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Background: Diabetic kidney disease (DKD) is the leading cause of end-stage

renal disease. This study explored the core genes and pathways associated with

DKD to identify potential diagnostic and therapeutic targets.

Methods: We downloaded microarray datasets GSE96804 and

GSE104948 from the Gene Expression Omnibus (GEO) database. The

dataset includes a total of 53 DKD samples and 41 normal samples.

Differentially expressed genes (DEGs) were identified using the R package

“limma”. The Metascape database was subjected to Gene Ontology (GO)

function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses to identify the pathway and functional annotations of

DEGs. A WGCAN network was constructed, the hub genes in the turquoise

module were screened, and the core genes were selected using LASSO

regression to construct a diagnostic model that was then validated in an

independent dataset. The core genes were verified by in vitro and in vivo

experiments.

Results: A total of 430 DEGs were identified in the GSE96804 dataset, including

285 upregulated and 145 downregulated DEGs. WGCNA screened out

128 modeled candidate gene sets. A total of eight genes characteristic of

DKD were identified by LASSO regression to build a prediction model. The

results showed accuracies of 99.15% in the training set (GSE96804) and 94.44%

and 100%, respectively, in the test (GSE104948-GPL22945 and GSE104948-

GPL24120). Three core genes (OAS1, SECTM1, and SNW1) with high

connectivity were selected among the modeled genes. In vitro and in vivo

experiments confirmed the upregulation of these genes.

Conclusion: Bioinformatics analysis combined with experimental validation

identified three novel DKD-specific genes. These findings may advance our

understanding of the molecular basis of DKD and provide potential therapeutic

targets for its clinical management.
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1 Introduction

Diabetic kidney disease (DKD) is one of the most common

microvascular complications of diabetes and the leading cause

of end-stage renal disease (ESRD) worldwide (Alicic et al.,

2017). The main lesion of DKD is located in the glomeruli and

is characterized by extracellular matrix deposition and

thickening of the basement membrane (Wada and Makino,

2013). The etiology and pathogenesis of DKD are not yet fully

understood. The early diagnosis of DKD has traditionally been

made based on the presence of microalbuminuria (MA) and the

course of diabetes mellitus (DM) (Papadopoulou-Marketou

et al., 2017). However, this method is not accurate since

only 30% of cases were confirmed by pathology, while

others were primary glomerular diseases superimposed on

DM (Oh et al., 2012). Therefore, the early diagnosis of DKD

based on clinical indicators is insufficient and biomarkers are

lacking.

In recent decades, an increasing number of biomarkers for

DKD have been reported (Levey et al., 2011; Van et al., 2017).

Bioinformatics technology has also been used to identify

biomarkers that are closely related to disease progression and

to find new targets for the early diagnosis and treatment of

diseases (Udhaya Kumar et al., 2020).

The present study analyzed the GEO database (GSE96804,

GSE104948 datasets) to find potential biomarkers for DKD. We

also constructed diabetic nephropathy models in mice and

mesangial cells. We further performed in vivo and in vitro

experiments to verify the reliability of the core genes as DKD

biomarkers. The results of this study may provide new clues for

the diagnosis and potential therapeutic targets of DKD.

2 Materials and methods

2.1 Data download

We downloaded the Series Matrix Files of GSE96804 and

GSE104948 from the GEO database (http://www.ncbi.nlm.nih.

gov/geo). GSE96804 included 41 DKD kidney tissue samples and

20 control samples based on the GPL1261 annotation platform.

GSE104948 contains two annotation platform files. GSE104948-

GPL22945 included seven DKD kidney tissue samples and

18 control samples. GSE104948-GPL24120 included five DKD

kidney tissue samples and three control samples. Based on the

above datasets, this study included a total of 53 DKD and

41 healthy control glomerular samples. Differential analysis

was performed using the R package “limma” to explore the

differences in the molecular mechanisms of DKD.

2.2 Functional annotation using Gene
ontology and Kyoto Encyclopedia of
Genomes analyses

Differential genes were functionally annotated using the

Metascape database (http://metascape.org) to comprehensively

explore their functional relevance. Gene ontology (GO) and

Kyoto Encyclopedia of Genomes (KEGG) pathway analyses

were performed on specific genes. A minimum

overlap ≥3 and p ≤ 0.01 were considered statistically significant.

2.3 Model building

After identifying differential genes, LASSO regression was used

to further construct a prediction model. After incorporating the

expression values for each gene, a scoring formula for each patient

was constructed andweighted by its estimated regression coefficients

in a LASSO regression analysis. According to the scoring formula,

the median risk score value was used as the cut-off point. The

patients were divided into high-scoring and low-scoring groups.

ROC curves were used to assess the accuracy of themodel prediction.

2.4 Construction of WGCNA co-
expression network

We constructed a weighted gene co-expression network to

search for co-expressed gene modules. We further explored the

relationships between gene networks, phenotypes, and the core

genes. Co-expression networks of differential genes in the

GSE96804 dataset were constructed using the WGCNA-R

package, with the soft threshold set to eight (Chen et al.,

2019). The weighted adjacency matrix was transformed into a

topological overlap matrix (TOM) to estimate the degree of

network connectivity. The hierarchical clustering method was

used to construct the clustering tree structure of the TOMmatrix.

Different branches and colors of the clustering tree represented

different gene modules. Genes were classified according to their

expression patterns based on their weighted correlation

coefficients. Genes with similar patterns were grouped into a

module such that all genes were divided into multiple modules

based on the gene expression patterns.

2.5 Gene ontology semantic similarity

Based on the similarity in GO semantics for gene annotation,

we ranked proteins according to the functional similarities
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between them and their interacting partners. GO semantic

similarity has been validated by correlation with gene

expression profiles, providing a basis for the functional

comparison of gene products. Thus, it has been widely used in

bioinformatics, such as in protein-protein interaction analysis,

pathway analysis, and gene function prediction. In the present

study, we measured the functional similarity between proteins.

Functional similarity was defined as the geometric mean of the

semantic similarity of GO in terms ofmolecular function (MF) and

biological pathway (BP). The aim was to measure the strength of

the relationship between each protein and its interacting proteins

by considering the function and pathway. Semantic similarity

between interacting histones in MF and BP was assessed by

using the GOSe disease im package, which was performed

more accurately by considering the GO topology (Wang et al.,

2007). Functional similarity was further estimated based on the

geometric mean of semantic similarity in MF and BP.

2.6 Analysis of immune cell infiltration

CIBERSORT is a widely used evaluation method for immune

cell types in the micro-environment. This method is based on the

principle of support vector regression to perform a deconvolution

analysis of the expression matrix of immune cell subtypes.

CIBERSORT contains 547 biomarkers that distinguish 22 human

FIGURE 1
Study workflow.

FIGURE 2
Identification of differential genes in DKD. (A) Volcano plot of the differential expression of GSE96804. Purple and yellow indicate the down-
regulation and upregulation of differential expression, respectively (screening conditions: p < 0.05 and |Log2FC|>0.585). (B) Heatmap of differential
gene expression.
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immune cell phenotypes, including T, B, plasma, and myeloid

subsets. In this study, we applied the CIBERSORT algorithm to

analyze patient data to infer the relative proportions of the 22 types

of immune infiltrating cells and to perform Spearman correlation

analyses of gene expression and immune cell content.

2.7 GSEA analysis

GSEA analysis uses a predefined set of genes. It ranks genes

according to their degree of differential expression in two types of

samples and then tests whether the predefined gene set is enriched

at the top or bottom of the ranking list. In this study, GSEA was

used to compare the differences in the KEGG signaling pathway

between the high expression group and the low expression group,

and to explore the molecular mechanism of the core genes in the

two groups of patients. The number of substitutions was set to

1,000, and the substitution type was set to phenotype.

2.8 Competing endogenous RNA network

Competing endogenous RNA (ceRNA) has attracted research

attention in recent years. They represent a completely newmode of

gene expression regulation. Compared to the miRNA regulatory

network, the ceRNA regulatory network is more elaborate and

complex. It involves many more RNA molecules, including

mRNA, pseudogenes encoding genes, miRNAs, lncRNAs, etc.

The NPInter database is commonly used to query the

relationship between lncRNAs and miRNAs. We used the

NPInter database to predict lncRNA-miRNA interaction pairs.

In addition, we also used the combinedmiRcode database to back-

predict mRNA-miRNA interactions. A lncRNA-miRNA-mRNA

network was then established by combining lncRNA-miRNA and

mRNA-miRNA interactions and visualized using Cytoscape.

2.9 Experimental animals and procedures

Male C57BL/6 mice (6–8 weeks) were used to construct the

diabetes model. Each group included five mice. The grouping was

randomized.

The mouse model of diabetes was induced by intraperitoneal

injection of STZ (Sigma-Aldrich) at 50 mg/kg body weight in

100 mmol/L sodium citrate (pH 4.5) for five consecutive days

(n = 5). All mice were euthanized at the 20th week, the fasting

blood glucose levels of all groups were measured, and 24 h urine

and kidney tissue were collected. All animal experimental

FIGURE 3
Functional enrichment of differential genes in DKD. (A)GO-KEGG enrichment analysis of differential genes from the Metascape database. (B) A
cluster network of enriched pathways, in which nodes that share the same cluster are often located close to each other.
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protocols were approved by the Animal Care and Use Committee

of Zhengzhou University (2019-KY-43).

2.10 Cell culture

Human mesangial cells (HMC) were purchased from the

American Type Culture Collection. Cells were cultured in

DMEM medium (Gibco) containing 10% fetal bovine serum

(FBS, Gibco) at 37°C in a 5% CO2 atmosphere. HMCs were

cultured in normal glucose (5.5 mmol/L) or high D-glucose

(40 mmol/L) medium for 24 h.

2.11 Immunohistochemical staining

Immunohistochemical staining was performed using standard

protocols. Sections were prepared for immunohistochemistry with

primary antibodies for rabbit polyclonal anti-SNW1 (ab167165,

Abcam), anti-OAS1 (14955-1-AP, Proteintech), anti-SECTM1

(bs-10153R, Bioss), anti-CD4 (ab183685, Abcam), and

secondary antibodies for Goat anti-Rabbit IgG.

2.12 RNA extraction and quantitative
RT-PCR

RNAwas extracted using Takara RR420 and RR036A isolation

kits according to the manufacturer’s instructions. First-strand

cDNA synthesis was performed using PrimeScript reverse

transcriptase (Takara RR420). qPCR was performed using the

Takara RR036A kit. β-Actin was used as an internal reference. The
relative expression levels of the target genes were calculated using

the 2−ΔΔCt method. A p-value < 0.05 was considered significant.

The primer sequences are summarized in Supplementary Table S1.

All PCR reactions were conducted in triplicate.

2.13 Western blot analysis

Total proteins were extracted from cells and tissues using

RIPA buffer. Proteins of different molecular weights were

separated by SDS-PAGE. The proteins were then

electrotransferred onto PVDF membranes, which were placed

in 5% nonfat milk and blocked for 1 h at room temperature

before incubation with specific primary antibodies, including

FIGURE 4
Construction of a WGNCA network. (A) Clustering heatmap of control and DKD samples. (B) Scale-free exponent and average connectivity for
each soft threshold. (C)Dendrogram of gene clusters, with different colors representing different modules. (D)Heatmap of the correlations between
module eigengenes and DKD. Blue and red indicate negative and positive correlations, respectively. The turquoise module with the highest
correlation was selected for subsequent analysis. (E) Scatter plot of genes in the turquoisemodule. The hub genes in the turquoisemodule were
screened according to the criteria of |MM|>0.8 and |GS|>0.5.
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anti-SNW1 (ab167165, Abcam), anti-OAS1 (14955-1-AP,

Proteintech), anti-SECTM1 (bs-10153R, Bioss) overnight at

4°C. The membranes were then incubated with secondary

antibody (ab205718, Abcam) for 1.5 h at room temperature.

The protein bands were visualized and analyzed using

enhanced chemiluminescence reagents (UElandy) and ImageJ

(National Institutes of Health, V1.8.0).

2.14 Statistical analysis

All statistical analyses were performed in R (version 3.6). All

statistical tests were two-sided and p < 0.05 was considered

statistically significant.

3 Results

3.1 Identification of differentially
expressed genes and functional
enrichment in diabetic kidney disease

Figure 1 shows the workflow of the present study. We

downloaded the GSE96804 dataset from the NCBI GEO

public database. The 61 groups included 20 in the normal

group and 41 in the DKD group. We used the limma package

to calculate the differential genes between the two groups (p <
0.05 and |Log2FC|>1). A total of 430 differential genes were

screened, including 285 upregulated genes and

145 downregulated genes, as shown by the Volcano map and

differential gene heatmap (Figures 2A, B). Enrichment analysis of

these 430 differential genes through the Metascape online

database showed that these genes were mainly enriched in

unsaturated fatty acid biosynthetic process, positive regulation

of receptor signaling pathway via JAK-STAT, carbohydrate

metabolic processing, protein processing in the endoplasmic

reticulum, and prion diseases (Figures 3A, B).

3.2 WGCNA co-expression network
analysis

To identify the key genes in the differential gene set, we

constructed a WGCNA network based on the differential genes

in GSE96804. The soft threshold was set to 8, as determined by

the “sft$powerEstimate” function. The gene modules were then

detected based on the tom matrix. A total of four gene modules

were detected: blue (82), brown (67), grey (12), and turquoise

FIGURE 5
Screening of core genes in DKD. (A) Ten cross-validations of tuning parameter selection in the LASSOmodel to determine theminimum lambda
value. (B)Distribution of LASSO coefficients for differential genes. (C)Coefficients of LASSO genes. (D–F)ROC curves of the eight LASSO genes in the
training and validation sets. The areas under the AUC curve are all >0.9 and the model has good predictive performance.
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(268). The turquoise module showed the highest correlation

[cor = 0.85, p = (2e−18)]. We screened the hub genes in the

turquoise module based on the criteria of |MM|>0.8 and |GS|

>0.5. A total of 128 genes were eligible and were modeled as a

candidate gene set (Figures 4A–E).

3.3 LASSO model to identify potential
predictive markers of diabetic kidney
disease

Dataset GSE96804 was defined as the training set, while datasets

GSE104948-GPL22945 and GSE104948-GPL24120 were defined as

the validation sets. We selected the candidate genes for modeling in

previous steps for feature screening through LASSO regression. The

results of the LASSO regression identified eight genes as

characteristic genes of DKD. Using these core genes, we

performed follow-up studies and built a prediction model

(Figures 5A–C). The model formula is: RiskScore = AVP x

0.0109739762830633 + ATP2B1 × 0.0224961639594229 +

PON2 × 0.032598603699068 + SNW1 × 0.0403490710844676 +

SLC35A1 × 0.0440058992110305 + SECTM1 ×

0.0521504470451128 + ZNF280B × 0.0528500171681807 +

OAS1 × 0.0521504470451128 + ZNF280B × 0.0528500171681807

+ OAS1 × 0.0521504470451128. The results showed the good

diagnostic performance of the prediction model based on eight

genes, with an area under the AUC curve of 0.9915 (Figure 5D). We

further used the GSE104948-GPL22945 and GSE104948-GPL24120

datasets as validation sets. As an external dataset for further

validation of the diagnostic model, the results showed that the

model has strong stability. The areas under the AUC curves of

GSE104948-GPL22945 andGSE104948-GPL24120were 0.9444 and

1, respectively (Figures 5E, F).

3.4 Protein interactions between markers

To further identify the core genes playing key roles in DKD,

we performed a lasso analysis of 128 genes with |MM|>0.8 and |

GS|>0.5 in the turquoise module of the WGCNA analysis. The

results revealed eight lasso genes. The semantic similarity and

geometric means of these eight genes between BP, CC, and MF

were calculated using the mgeneSim function to obtain the final

score. Finally, the DKD signature genes were ranked according to

the average functional similarity relationship between the

proteins. The results showed that SNW1, SECTM1, and

OAS1 were the top three proteins in DKD. Therefore, we

defined these three genes as the core genes of DKD and

conducted follow-up studies (Figure 6).

3.5 Immune infiltration analysis

The microenvironment is mainly composed of immune cells,

extracellular matrix, growth factors, inflammatory factors, and

special physical and chemical characteristics, which significantly

affect the diagnosis of diseases and the sensitivity of clinical

treatment. By analyzing the relationship between core genes and

immune infiltration in the dataset, the underlying molecular

mechanisms by which core genes affect DKD progression were

further explored. The content and interactions between immune

cells are shown in Figures 7A,B. The results showed that

compared to unaffected patients, patients with DKD showed

significantly higher levels of resting CD4 memory T cells and a

lower number of resting Mast cells (Figure 7C).

Immunohistochemical analysis showed increased

CD4 expression levels in DKD mice (Figure 7D). The three

core genes were strongly correlated with immune cells

(Figures 7E–G).

3.6 Gene set enrichment analysis

We next studied the specific signaling pathways enriched by

the three core genes and explored the potential molecular

mechanisms of the core genes affecting DKD progression. The

GSEA results showed that the main enriched pathways for high

OAS1 expression were ARGININE AND PROLINE

METABOLISM, LINOLEIC ACID METABOLISM, and

MATURITY ONSET DIABETES OF THE YOUNG

(Figure 8A). The main enriched pathways for high SECTM1

expression were CALCIUM SIGNALING PATHWAY,

ARGININE AND PROLINE METABOLISM, and ANTIGEN

FIGURE 6
GO functional similarity ranking of the LASSO genes. The
similarities in gene function distributions are summarized as
boxplots. The line in the middle of the box represents the median,
while the upper and lower boundaries show the upper and
lower quartiles, respectively. The top three proteins with average
functional similarity were defined as the core genes.
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PROCESSING AND PRESENTATION (Figure 8B). Finally, the

main enriched pathways for high SNW1 expression were

HOMOLOGOUS RECOMBINATION, HEDGEHOG

SIGNALING PATHWAY, and INTESTINAL IMMUNE

NETWORK FOR IGA PRODUCTION (Figure 8C).

3.7 Correlation analysis between markers
and diabetic kidney disease

We obtained the disease-regulating genes of DKD through

the Genecard database and performed differential analysis. The

results showed that GCK, HNF1A, L6, INSR, PDX1, and TCF7L2

differed significantly between the two groups of patients

(Figure 9A). To explore the relationship between the core

genes and DKD regulation, we performed a correlation

analysis of the core and DKD-regulated genes. The results

showed that SECTM1 was significantly positively correlated

with PDX1 (Pearson r = 0.73), while SNW1 was significantly

negatively correlated with INSR (Pearson r = -0.71, Figure 9B).

We also inversely predicted the targeted miRNAs of the three

core genes through the mircode database and identified

104 miRNAs and 143 miRNA-mRNA relationship pairs. The

104 miRNAs were then inversely predicted through NPInter

database, which revealed 2,690 lncRNAs and 4,549 miRNA-

lncRNA relationship pairs. Combining these two results, we

obtained 6,403 lncRNA-miRNA relationship pairs to construct

the ceRNA network of core genes (Figure 10).

FIGURE 7
Immune infiltration of all samples. (A) Relative percentages of 22 immune cell subsets across all samples. (B) Pearson correlations between
22 immune cells. Blue and red indicate positive and negative correlations, respectively. (C) Differences in immune cell content between normal
patients (yellow) and patients with DKD (blue). p < 0.05 is considered statistically significant. (D) Representative IHC staining of CD4 in the control and
DKD groups. (E–G) Spearman correlations of OAS1, SECTM1, SNW1 gene expression and immune cell content.
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3.8 Modeling of diabetic kidney disease

The renal tissue of diabetic mice was observed by Masson

staining. The results showed typical damage and severe collagen

deposition in the renal tissue, indicating the successful

construction of the diabetic mouse model (Figure 11A). In

addition, the blood glucose level (Figure 11B), serum

creatinine (Figure 11C), and urine albumin/creatinine levels of

the diabetic mice were significantly increased compared to those

in the control group (Figure 11D), further confirming the

successful establishment of the diabetic mouse model.

3.9 Validation ofOAS1, SECTM1, and SNW1
as biomarkers of renal injury in diabetic
kidney disease

Based on the results of bioinformatics analysis, we selected

OAS1, SECTM1, and SNW1 as candidate biomarkers. To

examine their roles in DKD, we successfully constructed a

DKD mice model and validated these genes in vivo.

Immunohistochemical experiments showed decreased

expression levels of OAS1, SECTM1, and SNW1 in DKD mice

(Figure 11E). Western blot analysis (Figure 11F) also showed

FIGURE 8
GSEA enrichment analysis of three core genes (A) The main enriched pathways with high expression for OAS1 are ARGININE AND PROLINE
METABOLISM, LINOLEIC ACIDMETABOLISM, andMATURITYONSETDIABETESOF THE YOUNG. (B) Themain enriched pathways of high expression
for SECTM1 are CALCIUM SIGNALING PATHWAY, ARGININE AND PROLINE METABOLISM, and ANTIGEN PROCESSING AND PRESENTATION. (C)
The main enriched pathways with high expression in SNW1 are HOMOLOGOUS RECOMBINATION, HEDGEHOG SIGNALING PATHWAY, and
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION.
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significantly reduced expression levels of OAS1, SECTM1, and

SNW1 in DKD mice compared to normal controls. A DKD

mesangial cell model was also established in vitro. After 24 h of

culture in high-glucose medium, the protein levels of OAS1,

SECTM1, and SNW1 were reduced compared to those in normal

glucose medium (Figure 11G). Testing of treated HMCs for

OAS1, SECTM1, and SNW1 mRNA expression by qRT-PCR

showed substantially reduced expression of OAS1, SECTM1, and

SNW1 mRNA in high-glucose-stimulated HMCs (Figure 11H).

These results suggested that OAS1, SECTM1, and SNW1 should

be considered as biomarkers for the early detection of DKD in

clinical trials.

4 Discussion

In the early detection of DKD, multi-factorial interventions

targeting major risk factors (hyperglycemia, hypertension,

dyslipidemia, and smoking) (Nathan et al., 1993; Gross et al.,

2002; Mogensen, 2003) and the use of drugs with renoprotective

effects (ACE inhibitors and/or ARBs) can reduce the progression

of nephropathy (Viberti and Wheeldon, 2002; Mogensen, 2003).

However, even with active treatment of known risk factors, some

patients still develop DKD or eventually proceed to end-stage

renal disease (Fioretto et al., 2006). Once in ESRD, patients

require renal replacement therapy; however, the 5-year survival

rate is <50% (Blumenthal, 2011). The main causes of DKD are

the disturbance of glucose metabolism, oxidative stress, and

altered renal hemodynamics (Wada and Makino, 2013).

Nevertheless, the exact molecular mechanism is not clear and

effective treatment options are lacking. Therefore, the

identification of new targets is urgently needed to prevent the

occurrence and development of DKD.

The rapid development of bioinformatics has helped us to

explore the pathogenesis and related molecular pathways of

DKD, and further seek potential new biomarkers of this

disease. In this study, by analyzing differentially expressed

genes (DEGs) in the GSE96804 datasets, LASSO regression

identified eight characteristic genes (AVP, ATP2B1, PON2,

SNW1, SLC35A1, SECTM1, ZNF280B, and OAS1) to construct

a diagnostic model of DKD. This diagnostic model based on eight

key genes distinguished healthy control (HC) fromDKD samples

with high accuracy (99.15%), strongly supported by the 94.52%

AUC and 100% AUC in two separate external validation cohorts.

FIGURE 9
Correlation analysis of DKD-regulated genes. (A)Differences in the expression of DKD-regulated genes in control patients (yellow) and patients
with DKD (blue). (B) Pearson correlation analysis of DKD-regulated and core genes. Blue and red indicate negative and positive correlations,
respectively.
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Some of these eight genes have been confirmed to play important

roles in the pathogenesis of DKD. AVP is a small peptide

composed of nine amino acids that is synthesized in specific

neurons in the paraventricular and supraoptic nucleus, stored in

the neurohypophysis, and exerts different physiological effects by

binding to different receptor subtypes (Rotondo et al., 2016).

(Tahara et al. (2008)found that AVP can promote extracellular

matrix (ECM) synthesis by regulating the secretion of TGF-β in

rat mesangial cells (RMC), which leads to glomerulosclerosis in

DKD. PON2 is the oldest member of the paraoxonase family and

plays an integral role in the control of oxidative stress, inhibition

of apoptosis, and progression of various malignancies (Manco

et al., 2021). Pinizzotto et al., (2001) demonstrated that

polymorphisms in PON2 were significantly associated with

DKD independently of the traditional risk factors for type II

diabetes (T2DM) In our study, metascape enrichment analysis

revealed DEGs that may affect the development of DKD through

a variety of signal pathways and targets in biological processes,

mainly including unsaturated fatty acid biosynthetic process,

positive regulation of receptor signaling pathways via JAK-

STAT, carbohydrate metabolic process, protein processing in

the endoplasmic reticulum, and prion diseases. Notably, the JAK-

STAT signaling pathway plays important roles in regulating

various pathophysiological processes, such as inflammation,

homeostasis, cell proliferation, and apoptosis (Banerjee et al.,

2017; Seif et al., 2017). The activity of the JAK-STAT pathway is

FIGURE 10
Core genes related to the ceRNA regulatory network. Red, blue, and green represent mRNA, miRNA, and lncRNA, respectively.
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enhanced in DKD animal models. Inhibition of this activity

suppressed STZ-induced renal damage in DKD mice (Lu et al.,

2009), while activation of the JAK-STAT signaling cascade can

stimulate the excessive proliferation and growth of glomerular

mesangial cells, which leads to DKD (Amiri et al., 2002).

Immune cell infiltration is significantly associated with the

pathogenesis of metabolic disorders such as T2DM, obesity, and

metabolic syndrome. Phenotypic changes in immune cells and

inflammatory infiltration precede the development of metabolic

disorders (Guzik and Cosentino, 2018). Accumulating evidence

indicates the important role of immune cell infiltration and

inflammation in the pathogenesis of DKD (Tesch, 2017). The

present study identified the infiltration of 22 immune cell types in

DKD by CIBERSORT. The DKD group showed a higher

proportion of CD4 memory resting T cells and a lower

proportion of resting mast cells. CD4+ T cells are central

regulators in chronic metabolic inflammation, involved in the

mediation of macrophages and other T and B cell-dependent

inflammatory responses (Trifari et al., 2009). Orban et al. (2014)

reported that CD4+ memory T cells are intimately involved in the

pathogenesis of type Ⅰdiabetes (T1DM) and may be a potential

immune marker for the diagnosis of T1DM. Lin et al. (2021)

reported increased levels of CD4 memory resting T cells in

diabetic neuropathy, which may be related to disease

progression. Major histocompatibility complexes (MHCs) are

related to the immune response, immune regulation, and the

production of certain pathological conditions. Mast cells are a

type of innate immune cell that can express MHC molecules

(Agier et al., 2021). Mast cells are also functional negative

regulators in T1DM and other autoimmune-related diseases

(Geoffrey et al., 2006; Fehervari, 2018). Okoń and Stachura

(2007) demonstrated that mast cells are closely related to

serum creatinine and urea levels in patients with DKD. The

results of our study showed a comparatively large proportion of

mast cells in the HC samples, possibly due to a potential

limitation of the CIBERSORT algorithm. The high ratio of

FIGURE 11
Validation of core gene expression. (A)Masson staining shows typical glomerular changes in DKD. (B–D)Detection of blood glucose and serum
creatinine levels and urine albumin to creatinine ratio in mice. (E) Representative IHC staining of OAS1, SNW1, and SECTM1 in the control and DKD
groups. (F–H) Detection of OAS1, SNW1, and SECTM1 expression by Western blot and qRT-PCR. pp < 0.05, ppp < 0.01 vs. control.
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CD4+ memory T cells in patients with DKD makes the ratio of

other immune cells, including mast cells, appear relatively low.

Meanwhile, we further confirmed the correlation between three

core genes (OAS1, SECTM1, and SNW1) and immune cell

infiltration. Our results suggested that the three core genes

were consistently associated with immune infiltration and

were closely related to resting memory T cells, activated

T cells, resting mast cells, and activated NK cells. These

results provide further evidence of the important role of the

core genes and immune infiltration in DKD progression.

Among these core genes, OAS1 encodes a protein of the 2’,

5’-oligoadenylate synthase family, a group of enzymes that play

an important role in innate antiviral defense (Justesen et al.,

2000). Field et al. (2005) proposed that OAS1 activation may

promote β-cell apoptosis, thereby enhancing susceptibility to

T1DM. Pedersen et al. (2021) showed upregulation of OAS1 in

the islets of T1DM. OAS1 is also relevant in multiple sclerosis,

and hepatitis C virus infection (García-Álvarez et al., 2017;

O’Brien et al., 2010). SECTM1 is a type I transmembrane

glycoprotein, located in the Golgi apparatus, with

transmembrane and soluble forms (Slentz-Kesler et al.,

1998). Targeting SECTM1-CD7 interactions may be used to

prevent allogeneic T cell responses, autoimmune diseases, and

IFN-γ (Wang et al., 2012). SNW1 is a multifunctional protein

that plays a role in disease through direct protein interactions,

mRNA splicing regulation, or transcriptional control (Verma

et al., 2019). SNW1 overexpression is a marker of increased

cancer aggressiveness and has been confirmed in a variety of

cancers, including breast cancer, hepatocellular carcinoma,

and prostate cancer (Liu et al., 2013; Liu et al., 2014;

Höflmayer et al., 2019). Our in vivo and in vitro

experiments demonstrated that the relative transcript levels

of core genes showed the same expression trends as those in the

bioinformatics analysis, with significantly increased DKD

expression. Moreover, GSEA revealed specific signalling

pathways of the three core genes that may participate in the

development of DKD, providing a direction for further

exploration of DKD pathogenesis.

In this study, we identified regulatory genes correlated with

DKD through the Genecard database. Six genes (GCK, HNF1A,

L6, INSR, PDX1, and TCF7L2) differed significantly between the

HC and DKD groups. PDX1 (pancreatic and duodenal

homeobox 1) and INSR (insulin receptor) are known genes

that modulate DKD. PDX1, one of the earliest active pancreatic

transcription factors, directs beta-cell differentiation and

physiological insulin gene transcription (Zhu et al., 2017).

PDX1 knockout resulted in early DKD features such as

glomerular basement membrane (GBM) thickening and

glomerular hypertrophy in the zebrafish pronephros, while

PDX1 overexpression inhibited the progression of diabetic

kidney damage (Wiggenhauser et al., 2022). INSR encodes

the insulin receptor and plays an important role in the

insulin signaling pathway (Payankaulam et al., 2019). Gatica

et al. (2013) reported that INSR is highly expressed in the

kidney tissue of patients with DKD, suggesting its role in the

development of DKD. Our analysis of the correlations between

three core genes and DKD regulatory genes revealed intimate

connections among them. While the mechanism of the three

core genes and DKD regulatory genes in the pathogenesis of

DKD is unclear, the above evidence implies that the related

regulatory genes of DKD may participate in the development of

DKD by regulating the expression of the core genes. In addition,

we also constructed a ceRNA network of core genes by

combining the NPInter and miRcode databases. Although

less information is reported on the association of these

miRNAs and lncRNAs with the progression of DKD and

other renal diseases, these lncRNAs, miRNAs, and mRNAs

may play potential and important roles in the regulation of

renal function.

We analyzed the DEGs related to DKD in the GEO database

based on only eight signature genes that could be used to

construct a diagnostic model with high accuracy. We

discovered three core genes (OAS1, SECTM1, and SNW1) that

may be related to the pathogenesis of DKD and further revealed

that they may influence DKD progression through various

biological functions and pathways. These findings provide new

ideas for the pathogenesis and treatment of DKD.
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