL-6 and IL-1ra on ischemic stroke. This inconsistency in
results may be due to differences in sample size and different
proportions of stroke subtypes in various populations (Tso et al.,
2007). Besides, our study confirmed that increased IL-4 was
associated with a reduced risk of ischemic stroke. The possible
explanation is that the anti-inflammatory factor IL-4 acts by
binding to the IL-4 receptor, enhancing the IL-4 signaling
pathway, reducing the incidence of ischemic stroke, and
promoting recovery after ischemic stroke (Xiong et al., 2011;
Ferreira et al., 2014; Liu et al., 2016; Lively et al., 2016; Chen et al.,
2020). Bis et al. reported that IL-1b promotes the ischemic stroke
risk (Bis et al., 2008). However, in our study, the association
between IL-1b and ischemic stroke was attenuated (OR:1.08, 95%
CI: 0.99–1.16, p � 0.07). The lack of significance was probably
explained by insufficient statistical power because we noticed that
the confidence interval of IL-1b was wider than most other
cytokines.

Most current studies focus on the effect of chemokines on
stroke rather than ischemic stroke. Early animal experiments
suggested elevated MCP3 was associated with stroke, especially in
aging mice (Townshend et al., 2015). Extensive research using
animal models has shown a vital role for monocyte chemotactic
protein-1 (MCP1) in atherogenesis and atheroprogression (Aiello
et al., 1999; Inoue et al., 2002; Lin et al., 2014). By binding to the
receptor CCR2, MCP1 attracts monocytes by being upregulated
under chronic inflammatory conditions. There was an
observational study involving 17,180 individuals to determine
the relationship between circulating levels of MCP1 and incident
stroke in the general population (Georgakis et al., 2019b). It was
reported that higher circulatingMCP1 increases the risk of stroke.
Further MR analysis supported this finding in the
MEGASTROKE dataset, however, it showed no statistically
significant correlation between MCP1 and ischemic stroke
(OR: 1.07, 95% CI: 0.97–1.18, p � 0.17) in the UK Biobank

TABLE 1 | Characteristics of inflammatory cytokines and ischemic stroke datasets.

Exposures Data source SNPs F Statistic Sample size Population

Interleukins YFSa and FINRISKb 4–20 18.8–52.9 3,309–8,270 European
Chemokines YFS and FINRISK 3–17 18.7–99.7 843–8,293 European
Other cytokines YFS and FINRISK 3–17 23.4–77.0 1,559–8,186 European
Outcome Data source Studies Cases/Controls Sample size Population
Ischemic stroke Meta-analysis 17 34,217/406,111 440,328 European

SNP indicates single nucleotide polymorphism; YFS, Young Finns Study; FINRISK, a large Finnish population survey on risk factors on chronic, noncommunicable diseases.
aYFS: 51% female, with the age range 34–49.
bFINRISK: 50% female, with the age range 24–74.
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TABLE 2 | Two-sample MR estimations showing the effects of interleukins, chemokines, and other cytokines on the ischemic stroke.

Exposures Methods Odds ratio (95% CI) p-value Q-statistics Ph Egger intercept Pintercept

Interleukins
IL-2 MR-Egger 0.91 (1.02–1.15) 6.96E-01 14.76 9.82E-02 −4.81E-03 6.23E-01

Inverse-variance weighted 0.95 (1.00–1.05) 9.02E-01 15.20 1.33E-01 — —

Weighted median 0.94 (1.00–1.06) 9.82E-01 — — — —

MR-RAPS 0.99 (0.95–1.04) 6.62E-01 — — — —

IL-4 MR-Egger 0.82 (0.91–1.02) 1.54E-01 1.47 9.82E-01 −3.24E-03 7.05E-01
Inverse-variance weighted 0.89 (0.84–0.95) 2.93E-04* 1.62 9.95E-01 — —

Weighted median 0.84 (0.91–0.98) 1.71E-02 — — — —

MR-RAPS 0.89 (0.84–0.95) 5.71E-04* — — — —

IL-5 MR-Egger 0.91 (0.71–1.18) 5.57E-01 2.61 2.72E-01 2.63E-02 3.35E-01
Inverse-variance weighted 1.07 (0.98–1.16) 1.34E-01 4.68 2.03E-01 — —

Weighted median 1.03 (0.95–1.13) 4.76E-01 — — — —

MR-RAPS 1.06 (0.97–1.16) 2.02E-01 — — — —

IL-6 MR-Egger 0.91 (0.68–1.21) 5.33E-01 20.98 8.22E-04 2.26E-02 3.57E-01
Inverse-variance weighted 1.03 (0.89–1.20) 6.96E-01 25.43 2.85E-04 — —

Weighted median 1.00 (0.90–1.10) 9.41E-01 — — — —

MR-RAPS 1.01 (0.91–1.13) 8.53E-01 — — — —

IL-7 MR-Egger 0.95 (0.87–1.03) 2.68E-01 11.85 3.04E-01 1.52E-02 2.24E-01
Inverse-variance weighted 0.96 (1.00–1.04) 9.67E-01 13.89 2.43E-01 — —

Weighted median 0.99 (0.95–1.04) 8.69E-01 — — — —

MR-RAPS 1.00 (0.96–1.03) 8.34E-01 — — — —

IL-8 MR-Egger 0.85 (0.94–1.04) 3.45E-01 0.59 7.52E-01 1.55E-02 2.53E-01
Inverse-variance weighted 1.01 (0.95–1.07) 8.40E-01 3.25 3.64E-01 — —

Weighted median 0.99 (0.92–1.07) 8.67E-01 — — — —

MR-RAPS 1.01 (0.95–1.07) 8.39E-01 — — — —

IL-9 MR-Egger 1.02 (0.89–1.16) 7.98E-01 0.12 9.92E-01 −2.23E-03 9.05E-01
Inverse-variance weighted 1.01 (0.95–1.07) 7.41E-01 0.14 9.96E-01 — —

Weighted median 1.01 (0.94–1.08) 7.76E-01 — — — —

MR-RAPS 1.01 (0.95–1.07) 7.48E-01 — — — —

IL-10a MR-Egger 1.00 (0.93–1.08) 9.54E-01 27.63 6.72E-02 2.56E-02 6.72E-01
Inverse-variance weighted 1.02 (0.98–1.06) 3.81E-01 27.91 8.53E-02 — —

Weighted median 1.01 (0.96–1.05) 7.73E-01 — — — —

MR-RAPS 1.02 (0.99–1.06) 1.84E-01 — — — —

IL-13 MR-Egger 0.97 (0.91–1.05) 5.22E-01 4.62 3.34E-01 1.22E-01 2.76E-01
Inverse-variance weighted 1.01 (0.97–1.06) 4.89E-01 6.51 2.63E-01 — —

Weighted median 1.00 (0.96–1.04) 0.95E-01 — — — —

MR-RAPS 1.01 (0.97–1.05) 5.51E-01 — — — —

IL-16 MR-Egger 1.01 (0.94–1.08) 8.62E-01 21.37 6.24E-03 −4.73E-03 6.92E-01
Inverse-variance weighted 0.99 (0.95–1.03) 7.92E-01 21.84 9.42E-03 — —

Weighted median 0.95 (0.98–1.02) 3.25E-01 — — — —

MR-RAPS 0.99 (0.96–1.02) 4.71E-01 — — — —

IL-17 MR-Egger 0.89 (0.70–1.11) 3.30E-01 14.37 7.25E-02 1.42E-02 4.14E-01
Inverse-variance weighted 0.89 (0.97–1.06) 5.52E-01 15.75 7.26E-02 — —

Weighted median 0.89 (0.99–1.10) 8.04E-01 — — — —

MR-RAPS 0.96 (0.88–1.04) 3.14E-01 — — — —

IL-18 MR-Egger 1.09 (0.99–1.20) 1.20E-01 15.75 7.23E-02 −1.63E-02 1.46E-01
Inverse-variance weighted 1.01 (0.97-1–06) 5.63E-01 20.31 2.62E-02 — —

Weighted median 1.01 (0.95–1.07) 7.61E-01 — — — —

MR-RAPS 1.01 (0.97–1.07) 5.19E-01 — — — —

IL-1ra MR-Egger 1.16 (0.95–1.43) 2.10E-01 9.80 8.12E-02 −1.71E-02 3.56E-01
Inverse-variance weighted 1.05 (0.97–1.13) 2.09E-01 11.92 6.43E-02 — —

Weighted median 1.08 (0.99–1.17) 7.45E-02 — — — —

MR-RAPS 1.08 (0.99–1.17) 6.90E-02 — — — —

IL-1b MR-Egger 1.15 (0.98–1.35) 1.64E-01 4.81 3.13E-01 −1.24E-02 4.12E-01
Inverse-variance weighted 1.08 (0.99–1.16) 6.98E-02 5.84 3.25E-01 — —

Weighted median 1.06 (0.96–1.17) 2.77E-01 — — — —

MR-RAPS 1.08 (1.00–1.18) 5.48E-02 — — — —

IL-2ra MR-Egger 1.00 (0.93–1.07) 9.45E-01 1.37 8.56E-01 −3.83E-03 7.14E-01
Inverse-variance weighted 0.99 (0.95–1.03) 6.69E-01 1.53 9.15E-01 — —

Weighted median 0.99 (0.95–1.04) 7.05E-01 — — — —

MR-RAPS 0.99 (0.95–1.03) 6.77E-01 — — — —

IL-12p70a MR-Egger 0.99 (0.93–1.05) 7.00E-01 11.67 3.83E-01 1.92E-04 7.17E-01
Inverse-variance weighted 1.00 (0.96–1.04) 8.74E-01 11.83 4.56E-01 — —

Weighted median 1.00 (0.96–1.04) 8.77E-01 — — — —

MR-RAPS 1.00 (0.96–1.03) 8.87E-01 — — — —

(Continued on following page)
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TABLE 2 | (Continued) Two-sample MR estimations showing the effects of interleukins, chemokines, and other cytokines on the ischemic stroke.

Exposures Methods Odds ratio (95% CI) p-value Q-statistics Ph Egger intercept Pintercept

Chemokines
CTACK MR-Egger 0.99 (0.91–1.08) 8.86E-01 5.92 5.52E-01 4.61E-03 6.92E-01

Inverse-variance weighted 0.98 (0.94–1.02) 2.72E-01 6.10 6.43E-01 — —

Weighted median 1.01 (0.95–1.06) 7.94E-01 — — — —

MR-RAPS 0.99 (0.95–1.03) 6.37E-01 — — — —

Eotaxin MR-Egger 1.00 (0.89–1.12) 9.58E-01 15.53 4.14E-01 2.52E-03 7.71E-01
Inverse-variance weighted 1.01 (0.97–1.06) 5.30E-01 15.62 4.85E-01 — —

Weighted median 0.98 (0.91–1.06) 6.58E-01 — — — —

MR-RAPS 1.01 (0.97–1.06) 6.60E-01 — — — —

GROa MR-Egger 1.01 (0.95–1.07) 8.18E-01 5.57 4.73E-01 6.91E-03 5.33E-01
Inverse-variance weighted 1.02 (1.00–1.05) 7.70E-02 6.01 5.44E-01 — —

Weighted median 1.01 (0.98–1.05) 4.59E-01 — — — —

MR-RAPS 1.02 (0.99–1.05) 1.11E-01 — — — —

MCP1 MR-Egger 1.04 (0.93–1.71) 4.73E-01 19.93 6.84E-02 1.83E-02
Inverse-variance weighted 1.03 (0.98–1.09) 2.37E-01 20.01 9.55E-02
Weighted median 1.04 (0.98–1.10) 2.31E-01 — — — —

MR-RAPS 1.03 (0.98–1.09) 2.36E-01 — — — —

MCP3 MR-Egger 0.82 (0.69–1.01) 2.83E-01 0.78 3.81E-01 3.72E-02 3.93E-01
Inverse-variance weighted 0.93 (0.88–0.99) 2.42E-02 2.77 2.53E-01 — —

Weighted median 0.97 (0.91–1.04) 4.96E-01 — — — —

MR-RAPS 0.93 (0.87–0.98) 1.62E-02 — — — —

MIG MR-Egger 1.01 (0.88–1.17) 8.59E-01 10.09 1.82E-01 7.92E-03 6.24E-01
Inverse-variance weighted 1.05 (1.00–1.11) 6.69E-02 10.48 2.32E-01 — —

Weighted median 1.09 (0.97–1.23) 1.93E-01 — — — —

MR-RAPS 1.06 (1.00–1.11) 3.27E-02 — — — —

MIP1a MR-Egger 0.92 (0.76–1.11) 4.25E-01 10.25 1.13E-01 2.53E-02 1.96E-01
Inverse-variance weighted 1.05 (0.98–1.13) 1.65E-01 14.02 5.13E-02 — —

Weighted median 1.08 (0.97–1.20) 1.89E-01 — — — —

MR-RAPS 1.05 (0.98–1.13) 1.35E-01 — — — —

MIP1b MR-Egger 0.99 (0.94–1.05) 7.37E-01 20.18 9.15E-02 4.08E-03 5.35E-01
Inverse-variance weighted 0.98 (0.94–1.02) 2.47E-01 20.83 1.16E-01 — —

Weighted median 0.99 (0.96–1.03) 7.23E-01 — — — —

MR-RAPS 0.97 (0.93–1.01) 1.38E-01 — — — —

RANTES MR-Egger 1.05 (0.93–1.20) 4.41E-01 3.02 9.37E-01 2.87E-03 8.44E-01
Inverse-variance weighted 1.04 (1.00–1.09) 7.88E-02 3.06 9.68E-01 — —

Weighted median 1.04 (1.00–1.09) 3.04E-01 — — — —

MR-RAPS 1.04 (0.97–1.13) 9.05E-02 — — — —

Other cytokines
IFNg MR-Egger 1.03 (0.90–1.19) 6.67E-01 8.07 4.32E-01 -1.23E-02 2.14E-01

Inverse-variance weighted 0.95 (0.88–1.01) 1.21E-01 9.96 3.53E-01 — —

Weighted median 0.97 (0.89–1.06) 5.70E-01 — — — —

MR-RAPS 0.96 (0.89–1.03) 2.43E-01 — — — —

MIF MR-Egger 1.02 (0.86–1.20) 8.68E-01 2.77 2.52E-01 2.93E-03 8.67E-01
Inverse-variance weighted 1.03 (0.96–1.10) 3.88E-01 2.82 4.26E-01 — —

Weighted median 1.02 (0.94–1.11) 6.75E-01 — — — —

MR-RAPS 1.03 (0.96–1.11) 4.17E-01 — — — —

TRAIL MR-Egger 0.99 (0.94–1.03) 5.62E-01 19.65 1.93E-01 — —

Inverse-variance weighted 0.99 (0.96–1.03) 7.43E-01 20.02 2.24E-01 2.92E-03 6.03E-01
Weighted median 0.99 (0.94–1.04) 6.20E-01 — — — —

MR-RAPS 1.00 (0.97–1.04) 8.04E-01 — — — —

TNFb MR-Egger 1.01 (0.95–1.07) 7.75E-01 0.41 8.25E-01 -7.75E-03 4.92E-01
Inverse-variance weighted 0.99 (0.95–1.03) 6.02E-01 1.12 7.73E-01 — —

Weighted median 0.99 (0.95–1.03) 6.54E-01 — — — —

MR-RAPS 0.99 (0.95–1.03) 6.12E-01 — — — —

TNFa MR-Egger 0.80 (0.69–0.94) 2.25E-01 0.77 3.84E-01 3.71E-02 2.36E-01
Inverse-variance weighted 0.97 (0.85–1.12) 6.84E-01 7.70 2.13E-02 — —

Weighted median 0.99 (0.90–1.08) 7.63E-01 — — — —

MR-RAPS 0.93 (0.82–1.06) 2.84E-01 — — — —

MR indicatesMendelian randomization;Ph, P-value for heterogeneity; RAPS, Robust adjusted profile score; IL, interleukin; CTACK, cutaneous T-cell attracting chemokine; GROa, growth-
regulated oncogene-α; MCP1, monocyte chemotactic protein-1; MCP3, monocyte chemotactic protein-3; MIG, monokine induced by interferon gamma; MIP1a, macrophage
inflammatory protein-1α; MIP1b, macrophage inflammatory protein-1β; RANTES, regulated on Activation, Normal T Cell 24 Expressed and Secreted; IFNg, interferon gamma; MIF,
macrophage-migration inhibitory factor; TRAIL, TNF-related apoptosis-inducing ligand; TNF, tumor necrosis factor.
aSNP, rs7088799, associated with body mass index, blood pressure, and self-reported hypertension (p < 5 × 10–6) using PhenoScanner V2 (Supplementary Table 2), was removed when
calculating MR results in cytokines IL-10, and IL-12p70. p-values in bold indicates they achieved the nominal significance (p < 0.05).
*p-values passed the Bonferroni correction tests (p < 0.0017).
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(Georgakis et al., 2019c). In our study, we found no evidence to
support that genetically determined MCP1 was associated with
the risk of ischemic stroke. This might be partially attributable to
different standards for selecting IVs and proportions of stroke
subtypes in different populations.

Our study systematically evaluated the association between
inflammatory cytokines and ischemic stroke risk using summary-
level data from a large-scale GWAS meta-analysis. There are also
several limitations to this study. Firstly, we extracted IVs using a
relatively higher threshold (p < 5 × 10–6), which weak IVs may
bias. However, considering both F-statistics and MR-RAPS
results, it appears unlikely that weak IVs could have
influenced our findings. Secondly, the association of
inflammatory cytokines with stroke risks may not be a linear
relationship, and we could not obtain the individual-level data to
perform a further non-linear MR analysis. Thirdly, the
population in this study is restricted to individuals of
European ancestry, which means that our findings may not be
extendable to other individuals of ancestry.

CONCLUSION

In summary, our study supported evidence that genetically
determined IL-4 levels are related to the reduced risk of
ischemic stroke, suggesting that regulation and intervention

of certain inflammatory factors might represent an effective
strategy for the future treatment and prevention of ischemic
stroke.
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