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Abstract

A natural pH gradient caused by marine CO2 seeps off the Methana peninsula (Saronikos

Gulf, eastern Peloponnese peninsula) was used as a natural laboratory to assess potential

effects of ocean acidification on coccolithophores. Coccolithophore communities were

therefore investigated in plankton samples collected during September 2011, September

2016 and March 2017. The recorded cell concentrations were up to ~50 x103 cells/l, with a

high Shannon index of up to 2.8, along a pH gradient from 7.61 to 8.18, with values being

occasionally <7. Numerous holococcolithophore species represented 60–90% of the sur-

face water assemblages in most samples during September samplings. Emiliania huxleyi

was present only in low relative abundances in September samples, but it dominated in

March assemblages. Neither malformed nor corroded coccolithophores were documented.

Changes in the community structure can possibly be related to increased temperatures,

while the overall trend associates low pH values with high cell densities. Our preliminary

results indicate that in long-termed acidified, warm and stratified conditions, the study of the

total coccolithophore assemblage may prove useful to recognize the intercommunity vari-

ability, which favors the increment of lightly calcified species such as holococcolithophores.

Introduction

The cumulative emissions in anthropogenic CO2 from 1870 to 2014 totaled about 545 GtC;

almost half of these emissions remain in the atmosphere and increase the potential to enhance

climate change [1]. In addition, the oceans absorb approximately 30% of the atmospheric CO2

produced by anthropogenic activities [1–4]. As a result, the concentration of bicarbonate ions

is increasing; causing simultaneous reduction in carbonate ions, decline of ocean pH and low-

ering of the calcium carbonate saturation state (O) of both calcite and aragonite [e.g., 1, 2, 5,

6]. During the last 200 years, surface ocean pH has fallen almost 0.1 units to a current day

global average of approximately 8.2 [7]. The associated ocean acidification with surface pH
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predicted to fall by up to 0.77 units till 2250 [e.g., 8, 9] comprises a major threat for marine

ecosystems, particularly for marine calcifiers and consequently for the global biogeochemical

cycles [5, 10–12]. Up to now, several studies investigated the acidification effects on both ben-

thic [5, 13] and planktonic marine organisms [5, 14–21], however few of them have dealt with

in situ field data [22–25].

The semi-enclosed Mediterranean Sea is a small-scale ocean with high environmental vari-

ability and steep physicochemical gradients, all increasing towards the east [26, 27]. Particu-

larly, the eastern Mediterranean basin lies in a climatological transition zone under the

influence of both tropical and mid-latitude climate processes [28], making it highly sensitive to

global climate change. Future climate scenarios predict a temperature increase larger than the

global average value, reduced precipitation and increase of the interannual variability [1].

Both acidification and warming are expected to affect marine ecosystems of the Mediterra-

nean Sea, mostly by altering microbial nutrient cycling, carbon fixation, primary production

rates and therefore plankton community structure [29, 30], with documented consequences

on biodiversity [31]. Interestingly, the Mediterranean offers the unique opportunity to study

gradients of long-term acidification at marine volcanic CO2 vents lacking toxic sulphur com-

pounds that are abundant especially around Italy and Greece. The first in situ field data results

from Ischia site in the Tyrrhenian Sea [23, 32] revealed a dramatic shift in benthic community

composition along a pH gradient with a collapse in species diversity and loss of functional

groups as CO2 levels increase. Additional sites are now being used to test observations initially

made at Ischia; e.g. Vulcano in Italy [25, 33–36] and Methana in Greece [37, 38]. CO2 seeps

have also been shown to be useful for studying the effects of ocean acidification on plankton

organisms, although CO2 levels may vary spatially and temporally around the seeps.

Coccolithophores (planktonic photoautotrophic protists) are currently the dominant calcify-

ing organisms in the Mediterranean waters [39–41], an environment supersaturated with respect

to calcite and aragonite [42]. They produce minute calcium carbonate plates called coccoliths,

which are arranged around the individual cells forming the coccospheres. As it has been shown

from a number of culture studies, coccolithophores have complex life cycles involving alternation

between a haploid holococcolith-producing Mg-rich phase and a diploid heterococcolith-produc-

ing phase [43, 44]. The species composition in the Aegean Sea (NE Mediterranean) is relatively

diverse and dominated mainly by the species Emiliania huxleyi [45], which is featured by more

heavily calcified coccoliths during the cold winter-spring season [46]. High numbers of holococ-

colithophore cell densities seem to be the main feature of late spring-early autumn coccolitho-

phore assemblages in the thermally stratified Aegean surface layers [45]. Scattered field studies so

far [25], have shown coccolithophores to decrease significantly with decreasing pH; also species

diversity progressively weakened as CO2 levels increased and Ocalcite was lowered. Furthermore,

malformed and corroded E. huxleyi coccoliths were related to low pH waters [25].

The present study aims to investigate the state and composition of coccolithophore com-

munities under naturally acidified conditions. Main goals are to document potential effects on

the assemblages along a natural CO2 gradient off Methana marine volcanic vent field, in order

to investigate how coccolithophores respond to increased CO2 levels in oligotrophic areas and

to assess whether responses to ocean acidification were modulated by seasonality. This may be

of broader interest as nutrient-poor regions are expected to expand worldwide due to

increased thermal stratification of ocean waters caused by ongoing climate change.

Study area

The Saronikos Gulf covers an area of approximately 2600 km2 of complex bathymetry and

geometry (Fig 1). The outer gulf, at the SE, is connected to the Aegean Sea and has depths
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gradually decreasing towards the inner gulf and the Attica coast from about 200 m to 100 m.

The western gulf displays great depth variability, with depths locally exceeding 400 m and

water masses being exchanged through the passages between Aegina and Salamina islands to

the north and Aegina Island and Methana peninsula to the south (Fig 1A). Saronikos Gulf is

characterized by robust seasonal flows that are induced by thermohaline effects and density

contrasts with inflowing Aegean waters, and can be modified by the wind [47]. In summer an

anticyclonic and a cyclonic flow exists throughout the gulf above and below the pycnocline,

whereas in winter and early spring an anticyclonic flow prevails in the upper ~100 m (Fig 1B).

The predominant northerly winds in summer and winter push the inner gulf eastward sea-

sonal jet to the south, whereas northwesterly, westerly, and southerly winds favor the north-

ward meandering of the seasonal jet in the inner gulf [47].

The volcanic area of Methana is located at the eastern Peloponnese peninsula within the

southwestern area of inner Saronikos Gulf and represents the western end of the Aegean Volca-

nic Arc (Fig 1A [48]). The last eruption on Methana was in 230 BC as described by the ancient

Greek geographer Pausanias; an active submarine volcano NW of Methana peninsula has been

discovered lately [49]. On Methana peninsula there are thermal springs and mofettes and the

coastal area at the northern part is still hydrothermally active with gas emissions of mainly car-

bon dioxide and smaller amounts of nitrogen, carbon monoxide and methane [37, 50]. The sea-

water chemistry together with the seasonal variability of macroalgal communities at CO2 seeps

off Methana have already been monitored from 2011 to 2013 [37], showing that seawater pH

decreased to levels predicted for the end of this century at the seep site with no confounding

gradients in Total Alkalinity, salinity, temperature or wave exposure. Free sulphide concentra-

tions were below the measurable limit (1 μM) [37]. In contrast, the samples near Loutra thermal

baths (south eastern part of the peninsula) had a concentration of free sulphides of 35 μM [37].

Materials and methods

44 water samples were collected with a single Hydrobios oceanographic bottle from 8 coastal

stations off Methana peninsula during September 2011, September 2016, and March 2017,

(Fig 1C and Table 1). Sampling permission was issued by the Municipality of Troizina-

Methana. All samplings were conducted under mild weather conditions, i.e. with no prevailing

winds. Stations P1, P2 and P3 represent the main area featured by low pH conditions due to

CO2 emissions; P4 and P5 are pristine stations, whereas F1 was situated within an enclosed

embayment hosting a small fish aquaculture plant. Stations L5 and R1 are affected by thermal

springs (releasing sulphides and radium, respectively).

Temperature, salinity and pH were measured using a multiprobe (YSI 63). The probe was

calibrated before use with pH 4.01, 7.01 and 10.01 NBS standards; the uncertainty in using the

NBS scale for seawater pH measurements (approximately 0.05) was considered acceptable

[37]. Mineral nutrients were measured according to Strickland and Parsons [51] and Rimme-

lin and Moutin [52]. The amount of chlorophyll-a that corresponded to the 0.2–2.0 μm and

>2.0 μm size classes was measured fluorometrically [53].

The calcium carbonate saturation state (O) of both calcite and aragonite were calculated with

CO2Sys program configured for Excel by Pierrot et al. [54] using the current pH, temperature,

salinity, phosphate and silicate measurements and the total alkalinity (AT) values resulted from

monitoring of the site in 2011–2013 [37]. The set of carbonic acid apparent dissociation con-

stants (K1 and K2) [55], the equilibrium constant of hydrogen fluoride [56], the stability con-

stant of the hydrogen sulfate ion [57] and the boron to chlorinity ratio [58] were chosen.

For total phytoplankton analysis, 25 ml of seawater per sample were examined by inverted

microscope [59, 60]. Cell density was calculated as cells l-1.
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For coccolithophore analysis, in each sampling station 2 liters of seawater were filtered on

Whatman cellulose nitrate filters (47 mm diameter, 0.45μm pore size). Salt was removed by

washing the filters with about 2 ml of mineral water. The filters were dried open and stored in

plastic Petri dishes.

Fig 1. Study area. A. Map of the central Aegean Sea (NE Mediterranean) with sampling sites visited in the present study; Methana represents the

western end of the Aegean Volcanic Arc. Image resource: NASA Worldview. The inlet map presents the dominant tectonic structure of the Aegean

Sea domain [48]. B. Bathymetry and hydrography of Saronikos Gulf. Bathymetry data are provided by HCMR (Hellenic Centre for Marine Research).

The map was designed with ArcGiS software (ESRI) v.10.4. Hydrographic data are redrawn from [46]. C. Sample location around Methana peninsula.

Image resource: NASA Worldview.

https://doi.org/10.1371/journal.pone.0200012.g001
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Table 1. Sample information. Stations’ location, sampling dates, physicochemical parameters, total coccolithophore density (cells l-1) resulting from both inverted

microscopy and Scanning Electron Microscopy techniques and coccolithophore diversity (H’) based on SEM countings.

station latitude (˚N)

longitude (˚E)

date water

depth (m)

Temperature

(˚C)

Salinity

(psu)

Chl-a (μg

l-1)

inverted microscope

countings (cells l-1)

SEM countings (103

cells l-1)

Shannon Wiener

index (H’)
P1 37˚38’17.91" 9/2016 0 26.1 37.2 no data no data no data

23˚21’36.18" 3/2017 0 15.4 38.1 0.288 200 6.87 0.84

9/2016 2 27.1 37.1 0.21 1680 39.22 2.19

3/2017 2 15.2 38.8 no data no data 6.46 0.91

9/2011 5 no data no data 24.41 2.04

9/2016 5 26.5 38.2 0.164 1280 24.26 1.80

3/2017 5 15.3 39.1 0.81 360 10.06 0.80

P2 37˚38’18.29" 9/2016 0 26.3 38.4 no data no data no data

23˚22’2.80" 3/2017 0 15.3 38.3 no data 2600 4.54 1.13

9/2011 5 no data no data 5.01 1.31

9/2016 2 27.3 38.3 0.182 1240 24.85 2.53

3/2017 2 15.1 38.5 0.469 4356 6.58 1.15

9/2016 5 26.5 37.9 0.177 15.903 22.52 2.24

3/2017 5 15.5 38.6 no data 2760 5.30 1.24

P3 37˚38’28.17" 9/2016 0 26.6 38.5 no data no data no data

23˚21’30.71" 3/2017 0 15.5 38.5 no data no data 1.99 0.75

9/2016 2 27.5 38.2 0.112 1280 18.18 1.47

3/2017 2 14.7 38.5 0.575 no data 2.38 1.11

9/2016 10 26.5 38.7 0.183 2600 29.55 2.31

3/2017 10 14.7 38.6 no data no data 3.66 0.94

9/2016 20 27.3 38.7 0.128 720 31.48 1.71

3/2017 20 14.6 38.4 0.961 1000 2.25 0.97

9/2016 40 24.6 38.6 0.271 1680 35.42 2.71

3/2017 40 14.7 38.2 1.303 720 3.85 0.77

9/2016 60 22.7 38.8 0.043 no data 19.39 1.67

3/2017 60 14.8 38.8 0.598 1680 1.67 0.16

P4 37˚34’41.26" 9/2016 0 26.2 38.5 no data no data no data

23˚20’51.39" 3/2017 0 15.3 38.6 no data no data no data

9/2016 2 27.2 37.8 0.03 1440 20.15 2.28

3/2017 2 14.7 38.2 0.328 3520 8.76 0.71

9/2016 10 27.1 38.2 0.018 2680 14.20 2.10

3/2017 10 14.4 38.3 no data no data 9.65 1.06

9/2016 20 26.3 38.3 0.025 no data 11.45 2.48

3/2017 20 14.5 38.6 0.558 1080 7.76 1.12

9/2016 40 25.5 38.7 0.039 no data 25.56 2.84

3/2017 40 14.4 38.6 1.367 4560 8.02 0.56

9/2016 60 21.2 37.9 0.118 1160 22.96 2.29

3/2017 60 14.6 38.6 2.340 2600 7.29 0.41

P5 37˚34’39.69" 9/2016 0 26.2 38.5 no data no data no data

23˚20’45.11" 3/2017 2 15.1 38.4 no data 2320 no data

9/2016 2 26.7 38.9 no data 880 31.48 2.01

3/2017 10 14.6 38.6 no data 5880 4,38 0.68

9/2016 5 26.3 38 no data 880 30.43 2.44

3/2017 20 14.5 38.2 no data 2600 no data

R1 37˚35’13.96" 9/2016 2 27.2 38 no data 2400 17.90 2.20

23˚23’54.37" 3/2017 2 17 38.3 no data no data no data

(Continued)
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Out of a total of 44 samples, 33 samples have been analyzed using a Zeiss DSM 940A Scan-

ning Electron Microscope (SEM) at the University of Bremen, Department of Geosciences. A

small piece of each filter (~1 cm2) was cut out, fixed on double-sided adhesive carbon tape to

an aluminum stub and sputter coated with Au/Pd. The analysis of the filters was performed at

10 kV and more than 100 coccospheres were counted when possible at 3000x magnification.

Coccolithophore cell densities were calculated as follows: Number of coccospheres l-1 = FxC/

AxV, with F = filtration area (mm2), C = number of counted coccospheres, A = counted area

(mm2) and V = filtered volume (l).

Eleven samples have been examined in a Jeol JSM 6360 SEM (National and Kapodistrian

University of Athens, Faculty of Geology and Geoenvironment). A piece of each filter approxi-

mately 8x8 mm2 was attached to a copper electron microscope stub using a double sided adhe-

sive tape and coated with Au. All the individual coccospheres occurring on the examined filter

area were identified and counted. The absolute abundances of coccolithophore densities (cells

l-1) were calculated following Jordan & Winter [61], by scaling up the raw counts from a

known scanned area. Identification of coccolithophore species generally followed the taxo-

nomic guides of Young et al. [62] and Malinverno et al. [63].While processing the data, all

samples have been grouped in two depth classes (0–20 m and 40–60 m). Shannon Wiener

diversity index (H’) was calculated using Past.exe 1.23 software [64] for the different depth

classes in each sampling station.

Results

Temperature, salinity, pH, carbonate saturation state, nutrients and chl-a
Water temperatures during September 2016 sampling displayed relatively high values, between

22.7˚ C, in 60 m, and 27.5˚ C, in 2 m, whereas in March 2017 temperatures mostly varied

within a smaller range (14.4–15.5; Table 1). Salinity was generally > 38 psu (range 37.1–38.9

psu), with lower values observed mostly in September sampling (Table 1).

Median pH values varied between 7.61 and 8.18 during September samplings, whereas even

lower values (<7) have been recorded for the seep area (2011: 6.53, 2016: 6.93, station P1;

Table 2) that are associated with undersaturated conditions in both calcite and aragonite [37].

In March sampling, median values varied between 7.17 and 7.92 (Table 2). It has been shown

[37] that the pH variability in the area off Methana is mainly attributed to changes of the CO2

vent emissions and other factors (e.g. hydrogen sulphide) that would affect both pH and AT are

practically missing. The additions of CO2 gas alter the carbonate system equilibria leaving AT

constant. Assuming that AT remains relatively constant in the area (stations P1-P5) and using

our pH, salinity, temperature and nutrients data, we did a rough estimation of the saturation

Table 1. (Continued)

station latitude (˚N)

longitude (˚E)

date water

depth (m)

Temperature

(˚C)

Salinity

(psu)

Chl-a (μg

l-1)

inverted microscope

countings (cells l-1)

SEM countings (103

cells l-1)

Shannon Wiener

index (H’)
9/2016 5 27.3 38.2 no data 2840 19.15 2.07

3/2017 5 16.3 38.5 no data no data 5.8 0.92

F1 37˚34’47.92" 9/2016 2 27.4 38.6 no data 5920 53.58 2.73

23˚23’36.69" 3/2017 2 16.7 37.5 no data 1760 no data

9/2016 5 26.8 38 no data 27960 no data

3/2017 5 15.7 38.5 no data 1760 9.24 1.12

L5 37˚3’26.30" 9/2016 3 27.2 37.9 no data 1800 21.09 2.16

23˚22’12.30"

https://doi.org/10.1371/journal.pone.0200012.t001
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state of both carbonate minerals with CO2Sys for the 2016–17 sampling, which shows O<1 in

station P1 where pH minimum values have been recorded (Table 2). Nutrient and chl-a con-

centrations for all analyzed samples showed the typical oligotrophic summer Aegean Sea condi-

tions, whereas in March the content of NO2 +NO3 reflects the seasonal nutrient enrichment

and the consequent increase in chl-a (Table 2).

Total phytoplankton and coccolithophores

Inverted microscope total phytoplankton identifications (Fig 2) were performed for both Sep-

tember 2016 and March 2017 samplings. During September period Dinophyceae and Cocco-

lithophores (Haptophyceae) were the dominant groups relative to Bacillariophyceae. All groups

showed highest abundances in station F1, whereas the latter group was totally missing from sta-

tions P3, P5 and L5. In March 2017, Bacillariophyceae displayed higher values than Dinophy-

ceae; values still indicate an oligotrophic environment. Coccolithophores were relatively higher

in respect to September sampling but still represented a minor assemblage component.

During the warm-period samplings (September 2011, 2016; S1 and S2 Appendixs), SEM

analyses revealed a total of 73 coccolithophore species out of which 34 were

holococcolithophores.

Total coccospheres (Tables 1 and 3) reached up to 25 x 103 cells l-1 at P1/5 m in September

2011, whereas maximum values exceeded 39 x 103 cells l-1 in P1/2 m during September 2016

(max. mean values 31.74 x 103 cells l-1 in P1/0–20 m; Table 3). The maximum cell abundances

of the latter sampling have been documented for station F1/2 m (54 x 103 cells l-1).

Concerning species composition, Syracosphaera spp. comprised 30–60% of the total cocco-

lithophore assemblage during September 2011, followed by Rhabdosphaeraceae; interestingly

E. huxleyiwas totally absent (Fig 3 and S1 Appendix). Holococcolithophores exceeded 18 x 103

cells l-1 (>70%) at P1/5 m (Table 3 and S1 Appendix), with Algirosphaera robusta HOL

(“Sphaerocalyptra quadridentata”) being the dominant taxon with up to 8.55 x 103 cells l-1,

35% of the coccolithophore assemblage (Fig 3 and S1 Appendix).

During September 2016, stations P1-P3 were characterized by the presence of both hetero-

and holococcolithophore species with the latter exhibiting particularly high values (Fig 3;

Tables 1 and 3). Numerous different holococcolithophore species (see S2 Appendix) were rep-

resenting more than 60% of the surface water assemblages in most samples. Water collected

close to the main CO2 seeps had the highest concentrations of holococcolithophores (max.

~30 x103 cells l-1, 90% in relative abundance; P1-5 m). Algirosphaera robusta HOL was again

dominating the coccolithophore communities exceeding 40–50% in P1/0-20 m and P3/0-20 m

(up to 16.5 x 103 cells l-1; S1 Appendix). It presented increased values (>30%) in P5/0-20 m

and it was also abundant (>40%) in R1/0-20 m (8 x 103 cells l-1).

Out of the heterococcolithophores, Syracosphaeraceae and Rhabdosphaeraceae were con-

tributing usually > 10% to the assemblages (S1 Appendix and Table 2). In contrast, Emiliania
huxleyi displayed very low cell densities during the September 2016 sampling with minimum

cell concentrations of 0.6 x 103 cells l-1 in P1, P2/0–20 m (<1%), and maximum abundances of

~6 x 103 cells l-1 at F1/0–20 m. In March 2017, total coccospheres displayed much lower values

(Table 1; max. 10 x 103 cells l-1 at P1/0–20 m and F1/0–20 m and max. mean values 9.24 x 103

cells l-1 at F1/0–20 m; Table 3).

Species composition was completely different in March 2017 in comparison to September sam-

plings, with E. huxleyi being dominant with values>60% in all stations. Syracosphaeraceae repre-

sented the second most important group, whereas holococcolithophores were practically absent.

H’ index median values were mostly >1 and> 2 for September 2011 and September 2016

datasets, whereas they were<1 for March 2017 samples (Table 1).
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Discussion

The Methana vent site represents an extended submarine volcanic field area of CO2 seeps with

observed effects of ocean acidification. Recent data on the macroalgal community of the

Methana seep site have shown that benthic communities decreased in calcifying algal cover and

increased in brown algal cover with increasing pCO2 [37] and skeletal degradation in sea urchin

species was observed followed by remarkable increases in skeletal manganese levels [38].

Within our coccolithophore study, both September samplings off Methana have taken place

in distinctively warm, oligotrophic and stratified waters. Values of pH below 8 vary both

Fig 2. The structure of plankton community. Abundance (cells l-1) of the major plankton groups Dinophyceae, Bacillariophyceae and the Coccolithophores

component, during the two sampling periods.

https://doi.org/10.1371/journal.pone.0200012.g002
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spatially and seasonally in an extended area around Methana peninsula; the P1 station that rep-

resents a shallow area with documented CO2 bubbles seeping from the sea floor (37, this study])

constantly displayed low pH values and O<1 (Table 2). Current flows at this part of Saronikos

Gulf are very weak during the warm period (10 cm/sec; Fig 1B) and as having a NW direction

[47] do not essentially affect the study area at the northwestern part of Methana peninsula, espe-

cially during the September samplings. Hence, it is anticipated that coccolithophore assem-

blages, given that as nannoplanktonic organisms up to a few days or weeks (De Vargas et al.,

2004) [65] with mobility functions ranging between 0.1 and 10 m per day (Young, 1994) [66],

are practically exposed in the acidified water bodies around the vent area throughout their

entire life duration. Surprisingly, despite the low pH values and the undersaturated conditions

in both calcite and aragonite, especially at station P1 (Table 2), holococcolithophores are thriv-

ing in higher numbers (Fig 4; max. ~30 x103 cells l-1) than what has been observed in similar

environmental settings with “normal” pH values at the coastal environments off Andros Island,

central Aegean Sea, where holococcolithophore total abundance was up to 6.1 x 103 cells l-1 in

the warm-period samplings (Fig 1A and Table 3) [67, 68]). Our data off Methana indicate that

both holococcolithophores (during the warm season; Fig 4) and heterococcolithophores (mostly

E. huxleyi, during the cold months; Fig 4) are unaffected in terms of abundance by low pH envi-

ronment and presumably undersaturated conditions and also maintain their coccolith structure

Table 3. Coccolithophore community structure. Hetrococcolithophore and holococcolithophore densities in the different sampling periods and the different sampling

sites in Methana and Andros Island.

Station Water

depth

class (m)

Time

period

Mean total

coccospheres

103 cells l-1

Mean total

holococcolithophores

103 cells l-1

Mean total

holococcolithophore

percentage

Mean total

heterococcolithophores

103 cells l-1

Mean total

heterococcolithophore

percentage

P1 0–20 Sept-2011 24.41 18.31 75.00 6.1 25

P1 0–20 Sept-2016 31.74 25.06 80.97 6.68 19.03

P1 0–20 March-2017 7.80 0.00 0.00 7.8 100

P2 0–20 Sept-2011 5.01 0.56 11.11 4.45 88.88

P2 0–20 Sept-2016 23.68 9.15 65.78 8.10 34.22

P2 0–20 March-2017 5.47 0.00 0.00 5.47 100

P3 0–20 Sept-2016 26.41 22.26 84.03 4.14 15.97

P3 0–20 March-2017 2.57 0.00 0.00 2.57 100

P3 40–60 Sept-2016 27.40 5.05 14.84 22.35 85.16

P3 40–60 March-2017 2.76 0.00 0.00 2.76 100

P4 0–20 Sept-2016 15.27 8.74 57.84 6.53 42.16

P4 0–20 March-2017 8.72 0.00 0.00 8.72 100

P4 40–60 Sept-2016 24.26 5.50 22.25 18.76 77.75

P4 40–60 March-2017 7.65 0.00 0.00 7.65 100

P5 0–20 Sept-2016 30.96 21.91 70.71 9.05 29.29

P5 0–20 March-2017 4.38 0.49 11.11 3.89 88.89

F1 0–20 Sept-2016 26.79 11.94 64.37 6.59 36.63

F1 0–20 March-2017 9.24 0.00 0.00 9.24 100

R1 0–20 Sept-2016 18.52 11.35 42.35 15.44 57.65

R1 0–20 March-2017 5.80 4.09 70.59 1.71 29.41

L5 0–20 Sept-2016 21.09 13.25 62.86 7.83 37.14

L5 0–20 March-2017 no data no data no data no data no data

ANDROS-T3-1 0–20 Aug-2001 9.99 2.69 29.33 7.30 70.67

ANDROS-T3-1 0–20 Aug-2002 6.85 2.61 37.67 4.24 62.33

ANDROS-T1-100 0–15 Sept-2004 8.99 3.82 39.56 5.17 60.44

https://doi.org/10.1371/journal.pone.0200012.t003
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Fig 3. Coccolithophore species composition. Relative abundance of coccolithophore species during September 2011

sampling, September 2016 and March 2017 samplings. Image resource: NASA Worldview.

https://doi.org/10.1371/journal.pone.0200012.g003
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intact (Fig 5). Corroded coccospheres of both hetero- and holococcolithophore specimens have

been found as very rare (<1%; Fig 6). The striking difference in community structure between

September and March represents the seasonal variability of the Aegean Sea with E. huxleyi and

Syracosphaeraceae prevailing in the high cell density and low diversity assemblages during the

winter and early spring, under low temperatures and higher nutrient concentrations [45 ]

(Tables 1 and 2, data in S1 Appendix). Interestingly holococcolithophores and especially A.

robusta HOL display increasing trend with lower pH, whereas diversity is showing a weak

decreasing trend apparently associated with the dominance of A. robusta HOL (Fig 7). Our

findings are thus in contrast to coccolithophore field data from the Vulcano vent site [25],

which revealed a progressive decrease in coccolithophore diversity and cell concentration with

decreasing pH and O calc values. Furthermore, in that study corroded and malformed specimens

of E. huxleyiwere observed near the seeps (pH 6.84, O<1); nevertheless, the authors have also

reported holococcolithophores to be found at the lowest pH stations.

The notably high abundance of holococcolithophores, that are known to form high-Mg

coccoliths, as extracellular coccolithophore calcifiers [69, 70] at Methana site is quite

Fig 4. Coccolithophore community structure. Heterococcolithophore-holococcolithophore ratios in the sampling sites during the different

sampling periods.

https://doi.org/10.1371/journal.pone.0200012.g004
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Fig 5. Coccolithophores of Methana acidified environments. 1. E. huxleyi, P1-5 m, September 2016 (Omin<1). 2. E. huxleyi, P2-5 m, March 2017 (pH<8). 3.

Pontosphaera syracusana, P2-2 m, March 2017. 4. Syracosphaera halldalii, P1-2 m, September 2016 (Omin<1). 5. Syracosphaera ossa, P1-2 m, September 2016. 6.

Algyrosphaera robusta HOL, P1-2 m, September 2016 (Omin<1). 7. Syracosphaera mediterranea, P1-2 m, September 2016 Omin<1). 8. Rhabdosphaera clavigera,

P1-2 m, September 2016 (Omin<1). 9. Algyrosphaera robusta, P1-2 m, September 2016 (Omin<1). 10. Syracolithus ponticuliferus, P1-2 m, September 2016

(Omin<1). 11. Algyrosphaera robusta HOL, P1-2 m, September 2016 (Omin<1). 12. Syracosphaera mediterraneaHOL wettsteinii type, P1-2 m, September 2016

(Omin<1).

https://doi.org/10.1371/journal.pone.0200012.g005
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unexpected as ocean waters with an O<1.0 normally lead to carbonate dissolution [e.g. 17, 71,

72, 73]. Whitman Miller et al. [74] have stated that as the saturation state reduces, biominerali-

sation is expected to become more energetically expensive. Indeed, Gibbs et al. [75] have used

the distribution of the extracellular calcifying holococcoliths across the Paleocene-Eocene

Thermal Maximum, as a novel indicator of biomineralization in order to assess ocean acidifi-

cation response. Although extracellular calcification may be more sensitive to changes in sea-

water chemistry, Gibbs et al. [75] showed that the effects of ocean acidification were only

evidenced when paired with elevated temperatures, in accordance with the outcome of previ-

ous studies [e.g. 11, 76, 77,78]. Interestingly, similar findings were observed during a meso-

cosm experiment performed at the CRETACOSMOS mesocosm facility in HCMR Crete,

where acidification alone (amendment to IPCC 2100 predictions) seemed to produce a short

term enhancement of total phytoplankton biomass; warming alone had a similar effect but on

primary production while acidification coupled to warming (greenhouse effect) seemed to fur-

ther enhance the observed responses of phytoplankton community to each climatic stressor,

respectively [79]. In addition, an earlier study of Feely et al. [80] already suggested that the

response of marine calcifiers to decreasing calcium carbonate saturation state will be species-

specific, depending on environmental parameters such as light, temperature and available

nutrients, carbonate mineralogy and calcification mechanisms. In the haptophytes, hetero-

morphic life cycles with alternation of haploid and diploid stages produced via meiosis and

syngamy are widespread or even ubiquitous [81, 82]. At present, limited numbers of complete

life cycles are known in extant coccolithophores [67, 82–87]. However, strong evidence

Fig 6. Coccolithophore corroded specimens in Methana acidified environments (O<1). 1. Rhabdosphaera clavigera, P2-2 m, September

2016. 2. Syracosphaera pulchra, P2-8 m, September 2011. 3. Syracosphaera pulchra, P2-20 m, September 2011. 4. Syracosphaera mediterranea
HOL (hellenica), P1-20 m, September 2011. 5. Emiliania huxleyi, P1-2 m, September 2016. 6.Homozygosphaera arethusae, P1-2 m, September

2016.

https://doi.org/10.1371/journal.pone.0200012.g006
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suggests that the ecological preferences of the haploid and diploid generation are distinct. The

K-selected group of holococcolithophores is more common and diverse under increased light

conditions in the surface layers of oligotrophic, warm and stratified environments [45, 68,88–

89] and increases in abundance towards shallower depths [e.g., 67].

Fig 7. Corellation of various coccolithophore groups and coccolithophore diversity with in situ pH data. Holococcolithophores and particularly A. robusta HOL

showed a clear increasing trend with lower pH during the warm period (September 2016), forcing diversity (H’) to display an opposite pattern. (obtained p values below

0.05 indicate statistically significant correlation at the 95% confidence level).

https://doi.org/10.1371/journal.pone.0200012.g007
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Recent field data from a Mediterranean transect [90] verified the ability of coccolithophore

haplo-diploid life cycle to adapt to the relatively high calcite saturation state, high temperature,

stratified and oligotrophic south-eastern Mediterranean waters. Methana field data from the

present study provide evidence of spectacular resistance of holococcolithophores in decreased

pH conditions (Figs 5 and 6).

Noel et al. [91] already suggested the importance of seawater temperature and chemical com-

position in coccolithophore life-cycle transitions, however thriving of high-Mg holococcolitho-

phores in low-saturated waters of a dinoflagellate dominated-world (Fig 2), needs further

explanation, especially when a certain holococcolithophore species, A. robusta HOL with distinc-

tively high Mg values [70], is prevailing (Fig 5). As temperature has proven to play the crucial

role to potential acidification impacts [75], it appears that our field data, although preliminary,

document negligible acidification effects in oligotrophic to ultra-oligotrophic waters and temper-

atures below 28˚ C. Apparently a simple temperature threshold does not adequately explain holo-

coccolithophore distribution and the low nutrient availability in relation to saturation variability

should be taken into account; however this remains to be further tested by advanced environ-

mental monitoring and laboratory bioassay experiments.

Conclusions

Assemblages of living coccolithophores were investigated off Methana, eastern Peloponnese

peninsula (Greece), along a pH gradient formed by natural CO2 seeps. High numbers of holo-

coccolithophore species were dominating the assemblages in the surface water during Septem-

ber. Assemblages were unaffected by low pH environment and undersaturated conditions;

surprisingly, holococcolithophores and in particular Algirosphaera robusta HOL displayed an

increasing trend with lower pH. Emiliania huxleyiwas present only in low relative abundances

in September samples, whereas it was more common in March. However, no malformed and

very few corroded coccoliths were observed. Changes in the community structure should

rather be related to increased temperatures and nutrient content, while the overall trend asso-

ciates low pH values with high cell densities. Only diversity showed a weak decreasing trend,

apparently associated with the dominance of A. robusta HOL.

Supporting information

S1 Appendix. Coccolithophore absolute abundances (10 3 cells l-1) and relative abundances

(%) at the investigated samples.

(XLSX)

S2 Appendix. Coccolithophore species identified in this study.

(XLSX)
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