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Systemic stress test model 
for shared portfolio networks
Irena Vodenska1,2*, Nima Dehmamy3, Alexander P. Becker1,2, Sergey V. Buldyrev4 & 
Shlomo Havlin5

We propose a dynamic model for systemic risk using a bipartite network of banks and assets in which 
the weight of links and node attributes vary over time. Using market data and bank asset holdings, 
we are able to estimate a single parameter as an indicator of the stability of the financial system. 
We apply the model to the European sovereign debt crisis and observe that the results closely match 
real-world events (e.g., the high risk of Greek sovereign bonds and the distress of Greek banks). 
Our model could become complementary to existing stress tests, incorporating the contribution of 
interconnectivity of the banks to systemic risk in time-dependent networks. Additionally, we propose 
an institutional systemic importance ranking, BankRank, for the financial institutions analyzed in this 
study to assess the contribution of individual banks to the overall systemic risk.

Recent financial crises have motivated the scientific community to seek new interdisciplinary approaches to 
modeling the dynamics of global economic systems. Following seminal papers by Allen and Gale1,2, a number of 
empirical studies have attempted to estimate the risk of contagion in financial systems: the UK interbank market3, 
the German interbank market4, or the Austrian interbank market5, to name a few. Other works6,7 turned their 
attention to the impact of leverage and liquidity risk on contagion. While many of the existing economic models 
include noise and fluctuations, they assume a representative economic agent or use market data to infer interde-
pendencies among financial institutions. One such approach analyzes the exposure of financial institutions to 
common macro-factors to find the systemic risk impact that banks have on each other8,9. However, this type of 
analysis generally does not take into account the structure of the underlying economic network. In the aftermath 
of the global financial crisis, researchers argued for a new approach10. Economists have recently expanded tra-
ditional econometrics modeling with increased attention to two factors: (i) the structure of economic networks 
and (ii) their dynamics. One example of this approach is DebtRank11. The authors study the 2008 banking crisis 
and use network analysis to assess the role a bank plays in propagating systemic risk to other banks. By defining 
the DebtRank, a dynamic centrality measure in the interbank lending network, they show that the banks that 
need to be rescued are the ones that are more “central” in terms of their DebtRank. Identifying the critical nodes 
in the network is crucial since recent work has shown that nodes with higher centrality have greater potential 
for triggering cascading failures12–16. DebtRank has also been extended to bipartite networks, e.g., to the lend-
ing relationships between banks and firms in Japan17, however, the authors did not take in consideration the 
dynamic behavior of link weights.

Our paper is motivated by the European sovereign debt crisis that began in late 2009 with the divergence of 
the yield on Greek sovereign debt compared to the yield on debt of other European nations and led to a bailout 
of the Greek government18. The nature of the sovereign debt crisis in 2011 and the resulting network behavior 
differs from the 2008 global financial crisis. Here we focus on studying investment funds and financial institu-
tions that have been major holders of sovereign debts of Greece, Italy, Ireland, Portugal, and Spain (GIIPS), most 
affected eurozone countries by the European sovereign debt crisis. When these governments encountered fiscal 
difficulties, the banks holding their sovereign debt faced a dilemma, either to divest some or all of their holdings 
at reduced values or to try and wait out the crisis. In contrast to studies that focus on interbank lending11,19,20, our 
work explores the systemic risk impact of portfolio overlap. The similarity of banks’ asset holdings as a channel 
of contagion has recently attracted increased attention21–23.

OPEN

1Department of Administrative Sciences, Metropolitan College, Boston University, 1010 Commonwealth Avenue, 
Boston, MA  02215, USA. 2Center for Polymer Studies and Department of Physics, Boston University, 590 
Commonwealth Avenue, Boston, MA 02215, USA. 3Center for Science of Science and Innovation, Kellogg School of 
Management, Northwestern University, Evanston, IL 60208, USA. 4Department of Physics, Yeshiva University, 500 
West 185th Street, New York, NY 10033, USA. 5Bar-Ilan University, 52900 Ramat Gan, Israel. *email: vodenska@
bu.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82904-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3358  | https://doi.org/10.1038/s41598-021-82904-y

www.nature.com/scientificreports/

We propose a dynamic network model for assessing the vulnerability of the financial system to economic 
shocks. We construct a network of the largest institutional holders of sovereign debt of the five troubled euro-
zone countries (Greece, Italy, Ireland, Portugal, and Spain) during the European sovereign debt crisis of 2010-
2012. We also study the potency of individual banks to propagate systemic risk throughout the bank network. 
We propose a measure for a bank’s systemic importance in shared portfolio networks, BankRank, to identify 
how the linkages of banks contribute to the overall network losses in bank assets. In simulations we determine 
whether the network is in a stable state in which shocks do not cause major losses, or it is in an unstable state in 
which devastating damages occur. While the largest sovereign debt holders are usually more important, in the 
unstable regime smaller holders also exhibit systemic importance. Measuring the parameters of our model from 
the eurozone crisis data, the results show that before the crisis, the system was mostly in a stable regime, and 
that during the crisis it transitioned into an unstable regime. The numerical solutions produced by our model 
match closely the actual timeline of events of the crisis. Our model thus may be a useful tool for simulating the 
response dynamics of shared portfolio networks. We stipulate that our model can improve the ability to estimate 
the vulnerability of banks and assets to shocks. Using a snapshot of the GIIPS sovereign debt holders network 
from the end of 2011, we observe that: 

1.	 When we model the system’s response to an individual bank experiencing a shock, our analysis is in accord-
ance with real-world results, e.g., in our simulations, Greek debt is clearly the most vulnerable.

2.	 The dynamics arising from our model produce different outcomes for the system depending on the values of 
the parameters. The system exhibits at least two equilibria; in one, the system suffers mild monetary damage, 
while in the other, the monetary damage is quite significant and devastating.

In addition to DebtRank11, our paper also builds on recent studies of cascading failures in a bipartite network 
of banks and assets in which risk propagates among banks through overlapping portfolios22,24–27. Other models 
use simulated networks similar to real systems28, allow dynamic behavior of the nodes but not the links29, or 
incorporate dynamic behavior when a financial network attempts to optimize “risk-adjusted” assets30,31. Our 
approach expands upon these earlier models; with only two parameters, and all network variables are dynamic.

Results
We develop a dynamic risk propagation model using a bipartite network with banks in one part and assets in the 
other, as shown in Fig. 1. While our model is general, we are focusing on sovereign debt as the asset that drives 
the dynamics of the system. Governments borrow money by issuing sovereign bonds that trade in a secondary 
market, similar to the stock market32 where the laws of supply and demand determine the value of the bonds. 
Typically, investors consider sovereign bonds of developed countries as risk-free or very low risk. If, however, a 
country becomes troubled and the market perceives that the government may not be able to pay back its debt, 
the price of the sovereign bonds can crash. During the European sovereign debt crisis, Greek debt exhibited 
such behavior.

Model setup.  Each bank is endowed with equity and a portfolio of assets. The bank’s holdings determine the 
weighted links to the asset part of the bipartite network. Both equity and asset holdings may change dynamically 
over time. Each asset initially trades at its par value, and depending on supply and demand, its price will adjust. 
Banks are constrained by regulation, influencing their reactions to changes in the value of their holdings, par-
ticularly if losses in their portfolio negatively affect their liquid capital. Commensurate with the observed change 
in equity, after a short delay, banks will buy or sell assets. Our model includes a parameter for bank behavior, 
a “panic factor,” which diminishes or amplifies the response of banks to asset value changes. Any action by the 

Figure 1.   (a) A sketch of the network of banks vs assets as a weighted bipartite graph. The thickness of the lines 
represents sovereign debt holding weights. The network is characterized by its weighted adjacency matrix A. The 
entries Aiµ describe the number of bonds µ held by bank i. (b) Amount of banks’ holdings in GIIPS sovereign 
debt expressed in units of millions of euros. The vertical axis denotes different banks, and they are sorted from 
top to bottom in ascending order in terms of their total exposures to GIIPS debt. Because holdings differ by 
orders of magnitude, we have plotted log(A+ 1) here.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3358  | https://doi.org/10.1038/s41598-021-82904-y

www.nature.com/scientificreports/

banks results in a shift in supply and demand and, after a short delay, affects asset prices. The change in asset 
prices is proportional to the fraction of assets being bought or sold and to the liquidity of the asset. Our model 
includes a “liquidity” parameter measuring the depth of the market. For example, if a bank sells a small amount 
of a particular asset or if the asset is very liquid, the price impact will be minimal. If, however, banks sell a large 
amount of an asset or if the asset is particularly illiquid, the price changes will be magnified. We also make the 
following additional key assumptions and specifications in our model.

•	 Open system The banks do not exclusively trade with each other. They may trade with an external entity, 
which may be the central bank or other, smaller investors. With respect to actual financial networks, exclud-
ing other actors would be an unrealistic assumption. Take the case of GIIPS sovereign debt; in addition to 
the European Central Bank (ECB), which has been buying some of the bonds if there was a need to stabilize 
the system, a large number of investors hold this debt. In this way, our model is distinct because agents are 
not assumed to be trading only with each other, as is the case in many other models in banking or financial 
networks.

•	 Equilibrium perturbation When there is no change in equity, price of the sovereign bonds, or bond holdings, 
there is no intrinsic dynamic activity in our financial network.

•	 Herding Agents in the system (institutional holders of sovereign debt) follow other agents’ actions leading to 
the so-called “herding effect.”

•	 Short-term response The model describes the short-term responses of the system and disregards slow, long-
term driving forces of the market.

One part of the network contains bonds, or assets, A , which we label using Greek indices. In the following, 
we use the terms “bond” and “asset” interchangeably. The other part of the network contains a set of banks B , 
which we label using Roman indices. When a bank owns an asset, a link between the respective bank i and asset 
µ is formed. The weight of the link indicates the quantity of asset µ that bank i owns. Also, for a bank, holding 
sovereign debt is equivalent to the bank lending funds to a government. Each bank is characterized by its equity 
Et(t) and its holdings from the set of assets Aiµ(t) , which both change over time and generally differ from bank 
to bank. At any given time t, bond µ can be bought or sold for price Pµ(t) . This price depends on the supply and 
demand for this asset. Without loss of generality, all bonds start trading at par, that is, Pµ(0) = 1.

Our model allows us to describe how each of the variables Ei(t),Aiµ(t) , and Pµ(t) evolves over time. A key 
feature of our model is the time-dependence of the links Aiµ , introducing dynamics into our network. The equity 
Ei(t) of a bank i is

Here Pµ is the price of asset µ as a fraction of its original price. If the assets are bonds, this corresponds to the 
fraction of their par value. Ci denotes the liquid capital of the bank. These parameters evolve in time. We use 
the maximum function to denote that a bank’s equity is non-negative; if the equity of bank drops below zero in 
our model, the bank goes bankrupt. We further introduce the market value of the bond portfolio held by bank 
i, Vi ≡

∑

µ∈A AiµPµ , and the par amount of bond µ outstanding, Aµ ≡
∑

i∈B Aiµ . While the liquid capital of 
the bank is subject to change for a myriad of reasons, we focus on the impact of sales and purchases of assets 
from set A . For that reason, we separate out the change in liquid capital due to portfolio transactions from other 
sources of change in liquid capital:

The minus sign indicates that a sale of assets implies �Aiµ < 0 , and the transaction should increase the liquid 
capital on the balance sheet of bank i. �Si encompasses the impact due to other sources of capital changes.

Due to regulatory constraints, the bank is concerned how changes in liquid capital affect its equity. A sale of 
an asset, as described in Eq. (2), does not decrease the bank’s equity because the reduction in assets corresponds 
to a commensurate increase in the cash position. �Si , however, describes the net impact of other factors on 
liquid capital, and therefore, it has an impact on the bank’s equity. A change in the prices of bonds from the set 
of assets A also changes the bank’s equity:

If a bank’s equity shrinks, it may need to consider selling assets, possibly at depressed prices, while, if the equity 
increases, the bank may expand its holdings. In our model, the bank decides to buy or sell assets based on the 
changes in its portfolio (or indirectly, the change in its equity):

We introduce β to model the bank’s urgency to purchase or sell assets. The larger β is, the more assets the bank 
trades as a response to a change in portfolio value. In the case of asset sales, β can be regarded as a ‘panic factor’ 
as it accelerates the selling pressure on the assets. Our model assumes that the bank acts after a response time 

(1)Ei(t) = max







�

µ∈A

Aiµ(t)Pµ(t)+ Ci(t) , 0







.

(2)�Ci(t) = −
∑

µ∈A

(�Aiµ(t))Pµ(t)+�Si(t).

(3)�Ei(t) = �Si(t)+
∑

µ∈A

Aiµ(t)�Pµ(t).

(4)�Aiµ(t + τA) = β
�Et(t)

Et(t)
Aiµ(t).
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τA following the change in its equity position. When banks trade, they impact asset prices. In our model, price 
changes are proportional to the quantity of assets sold as a fraction of total assets held by other institutions in 
the set of banks B and the market sensitivity to sales or market liquidity. The price impact of asset sales is not 
immediate in our model; instead, we account for a short market response time τP.

where α is the market sensitivity. The fraction of sales ( �A/A ) required to reduce the price by one unit ( �P/P ) 
is equal to 1/α . Therefore, this parameter can also be understood as the inverse of market liquidity or market 
depth. We assume the same “inverse market depth” α for all assets in A . For notation description, see Table 1.

So far, we have used discrete time steps. Assuming small time lags, we convert Eqs. (3)–(5) to continuous-time 
differential equations. We transform �F → dF/dt and expand the resulting equations to second order in time 
(If the time lags are small, we can expand the equations with τ to dF(t+τ)

dt ≈ d
dt

(

F(t)+ τ dF
dt

)

= dF
dt + τ d2F

dt2
 ). 

Further, we will assume the response times of the market and the banks are identical τ = τA = τP . Differences 
in response time do not affect the the stability of the system (see Supplementary Section S1). The equations of 
the model can be written as:

where fi(t) = dSi/dt is the impact of external influences, and τ is the time-scale in which banks and markets 
respond to a change. Without such a time lags, Eqs. (6)–(8) would merely relate the first-order time derivatives 
of E, A, P to each other, similar to Eq. (11), and there would not be any dynamics.

Shocking the system.  In Eq. (8), fi(t) denotes changes to the liquid capital and the bank’s equity from 
other sources than the changes of bank’s portfolio of assets A . We assume that a shock to the system comes in the 
form of fi(t) = sEiδ(t) , where δ(t) is the Dirac delta function. Such a shock instantaneously changes the equity 
of a bank i by a fraction s of its equity and leaves all other banks unaffected, fj = 0 for j  = i . Inserting fi(t) into 
Eq. (6), we can find the initial condition for Aiµ through integration:

Since the other banks are initially unaffected by this shock, their holdings are not modified. This implies 
∂tAjµ(0) = 0 for j  = i . Additionally, the fi(t) that we are using implies that the initial equity of bank i changes 
to (1+ s)Ei(0) . If s < 0 , then the bank experiences a deterioration of its equity. Naturally, asset prices can not be 
negative, implying Pµ(t) ≥ 0 . Our model does not allow short sales, hence Aiµ(t) ≥ 0 . Lastly, the bank’s equity 
cannot fall below zero, which means Ei(t) ≥ 0 , as described in Eq. (1).

Linear response model.  We are interested in the response of the system to external shocks. We assume 
that, before being shocked, the system is near equilibrium. This equilibrium may correspond to local optima of 
an objective function (Lagrangian) L(E,A,P, S) , with S representing exogenous drivers or shocks. We perform a 
Taylor expansion of L near an equilibrium point and keep the leading order terms. The possible terms that thus 
may appear in the expansion of L are of the form |E|2, |P|2, |A|2 , as well as ETAP and their various time deriva-
tives. For brevity, we define ∂t ≡ d

dt . Although terms like ∂tETAP are third order in the variables, they are the 
only terms which utilize the network structure to connect losses or gains ∂tE to asset prices, thereby serving as 
channels for risk propagation. Hence we have

(5)�Pµ(t + τP) = α
�Aµ(t)

Aµ(t)
Pµ(t),

(6)
(

τ∂2t + ∂t
)

Aiµ(t) = β
∂tEi(t)

Ei(t)
Aiµ(t)

(7)
(

τ∂2t + ∂t
)

Pµ(t) = α
∂tAµ(t)

Aµ(t)
Pµ(t)

(8)∂tEi(t) = fi(t)+
∑

µ∈A

Aiµ(t) ∂tPµ(t).

(9)∂tAiµ(0) = βAiµ(0) ln(1+ s).

Table 1.   Notation.

Aiµ(t) Holdings of bank i in asset µ at time t

Pµ(t) Fraction of price of asset µ at time t; Pµ(0) = 1

Et (t) Equity of bank i at time t

α Inverse market depth

β Banks’ panic factor

τA , τP Response times of investors and prices, respectively
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where γ and T are constants. We do not include ET∂tAP , as it can be absorbed into the two other terms by a 
partial integration. We define the time scale T such that the coefficient of the second term in the integral becomes 
1. Using the variational principle, we derive the Euler–Lagrange (EL) equations

where δXL = ∂L
∂X − ∂t

∂L
∂(∂tX)

= 0 for X ∈ E,A,P . A Lagrangian with purely first order time derivatives does 
not yield any dynamics, as the EL equations will only describe relations among the time derivatives. In reality, 
response times in the system will result in second order time derivatives, yielding non-trivial dynamics. Motivated 
by the structure of Eq. (11), we construct a phenomenological model, which attempts to capture the response 
behavior of investors and markets.

Stability analysis of the model.  Comparing the dynamical Eqs. (6)–(8) with Eq. (11) based on expansion 
around equilibrium we find approximately α = −γ /(γ + 1) and β = −(γ + 1) , hence γ = αβ . From Eq. (10) 
we see that when γ ∂tETAP = ETA∂tP , the response is no longer linear and we need to consider higher order 
terms. Taking a mean-field approach, we estimate the critical value of γ for a given ratio of the exposure to sov-
ereign debt to equity � = E[AP/E] . From Eqs. (8) and (10), we find that the linear response terms vanish when 
(γ − �

−1)∂tP
TATAP = 0 . This suggests that when γ � = 1 , the system could go through a phase transition. This 

critical γ can also be derived directly from Eqs. (6)–(8) using the mean-field assumption (see Supplementary 
Section S1). Writing E ≈ AP/� , we remove the dependence on E and A, yielding a single equation

This suggests that ∂tP behaves approximately like a damped oscillator in the mean field model. When ω2 < 0 , 
which occurs when γ � > 1 , the system becomes unstable. It is worth noting that Eq. (12) is almost identical to 
the equation proposed in33 to describe the behavior of a market near a phase transition, heading from normal 
behavior toward a crash.

Figure 2 shows the full phase diagram of Eqs. (6)–(8) and the critical slowing down, simulated on the data set 
of GIIPS holders in 2011. Our stability analysis of the GIIPS data (Fig. 2a) shows that the transition occurs close 
to γ = 1 . We also observe that the dynamics slow down dramatically near γ = 1 (Fig. 2b). This is reminiscent 
of the critical slowing down in a second order phase transition.

The regimes of stability of the system’s behavior can be summarized as follows: 

1.	 When γ � > 1 , shocks cause exponential increases or drops in asset prices and equities. If γ � > 1 persists for 
an extended period of time, we may observe the formation of a bubble or a crash.

2.	 When 0 < γ � < 1 , values of Pµ and Ei respond to the shock and settle into a new equilibrium state close to 
the initial state. Bankruptcies are contained and can be explained by bank-specific equity levels Ei and asset 
holdings Aiµ.

(10)L(E,A,P) ≈
1

T

∫

dt
[

γ ∂tE
TAP− ETA∂tP

]

+ higher time derivatives of ETAP+O({E, A, p}4)

(11)

δpL : ET∂tA = −(γ + 1)∂tE
TA, δEL : A∂tP = −

γ

γ + 1
∂tAP, δAL : γ ∂tEiPµ = Ei∂tPµ.

(12)
[

τ∂2t + ∂t + ω2
]

∂tP = O
(

(∂tP)
2
)

≈ 0, where ω2 =
1− γ �

τP + τA
.

Figure 2.   (a) The phase diagram of the model using GIIPS sovereign debt data. The colors indicate the sum 
of the ratios 

∑

µ Pµ(t)/Pµ(0) for final asset prices. In one phase (red) the average final price is high, while it 
drops to zero in the other phase (blue). (b) The time the system takes to reach the new equilibrium phase. This 
relaxation time significantly increases around the transition region akin to a critical slowing down. The white 
dashed line indicates γ = αβ = 1 , which is close to where the transition occurs.
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3.	 When γ � < 0 , shocks give rise to fluctuations in Pµ and Ei . However, prices and equity levels eventually 
settle close to their original values.

Stability analysis of the European financial system.  In the empirical part of our study, we analyze 
119 banks, investment funds, and insurance companies, which represented the largest institutional holders of 
GIIPS sovereign debt in 2011. (Hereafter, for simplicity, we use the term “banks” to refer to all these financial 
institutions.) We use the sovereign debt holdings of the banks as their assets 

∑

µ AiµPµ and use their equity as Ei.
As expected, we observe that banks with a very low level of equity fail rapidly in case of a shock; they cease 

trading and are no longer able to contribute to a decline in asset prices. As a result, they are able to inflict dam-
age on the system only for a brief period of time. We identify four such banks in our data set. However, banks 
whose equity positions are weak but sufficient to survive a shock cause larger systemic damage. Since they are 
distressed but able to survive for a significant period of time, they continually exert downward pressure on asset 
prices. Therefore, banks that are on the cusp of failing but do not fail immediately, have a larger aggregate effect 
on the financial system than extremely weak banks.

In our model α and β are behavioral parameters and are difficult to measure independently.
The stability of the system in our model depends on the product of the two parameters γ ≡ αβ and � . In the 

data for the dominant holders of GIIPS debt in 2011, the average value for � of the banks was 1.2. We will thus 
use γ = 1 as an approximate stability bound in our analysis. When γ < 1 , the system is relatively stable with 
shocks not resulting in catastrophic crashes. Conversely, γ > 1 represents an unstable regime, where positive 
shocks can create bubbles and negative shocks result in the crash of the entire system34. To measure the stability 
of the eurozone sovereign debt market we simplify Eqs. (6) and (7) to obtain an approximate equation for γ (t) . 
Assuming that the time lag τ is small compared to the time scale over which α and β change, we have

Hence, γ = αβ relates the returns of assets �Pµ/Pµ to the percent change on bank equities �Ei/Ei (e.g., com-
mon stocks for public banks) weighted by the fraction of total sovereign debt held by the banks, which are the 
dominant holders Aiµ/Aµ (see “Methods”).

For γ < 1 , when the system is shocked, it reaches a new equilibrium near the initial conditions (Fig. 3a,b). 
When γ = αβ ≈ 2 , such as at the height of the crisis, even a small shock could have a devastating effect 
(Fig. 3c,d). Although many banks incur significant losses when α and β values are at their highest, the same 
four banks are severely distressed in both regimes α = β = 0.6 and α = β = 1.5 . Figure 3 shows examples of 
the time evolution of the asset prices and the equity of the banks that incurred the largest losses. Three of the 
four most vulnerable banks in our simulation are major holders of Greek sovereign debt, which is the asset that 
has the highest losses, followed by Portuguese debt (Real-world data indicates that the loss on Irish debt was 
as severe as that on Portugal’s). Our model bases the loss prediction solely on the network of banks which are 
holding GIIPS sovereign debt.

Assuming herding, we approximate an average γ for the GIIPS countries (Fig. 4, top), and also calculate 
individual γµ , to examine differences among countries (Fig. 4, bottom). For the eurozone countries from 2006 
to 2020 we observe the following: 

1.	 Before the onset of the crisis in 2009, γ remained in the stable regime ( γ < 1).
2.	 Greece entered the unstable regime ( γ > 1 ) numerous times between 2010 and 2020.
3.	 Portugal and Ireland also reached alarming values of γ during the crisis in 2011 and 2012, but were relatively 

more stable than Greece.
4.	 Throughout the entire period of 2006-2020, Germany and France mainly remained in the stable regime, with 

γ generally being smaller than one.

(13)
�Pµ

Pµ
≈ α

�Aµ

Aµ

≈ αβ
∑

i∈BDom

�Ei

Ei

Aiµ

Aµ

.

Figure 3.   Applying an exogenous shock to the liquid capital of Bank of America. (a) Asset prices vs. time for 
α = β = 0.6 . Greek debt incurs the greatest losses, falling to 75% of its original value. The legend shows the final 
prices. (b) Equity of the four most vulnerable banks. Three major Greek banks incur large losses, and one Italian 
bank is predicted to fail if α = β = 0.6 . IT043 is Banco Popolare, which has very small equity but large Italian 
debt holdings. The other three are Agricultural Bank of Greece, EFG Eurobank Ergasias, and T.T. Hellenic 
Postbank S.A., all among the top holders of Greek sovereign debt. (c) Results for larger values α = β = 1.5 . This 
time also Spanish and Portuguese debt show the next highest level of deterioration. (d) The same four banks are 
the most vulnerable for α = β = 1.5 , but this time two more banks fail.
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These findings are consistent with real-world events, with Greece being the country with the highest volatility in 
its sovereign debt. Our model’s claim that γ > 1 indicates a potentially unstable regime is further validated by 
the fact that the GIIPS countries reached highest values of γ during the eurozone crisis, while during the same 
time γ for Germany and France remained small. Furthermore, the three countries Greece, Portugal and Ireland 
with the highest γ during the crisis were precisely the three countries that required bail-outs during the crisis, 
further validating our model’s prediction.

Note that our estimates for 2006-2010 are based on the assumption that the holdings of major sovereign bond 
holders did not change significantly, as the earliest detailed disclosure of these holdings available to us is from 
the end of 2011. Additionally, after 2011, we have biannual holdings starting 2014 until 2019, containing only 
banks supervised by the EBA. Despite these limitations, our results are compatible with the real-world events. 
Individual plots for γ for each country can be found in the supplementary material in Fig. S1. Overall we find 
that the GIIPS countries had the highest average γ among the eurozone countries we examined, though Iceland 
also reaches values comparable to Italy.

Impact of the network structure.  To demonstrate the importance of the underlying network structure, 
we examine the effect of random rewiring between banks and sovereign debt. Our goal is to determine to what 
extent the dynamics of the system are caused by the network structure. To this end, we perform five different 
randomizations of the network Aiµ : 

1.	 Weight shuffled: we only shuffle the weights while keeping the structure of the links.
2.	 Unweighted: we keep all nonzero links and assign them a weight equal to the average of A.
3.	 Randomizing banks: we keep the total outstanding debt for each country the same and randomize the hold-

ers.
4.	 Randomizing sovereign debt: we keep the total bank exposure unchanged and modify the origin of sovereign 

debt.
5.	 Complete randomization: we shuffle all links.

For the sovereign debts, we observe that any randomization changes the vulnerability of each country, empha-
sizing the importance of the network structure and the weights. Greek debt, for example, is no longer the most 
vulnerable when the network is randomized. For the banks, however, we observe that some banks, including the 
National Bank of Greece and Piraeus Bank, consistently rank among the top five most vulnerable banks for almost 
all randomizations. This suggests that the level of equity for these banks is too low for them to survive a shock.

Figure 5 shows an example of network randomization and how dramatically the final results differ. The ran-
domized network demonstrates two important features of the model: (i) system dynamics are strongly affected 
by the network structure, i.e., knowing only variables such as the equity and exposure of individual banks is not 
sufficient, and (ii) real-world data seems to indicate that the composition of the holders of Greek sovereign debt 
affects the value of the bonds.

Figure 4.   Estimates of γ = αβ over three-month periods. Top: the purple curve shows the average of γµ over 
the GIIPS countries and the shaded area indicates 95% confidence interval. Bottom: Calculation of γµ for 
individual countries. GIIPS countries are shown as solid curves, and Germany, France and Iceland are shown as 
dashed line for reference. GIIPS countries show higher values of γ which also fluctuated more over time. Since 
late 2009, γ for GIIPS countries has risen close to or above the stability threshold γ = 1 , most notably, Greece 
and Portugal. Before the height of the crisis 0 < |γ | < 1 . It reaches γ > 1 at the height of the crisis in late 2012. 
After the crisis, we see the average γ decrease again to γ < 1 . In contrast, Germany and France stayed in the 
stable regime for almost the entire period shown.
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The vulnerability of sovereign debt is affected by the stability of a country’s government, and the greater the 
stability of a government, the lower the risk of the sovereign debt. Predominantly, banks hold domestic sov-
ereign debt, leading to a lack of diversification in their portfolios. Since we are building the network based on 
these holdings, the topological features capture this home bias. We observe in our simulations that this greatly 
impacts the outcomes after a shock. If these holdings are distributed differently to eliminate the inherent home 
bias, the vulnerability of the financial system is reduced as both the sovereign debt and the banks are less affected 
by a downturn in their domestic economy. Similarly, if the amounts of sovereign debt holdings are distributed 
differently without changing the ownership structure, this also improves the stability. The detailed results for all 
the randomizations are shown in Fig. S2.

BankRank as a measure of systemic impact.  Based on our observations above, firms at the threshold 
of failure exhibit the largest threat to the system. Therefore, we define a “survival equity ratio” which is the mini-
mum fraction of the equity a bank needs to survive a shock. At the same time, this ratio is also the one at which 
a bank can induce the most damage to other banks. Consider, for example, a well-capitalized bank with $1bn 
in equity when a shock enters the system through other banks. Based on its holdings and portfolio overlap with 
other financial institutions, the bank is affected by the shock, but it survives. By how much could we reduce the 
bank’s equity and still avoid its failure? If the bank were to fail as soon as the equity dropped below $0.8bn after 
a shock hits the system then the “survival equity ratio” would be 0.8 or 80 percent. A bank at the cusp of failure 
can cause varying degrees of damage, which differs significantly from bank to bank. The reason for this lies in 
the structure of the financial network arising from the banks’ portfolios. Understanding the effect of individual 
financial institutions on the vulnerability of the entire network is an important input into creating effective strat-
egies for mitigating the systemic risk35. In order to assess the potential impact of each bank, we create a scenario 
in which the banks’ equity levels are at their survival equity ratios when we stress the financial network.

We analyze two scenarios. In both cases, we start with the empirical network of European banks and assets. 
In the first scenario, we increase the equity of the four banks that we have identified as failing to their survival 
equity ratio: Ẽi(0) =

∑

µ Aiµ(0)Pµ(0) . We leave the equity of the other banks unchanged. This procedure makes 
the system resilient to shocks when γ = αβ < 1 , that is, when the combination of panic factor and asset illiquidity 
does not exacerbate a shock. In this regime, the decrease in sovereign debt prices stays below 1% by the time the 
system reaches its equilibrium. In the unstable regime, however, where γ > 1 the system incurs significant losses 
from the negative effect of the banks that are on the cusp of failure and could propagate value loss throughout 
the financial network.

In the second scenario, we assess the systemic importance of each bank one by one. We numerically determine 
the survival equity E∗i  for which the bank does not fail such that for Ei(0) < E∗i  the bank fails. We then set the 
initial condition for bank i to this critical value of equity, Ẽi(0) = E∗i  . To induce stress to the system, we shock 
one bank j  = i , selected from the banks in the system. Our results are independent of the source of the shock, 
as Fig. 5 illustrates. However, regardless of the origin of the shock j, the contagion process plays out differently 
for each bank i because it has uniquely different sovereign debt holdings, 

∑

µ AiµPµ . We introduce a network 
measure to use the variations in the Aiµ to construct BankRank, which describes the different level of systemic 
importance of each bank.

We define BankRank of bank i as the ratio of remaining value of assets in the system at the final time step 
t = tf  over the initial holdings at time t = 0 when Ẽi = E∗i  . Therefore, a smaller value of Ri indicates a greater 
the systemic importance of bank i:

(14)BankRank of Bank i : Ri =

∑

µ

∑

j Ajµ(tf )Pµ(tf )
∑

µ

∑

j Ajµ(0)Pµ(0)

∣

∣

∣

∣

Ẽi=E∗i

.

Figure 5.   (a) Shocking different banks at α = β = 0.6 . The final prices of the GIIPS sovereign debts are 
similar to the original prices. The horizontal x-axis displays bank’s identification numbers from 1 to 119. The 
vertical y-axis displays asset prices. (b) and (c) Randomizing which bank lends to which country, while keeping 
total debt constant for each country. The results differ dramatically from the real-world data used in Fig. 3. 
In this example Portuguese and Italian sovereign debts experience largest losses, while Greek debt is the least 
vulnerable. Other random realizations yield different results.
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Comparison of BankRank to portfolios.  In Fig.  6 we show BankRank in the unstable regime at 
α = β = 1.5 and how it compares to (1) survival equity ratio E∗i /Ei , the ratio of minimum equity required 
for survival and initial equity, (2) initial holdings, and (3) bank’s equity. We observe some correlation between 
BankRank and each of these variables. In Fig. 6, we show a comparison of BankRank and the bank’s holdings, 
which represents the banks’ degree centrality in the network. In the stable regime where αβ < 1 the correlation 
is high; in calm and liquid financial markets, the size of the portfolio seems to be a good proxy for the systemic 
importance. However, in the unstable regime where αβ > 1 the correlation between the BankRank and bank 
holdings is much weaker and actually insignificant ( p = 0.52 ). Therefore, while in the stable regime sovereign 
debt holdings almost completely determine the systemic importance of a bank, in the unstable regime smaller 
holders might have high systemic importance. We further compare BankRank in the unstable regime with vari-
ous centrality measures16 (Fig. S3) and find no significant correlations with eigenvector centrality ( p = 0.52 ), 
closeness centrality ( p = 0.60 ) and flow betweenness centrality ( p = 0.40 ). To calculate these centrality meas-
ures, we construct a bank-bank exposure network B = AAT from the holdings matrix A. Note that none of the 
above familiar network centrality measures take the equity of banks into account, whereas BankRank is sensitive 
to the equity of banks. Given the insignificant correlation of BankRank with the familiar centrality measures, we 
believe that BankRank in the unstable regime captures an important dynamical property of this system. Since 
banks with a very small “survival equity ratio” are able to absorb a large initial shock, the combination of Bank-
Rank and this ratio can inform stress tests for individual banks.

Discussion
We introduce a model for studying the systemic importance of investors in a financial market as well as assess-
ing the stability of the market. We apply our model to the large institutional holders of GIIPS sovereign debt 
and investigate their impact on systemic risk at the height of the European sovereign debt crisis of 2009-2012. 
We analyze the period surrounding the crisis and contrast the stability during the crisis versus the non-crisis 
period. Our methodology can be used to model systemic risk propagation through a bipartite network of banks 
and assets, i.e., the model can serve as a “systemic stress testing” tool for complex financial systems, and it can 
be used to identify the stability of a financial network.

Specifically, our model predicts that a parameter γ relating the returns on assets to the percent change in the 
equity of the investors is a good indicator of the stability of the market. We predict that the market is unstable 
when γ > 1 , while when γ < 1 the system is stable. The predictions of our model regarding the stability of the 
GIIPS holders network match well the time-line of the European sovereign debt crisis.

We also propose a simple, dynamic systemic risk indicator, BankRank, which measures the amount of damage 
that the bank network suffers from a failure of a particular bank. While the system is in a stable state, BankRank 
has significant correlation with GIIPS sovereign debt holdings, while in the unstable state BankRank doesn’t 
correlate well with initial sovereign debt holdings or equity of banks. This shows that simple measures such as 
initial size of the bank or distribution of bank assets cannot determine the systemic importance of banks. Our 
method improves the measurement of systemic risk in bank networks by investigating the significance of the 
network structure and proposing that the relations among banks through shared portfolios are central for assess-
ing the risk of the banking system. Our model may serve as a monitoring and simulation tool for policymakers to 
identify systemically important financial institutions and to assess systemic risk build-up in financial networks.

Real-time monitoring of the accumulation of risk in the financial system could improve risk management by 
central bankers, as well as by financial institutions themselves. Policymakers could be better equipped to identify 
the sources of risk and propose policies that could increase the stability of the entire system. Understanding the 

Figure 6.   Left: We show the systemic importance of banks according to their BankRank, indicating the 
damage their failure inflicts on the entire system. Each bank is denoted by a number; refer to Table S3. for their 
respective names. The second plot shows the survival equity ratio E∗/Ẽ , the third is the initial holdings, and 
the fourth shows the initial equity, all sorted in terms of BankRank at α = β = 1.5 . As we see, none of these 
three variables correlates highly with BankRank. The ranking changes for different values of α and β . Right: 
Scatter plot of the holdings divided by maximum holdings (Holdings/max) on y-axis vs. BankRank on x-axis 
for four different values of α = β = [0.4, 0.6, 1, 1.5] . As we see, increasing αβ decreases the correlation between 
BankRank and initial holdings. BankRank at γ = αβ < 1 is strongly negatively correlated with the holdings. But 
at γ = αβ > 1 , BankRank deviates significantly from the holdings. In the unstable regime γ > 1 it is no longer 
true that only the largest holders have the highest systemic importance.
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complexities and the interconnectivity of the financial system is a first step to taking preventative measures and 
protecting the financial network from catastrophic failures with lasting consequences. Lastly, our view is that the 
model we propose in this paper, while tested on the European sovereign debt crisis, is suitable for other countries 
and regions of the world, as well as other sources of risk.

Methods
Data set.  We start with a data set covering 136 banks, investment funds, and insurance companies, which 
represent the largest institutional holders of GIIPS sovereign debt in 2011. (Hereafter, for simplicity, we use the 
term “banks” to refer to all these financial institutions.) Table 2 shows the percentages of the sovereign bonds 
issued by each GIIPS country owned by these banks. Since our model requires knowledge of the equity of each 
bank, we reduce our data set to those 121 banks for which we could obtain this information. By the end of 2011, 
two important Greek banks – the National Bank of Greece and Piraeus Bank – had negative equity. Because our 
model only considers banks that can execute trades based on positive equity, we also eliminate these two banks 
from our analysis.

Due to changes in regulation and policy, the EBA modified its framework for bank stress testing after 2011 
and introduced a “Transparency Exercise” in which banks report their holdings semiannually. To account for 
name changes and restructurings in the period from 2014 to 2019, we have consolidated the data accordingly. 
Consolidated entries are marked as such in the supplementary material. The number of banks in the data set 
fluctuates year over year, and it is at its lowest at 87 in 2015/16 and at its highest at 126 in 2019.

From our data set, we extracted the individual banks’ gross exposures to GIIPS sovereign debt. We aggregated 
the debt on the banks’ balance sheets across all maturities. For each semiannual report in the Transparency 
Exercise, we determined the dominant holders according to the following rule: We sorted the banks in order of 
their percentage holdings of the debt of each of the GIIPS countries from high to low. We then selected the larg-
est holders until the banks in our selection make up at least 2/3 of the total holdings for the respective country. 
If our selection consisted of less than four banks or we did not have stock price information for at least four 
banks, we supplemented the selection by the next largest bank(s) until we had at least four banks for which we 
could compute equity returns. Please refer to the supplementary Table S1 for the list of dominant GIIPS holder 
at the end of 2011 and 2019 and Table S2 for the names of the banks corresponding to the above ticker symbols. 
Bank equity is mostly comprised of the shareholders’ equity, or common stock, which we approximated by the 
market value of equity. We estimated �Ei/Ei as the ordinary return of the stock of these dominant sovereign debt 
holders. We retrieved their stock prices from Yahoo Finance, using the monthly adjusted close prices in euros. 
To compute the change in bond prices, we obtained the monthly yield of 10-year bonds for the GIIPS countries 
from the Federal Reserve Economic Database (FRED).

Parameter estimation.  We estimate the values of our parameters for the GIIPS sovereign debt crisis. We 
use approximate versions of the differential Eqs. (6) to (8) in order to estimate γ = αβ . The distribution of asset 
holdings is roughly log-normal; as a result, a large portion of each GIIPS country’s debt is held by only a few 
banks. Therefore, using the equity of the dominant holders of the debt µ accomplishes a good estimate of γ . We 
denote this set of dominant holders BDom.

We further estimate that the response time τ is at most on the order of several days. Therefore, we calculate 
γ = αβ over a period of four months to allow the system to reach its new final state. From Eq. (4) we have

where the Aiµ/Aµ factor ensures that we have a weighted average of returns �Ei/Ei based on how large banks’ 
holdings are. Since we are performing our estimation for the dominant holders, for consistency we compute 
Aµ =

∑

i∈Dom Aiµ , weighting only using dominant holders. Using this approximation, we can relate the first 
two equations,

 We approximate the product γ ≡ αβ using linear regression. To examine the validity of our assumption about 
herding, we calculate separate γµ(t) for each country µ . We estimate the returns on sovereign bonds �Pµ/Pµ 
from the yield time series using the duration-with-convexity rule. For simplicity, we assume that aggregate dura-
tion and convexity of the sovereign bonds are 10 and 100, respectively. We further compute returns of common 
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Table 2.   Total amount of exposure of the banks in our data set to the sovereign debt of the GIIPS countries in 
2011.

Greece Italy Portugal Spain Ireland

Total (bnEu) 273.96 1641.49 128.63 692.98 89.58

Data set 2011 (bnEu) 96.90 420.55 48.93 333.46 32.60

% in banks 35.37 25.62 38.04 48.12 36.39
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stocks of major holders as the percentage change in the stock price, and weight it by the fraction of their hold-
ings Aiµ/Aµ . Since sovereign debt holdings are long-term investments and reported once or twice a year, we use 
stock and bond return data over three months to calculate γµ(t) (returns spanning [t − 3, t] months) as follows:

We evaluate γ for the time period between 2006 to 2019 and observe stable and unstable regimes related to the 
eurozone crisis. Fig. 4 shows the parameter estimates for γ . For a more detailed overview of the parameters see 
Fig. S1.
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